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Abstract

Background: The invasive fruit fly, Bactrocera invadens, has expanded its range rapidly over the past 10 years. Here we
aimed to determine if the recent range expansion of Bactrocera invadens into southern Africa can be better understood
through niche exploration tools, ecological niche models (ENMs), and through incorporating information about Bactrocera
dorsalis s.s., a putative conspecific species from Asia. We test for niche overlap of environmental variables between
Bactrocera invadens and Bactrocera dorsalis s.s. as well as two other putative conspecific species, Bactrocera philippinensis
and B. papayae. We examine overlap and similarity in the geographical expression of each species’ realised niche through
reciprocal distribution models between Africa and Asia. We explore different geographical backgrounds, environmental
variables and model complexity with multiple and single Bactrocera species hypotheses in an attempt to predict the recent
range expansion of B. invadens into northern parts of South Africa.

Principal Findings: Bactrocera invadens has a high degree of niche overlap with B. dorsalis s.s. (and B. philippinensis and B.
papayae). Ecological niche models built for Bactrocera dorsalis s.s. have high transferability to describe the range of B.
invadens, and B. invadens is able to project to the core range of B. dorsalis s.s. The ENMs of both Bactrocera dorsalis and B.
dorsalis combined with B. philipenesis and B. papayae have significantly higher predictive ability to capture the distribution
points in South Africa than for B. invadens alone.

Conclusions/Significance: Consistent with other studies proposing these Bactrocera species as conspecific, niche similarity
and overlap between these species is high. Considering these other Bactrocera dorsalis complex species simultaneously
better describes the range expansion and invasion potential of B. invadens in South Africa. We suggest that these species
should be considered the same–at least functionally–and global quarantine and management strategies applied equally to
these Bactrocera species.
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Introduction

Alien invasive invertebrate species represent some of the most

recognized vectors of agricultural damage [1], as well as important

vectors of disease [2,3]. Invasions of such pests are increasingly

driven by anthropogenic movements, particularly trade. After

overcoming a geographic or dispersal invasion barrier, typically

facilitated by high levels of propagule pressure (reviewed in [4,5]),

and presuming non-limiting biotic interactions (e.g. host availabil-

ity and lack of competition), the establishment success and

subsequent distribution and abundance of an invasive species is

ultimately determined by the species relationship to abiotic

variables such as climate (e.g. [6,7]). These relationships can be

interpreted through the concept of the niche [8] and has led to the

advent of species distribution models in the form of ecological

niche models (ENMs) to predict the establishment and spread of

invasive species [9,10]. Typically, ENMs approximate something

close to the realised niche of the species [11] through character-

izing species-environment relationships across a known distribu-

tion [12]. The models can then be extrapolated or projected to

new geographic space (e.g. [13–15]) to investigate potential of

invasion [16], and may provide information to promote risk status

and aid management decisions (e.g. [17,18]). In addition to

predicting invasion potential, ENMs can also be used as

exploratory tools to examine niche similarity and divergence

between taxonomically uncertain species (e.g. [19]). Ecological

niche models have been used to help identify niche boundaries of

congeneric and cryptic species (e.g. [20,21]), and in a similar way it

should be possible to use ENMs to test taxonomic boundaries of
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invasive species (e.g. [22–23]), leading to recommendations for

pest control or management within global trade and tourism

networks.

A major challenge for applying ENMs to alien invasive species is

that environmental limits may be different in native and invasive

ranges resulting in asymmetrical transference of models [24]. For

instance, when characterizing the realised niche of the native

range, the species may be inhibited by a range of barriers,

including biotic and abiotic factors, that do not exist in the invasive

range [25] resulting in underestimation of the potential invasive

niche. Further, alien invasive species are often not in a state of

equilibrium with their environment, particularly within the novel,

invaded range [16,26]. This may translate into geographic range

expansions as species continue to spread to fill their potential niche

[6,7], or are enabled to do so through niche shifts (e.g. [27]), which

may be facilitated by evolutionary adaptation (e.g. [28]). In the

absence of strong biotic interactions however, it is possible to

explore modelled responses and apply ENMs in an attempt to

account for unstable relationships with climate, and as yet

unencountered environmental conditions (e.g. [26]). To help

accurately predict the extent of an invasion using ENMs, species-

environment relationships in both the native and invasive ranges

may need to be characterised [11,25,29]. In consequence,

characterising the realised niche across both native and invasive

ranges first requires that taxonomic and functional species

boundaries are effectively described. For example, species

descriptions may differ between countries or continents, especially

in the case of cryptic species or life-stages, so that only distribution

points corresponding to a particular description are employed in

modelling attempts: such sub-taxon level modelling is likely to

result in predictions different from ENMs considering a broader

realised niche [22,25,30].

Fruit flies (Diptera: Tephritidae) are major economic pests

through the world, causing huge economic losses to production of

a wide range of commercial fruits. Some of the most economically

important members of this family are within the Bactrocera dorsalis

complex, comprising ,75 species. Two members of this complex,

Bactrocera dorsalis s.s. and Bactrocera invadens, are highly polyphagous

pests of a variety of plant species, with 250 identified hosts for B.

dorsalis s.s. [31] and over 43 for B. invadens [32]. Bactrocera dorsalis s.s.

is thought to have originated in northern southeast Asia and has

since expanded its range through subtropical Asia and the Pacific

Ocean [31,33]. After detection in East Africa in 2003, Bactrocera

invadens was described as a separate species from B. dorsalis [34] and

those invasive populations are thought to have a Sri Lankan origin

[32,34].

Besides subtle morphological characters [34], there is little

evidence to functionally separate B. invadens from B. dorsalis. For

example, Khamis et al. [32] examined morphometry and DNA

barcoding to demonstrate that B. invadens is more closely related to

B. dorsalis than other Bactrocera species in that analysis. Further,

Tan et al. [35] found no difference between phenylpropanoid

metabolites (sex pheromones) in B. invadens and B. dorsalis males,

and concluded they are a single species. While other B. dorsalis

complex members are also considered separate species, recent

molecular information has revealed little or no tangible species

boundaries between some representatives of this complex (e.g.

[32,33]) and random mating occurs readily between the investi-

gated pairs [36]. Recent studies have examined the invasion

potential of both B. dorsalis s.s. [37] and B. invadens [38] separately,

using a fitted-process based model (CLIMEX) and ENMs (Maxent

and GARP) respectively. De Meyer et al. [36] proposed that ‘‘the

climatic optimal conditions for the two species [B. dorsalis and B. invadens]

likely overlap broadly’’. Since these modelling attempts, B. invadens has

undergone rapid range expansion to establish in areas thought to

be marginally climatically suitable, and is now reportedly present

in the Limpopo province of South Africa [39], after repeated

incursions and eradication reported from 2010 [40]. This B.

invadens range expansion may reflect changes in drivers such as a

climatic niche shift or increased propagule pressure, or that B.

dorsalis and B. invadens have been considered separately, as opposed

to a single species now fulfilling its potential niche.

These four Bactrocera dorsalis complex members provide an

opportunity to understand niche differentiation between cryptic or

conspecific species, and gain insight into biological invasions and

range expansions more generally. Here we address three key

questions which we answer through combining different niche

exploratory methods and ENMs. First, do Bactrocera dorsalis and

Bactrocera invadens display high niche overlap, and does this provide

support for a single-species hypothesis (c.f. [33,35,36])? Second, is

the recent range expansion of B. invadens into southern Africa likely

due to niche shift, or is the species simply filling the realised niche

which would have been predictable from including information

from the range of B. dorsalis (and B. philippinensis and B. papayae)?

Third, given potential information gained from addressing the first

two questions, can revised ENMs for Bactrocera spp. provide better

predictions of global invasion potential, and in turn, recommen-

dations for management? Through addressing these questions we

therefore aim to better understand niche overlap and species

boundaries among Bactrocera species, range expansions and

biological invasion processes in general, and direct future research

to investigate key functional and phenological traits to understand

outbreak potential and persistence of these important fruit fly

pests.

Materials and Methods

Distribution Data
Distribution points for B. dorsalis s.s., B. invadens, B. papayae and

B. philippinensis were collated from published studies [37,38,41–46]

and contributions from various workers (see acknowledgements).

For some localities we were required to georeference the site using

Google Earth (version 7.1.1.1888; Google Inc., 2013). Due to this

we selected an appropriate scale for our predictor layers (see

below) and removed duplicate presence points at the grid cell level.

Overall, we obtained 438 points for Bactrocera invadens, 243 points

for B. dorsalis s.s., 22 points for B. papayae and 27 points for B.

philippinensis (Fig. 1a). When considered at the grid cell level, this

translates to 390 cells occupied for B. invadens, 185 for B. dorsalis

s.s., and 25 and 19 for B. philippinensis and B. papayae respectively.

This expands on the 236 points used by De Meyer et al. [38] in

their modelling attempts for B. invadens. We considered the

following hypotheses of species boundaries: (i) B. invadens (ii) B.

dorsalis, (iii) B. dorsalis + B. papaya + B. philippinensis (iv) B. dorsalis + B.

invadens + B. papaya + B. philippinensis.

Background Selection
For ENMs that are constructed within a presence-background

framework, the issue of accessible area for the species is important

[47,48]. For broadly distributed invasive species (where dispersal

measures are largely unknown) it may be best to select backgrounds

based on bioclimatic zones representing little inhibition to accessible

area beyond broad climate types. Bioclimatic methods of back-

ground selection have also been recommended for their simplicity

[48] and practicality [49]. We selected two different backgrounds

based on broad (n = 30 global bioclimatic zones) and narrow

(n = 125 global climatic strata) bioclimatic classifications, by

determining Bactrocera spp. occupancy of different zones (using
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point localities). For the first background we used the Köppen-

Geiger climate classifications (Köppen-Geiger classifications, fol-

lowing the rules defined in [50] as applied to the 59 resolution

WorldClim global climatology (www.worldclim.org; Version 1.4,

release 3; [51])). The climate zone types that each dataset

encompassed were selected based on presence localities. As the

Köppen-Geiger classification has 30 broadly classified zones, it

provides a relatively broad background for ENM construction.

Our second background was selected across a finer classification

system, using different classes of bioclimate types derived through

Principal Components Analysis (PCA) and then a clustering

routine to classify principal components into homogeneous strata

[52]. This global environmental stratification (GEnS) method has

high congruence with the Köppen-Geiger method, though it

provides finer resolution through a higher number of classifications

(strata; n = 125) [52]. Finally, we restricted both backgrounds to

appropriate geographical extents. For B. dorsalis we restricted the

climate zones to Asia and for B. invadens we allowed the climate

zones to fall in either Africa, or Asia, but not South East Asia. Due

to the resolution of our climate layers, our backgrounds did not

include small islands such as Hawaii, but the presence information

for such small island locations was incorporated into the models.

Predictor Sets
We obtained environmental data from CliMond [50], which

provides 35 bioclimatic variables describing means, seasonality

and trends for temperature, precipitation, solar radiation and soil

moisture. We used a grid cell resolution of 109, which is roughly

20620 km at the equator. We compiled two different predictor

sets for each of the Bactrocera spp. boundary hypotheses. The first of

these was an expert-driven predictor set. Previously, seven of the

commonly employed bioclimatic variables were included to

construct ENMs for B. invadens [38]. These variables describe

trends and extremes for temperature and rainfall and were chosen

on the basis of them likely reflecting limits to tephritid fly

distributions. These variables were also included for other

tephritid (Ceratitis spp.) fly ENMs [53]. This predictor set consisted

of: Mean diurnal temperature range (bio2), Temperature season-

ality (standard deviation *100) (bio3), Maximum temperature of

warmest month (bio5), Minimum temperature of coldest month

(bio6), Temperature annual range (bio7), Precipitation of wettest

month (bio13), Precipitation of driest month (bio14), and

Precipitation seasonality (coefficient of variation) (bio15). We

chose these eight predictor variables as our expert predictor set.

Our second predictor set was derived by first conducting

exploratory analysis of the niches for each species. We used

Ecological Niche Factor Analysis (ENFA) within the adehabitat

package [54] in R (version 3.0.0; 2013 [55]). Some studies have

used ENFA to characterize the niche of invasive species and

predict distributions (e.g. [16,56]), though elsewhere ENFA has

been suggested to determine variables for inclusion in ENMs [11].

All 35 predictor layers were z-transformed and ENFA was

conducted for each species and a combined dataset of all species,

to examine the utilization of the available environmental variables

resulting in two uncorrelated axes, marginality and specialization.

Marginality refers to the difference or distance between the total

range of environmental variables (accessible area) and the range

actually occupied by the species (point localities) [57]. Similarly,

specialization refers to the variance of the variables. We used

ENFA by calculating marginality for each variable and determin-

ing a predictor set that may indicate important limits to the

distribution of Bactrocera spp., at the scale of climatic variables, with

marginality indicating how particular the species is compared to

the variable across the whole background provided [57]. Analysis

was conducted on both the Köppen-Geiger and GEnS defined

backgrounds across both Asia and Africa (see Figure 1a) for each

species, to examine the utilization of the environmental space

across these backgrounds and determine variable importance

Figure 1. Asian and African distributions of Bactrocera spp. a) Bactrocera dorsalis s.s (grey circles), Bactrocera invadens (white circles),
Bactrocera philippinensis (grey squares), Bactrocera papayae (white squares). Grey area represents area not used for background selection.
Colours refer to Köppen-Geiger classifications for presence records of each species investigated. Af = tropical rainforest; Am = tropical monsoon;
tropical wet and dry or savannah climate; BSh = arid steppe climate; BWh = arid desert climate; Cfa = humid, subtropical; Cfb = Oceanic, highlands;
Cwa = humid, subtropical; Cwb = temperate highland climate. Black outlines represent administrative boundaries selected prior to climate zone
selection. b) Species occupation of different GEnS strata classifications (see [52]). All = all four species combined.
doi:10.1371/journal.pone.0090121.g001
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based on marginality (values range 0–1). The top ranked variables

appropriate to each species dataset were then selected (n = 8 to be

comparable to expert-driven datasets).

Niche Overlap
We investigated niche overlap and similarity between the four

Bactrocera spp. in both environmental (E-space) and geographic (G-

space) space. We conducted PCA to summarize our predictor sets

into uncorrelated axes at each Bactrocera spp. location. For the

expert predictor set we included all eight variables. For the ENFA-

derived sets we took the eight variables that applied to a combined

dataset of all distribution points (see Table 1). We added 1000

random points from the Köppen-Geiger backgrounds of B. dorsalis

s.s. and B. invadens respectively, and then plotted the first two

components as a biplot, clustering each of the four species with

minimum convex hulls to examine overlap within E- space.

Overlap in G-space was investigated using reciprocal distribu-

tion models (RDM; [13] Fitzpatrick et al., 2007), which are

reciprocally projected ENMs calibrated on separate distribution

datasets and geographic backgrounds [13–15]. Such models are

then reciprocally projected between native and invasive or novel

ranges to measure how well models transfer and describe both

distributions. Ecological niche models were constructed with

Maxent (version 3.3.2i; [58,59]), a presence-background ENM

method. Using Maxent (and other ENM methods) to predict the

potential niche of novel environments requires model extrapola-

tion, thus appropriate caution should be taken to limit potential

problems that result from violating underlying assumptions on

training data [23,60], Maxent has been used widely for

investigating distributions of different invasive and pest inverte-

brates and plants (e.g. [14–16,26]) and was also applied to B.

invadens [38]. For each predictor set we sampled 10 000 random

points across each background, so that either every cell was

accounted for, or we had good representation for each. We only

examined the two datasets that were used in the PCAs; the two B.

dorsalis models were projected to the background of B. invadens and

vice versa. We then combined B. dorsalis with B. papayae and B.

philippinensis to test against B. invadens. To test RDM performance,

we used the reciprocal species occurrences as a test dataset and

examined AUCTEST (area under the receiver operating charac-

teristic curve for test dataset) score. Typically, models with AUC

values over 0.7 are performing well, with over 0.9 being excellent.

Table 1. Variables selected for ENFA predictor sets.

ENFA scores - Köppen | GEnS

All B. dorsalis s.s. B. invadens B. papayae B. phillipensis

Specialization 0.44 0.40 0.82 0.80 0.59 0.56 2.54 1.60 4.07 3.43

Marginality 1.98 1.69 2.47 2.24 1.84 1.55 3.42 3.30 3.14 2.93

Predictor Marginality - Köppen|GEnS

bio02 20.43 20.39 20.69 20.65 20.75 20.72

bio03 0.44 0.39 0.77 0.73

bio04 20.47 20.42 – 0.79

bio06 – 0.36 0.48 0.45 0.75 0.73 0.81 0.79

bio07 20.47 20.42 20.51 20.45 20.87 20.85 20.80 20.77

bio11 0.41 0.38

bio12 0.66 0.64

bio13 0.79 –

bio14 0.42 0.36 0.61 0.55 0.83 – 0.72 0.67

bio17 0.55 0.50 0.76 0.75

bio18 0.56 0.52

bio21 20.44 20.40

bio26 20.38 20.34

bio28 0.43 0.37 0.56 0.51 0.73 0.72 0.70 0.66

bio29 0.43 0.36

bio30 0.61 0.56 0.88 0.83

bio32 0.42 0.34 0.66 0.61

bio33 0.61 0.56 0.86 0.80 0.66 0.62

bio34 0.62 0.57

bio35 0.44 0.37 0.40 0.33

The ENFA derived parameters are determined separately for each of the species boundary hypotheses and for all four species combined. The scores calculated across
the Köppen-Geiger background are on the left and the GEnS scores on the right. The total marginality score will increase above 1 when considering all predictor
variable marginality scores. Bio02 = Mean diurnal temperature range (mean(period max-min)) (uC); Bio03 = Isothermality (Bio02 4 Bio07); Bio04 = Temperature
seasonality (C of V); Bio06 = Min temperature of coldest week (uC); Bio07 = Temperature annual range (Max temperature of warmest week - Bio06) (uC); Bio11 = Mean
temperature of coldest quarter (uC); Bio12 = Annual precipitation (mm); Bio14 = Precipitation of driest week (mm); Bio17 = Precipitation of driest quarter (mm); Bio18 =
Precipitation of warmest quarter (mm); Bio21 = Highest weekly radiation (W m22); Bio26 = Radiation of warmest quarter (W m22); Bio27 = Radiation of coldest quarter
(W m22); Bio28 = Annual mean moisture index; Bio29 = Highest weekly moisture index; Bio30 = Lowest weekly moisture index; Bio32 = Mean moisture index of wettest
quarter; Bio33 = Mean moisture index of driest quarter; Bio34 = Mean moisture index of warmest quarter; Bio35 = Mean moisture index of coldest quarter.
doi:10.1371/journal.pone.0090121.t001
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Below 0.5 is considered no better than random (e.g [14–15]). For

our RDMs, default Maxent parameters were used except that only

hinge features were enabled (hinge features allow for a change in

the gradient of the response, provide a ‘‘smoother’’ model when

used alone (Maxent option), and are recommended for modelling

invasive species; see [23,61]) and models only constructed using

the ‘wider’ Köppen-Geiger backgrounds. As an additional

evaluation of model performance, we used the True Skill Statistic

(TSS) [62] which ranges from 21 to +1, with values of +1 being

perfect and #0 considered no better than random [62]. The TSS

is threshold-dependent and was calculated using omission and

commission rates set at a threshold of maximum sensitivity plus

specificity. Like AUC, TSS weights sensitivity and specificity

equally [62], this needs to be considered when evaluating false

negative predictions (omission errors), and consequences of, for

invasive species [18]. We aimed to reduce false negative

predictions prior, by exploring model features in an attempt to

smooth responses and increase transferability, and then use equal

weights for evaluation.

Range Expansion
To focus on the current range expansion into southern Africa

we built ENMs (agains using Maxent) with a combination of

background (2), predictor set (2) and species datasets (4: the species

boundary hypotheses), We sought to reduce ENM complexity

through ‘smoothing’ predictor responses in an attempt to increase

transferability and avoid possible underprediction [26]. We also

only enabled hinge features and set the regularization parameter

(b) at 1, 2 and 5 to examine how increases in b affected model fit

and prediction. Regularization is a process of smoothing the model

fit through making it more regular in an attempt to avoid fitting a

too complex model [61]. All other settings were left at default and

we employed 10 000 background points. Final models were run

with 10 cross-validation replicates and the AUCTEST score

examined. While AUCTEST was appropriate for the RDMs

(ENMs using independent test datasets, not split-dataset ap-

proach), the use of AUC may be problematic as an evaluation of

ENMs attempting to describe the potential distribution (e.g.

[63,64]). So, to further evaluate model performance and rank

complexity for each of the different ‘species’ datasets, we

calculated sample size-corrected Akaike information criteria

(AICc) (using ENMTools; [65,66]) to determine the lowest AICc

value (coupled with a high AUCTEST value). We considered all

combinations of background choice, predictor set (for ENFA –

with and without correlated pairs identified and removed) and the

different b values for all models. We performed paired t-tests

across AICc scores between each model constructed on each

species dataset. As a final check we examined correlation between

variable pairs using Pearson’s correlation coeffecient (r) for the

chosen models across respective backgrounds and examined

model performance when removing variables for any pair where

r $0.75. Whilst Pearson’s r is only one measure of correlation

between variables, it allowed for examination of linear correlations

across the entire background area of our final predictor sets that

may hamper model transferability.

To examine range expansion we projected the best performing

ENM (selected through AICc approach) for each species boundary

hypothesis to southern Africa and included a reconstructed De

Meyer et al. [38] Maxent model. We evaluated the performance of

these final models using TSS as before and measured niche

breadth (B = Levin’s measure of niche breadth (inverse concen-

tration): see [67]), and niche overlap (Schoener’s D) using

ENMtools, for each of the ENMs below 14.78uS on the African

mainland (the most southern locality from the De Meyer et al. [38]

dataset) across the logistic output grids from Maxent. We also

acquired positive trap identifications from an area that has

displayed recent incursion of B. invadens in South Africa. This

translated into 11 trap points, but these only represented four grid

cells at the resolution of our predictor layers. To test how each of

the four ENMs predicted the recent invasion of B. invadens into

South Africa we examined the test AUCTEST value using these

trap data as an independent test dataset in Maxent.

Results

Bactrocera spp. Distributions
Bactrocera invadens and B. dorsalis s.s. are found across 10 different

Köppen-Geiger climatic zones each, both occur in Asia, but B.

invadens is also now widespread through Africa (Fig. 1a). Both B.

papayae and B. philippinensis have restricted distributions in South

East Asia, in tropical climate zones (Fig. 1a). For the GEnS

background, B. dorsalis is found across 38 strata, B. invadens across

31 and B. philippinensis and B. papaya across 6 and 8, respectively.

The climatic zones these strata fall into show that typically the

Figure 2. Principal components analysis (PCA) of four different
Bactrocera spp. across different predictor variable sets. Light
grey points represent 1000 random background points across the range
of B. dorsalis s.s. and dark grey, B. invadens. a) PCA for ‘‘expert’’
predictor set. Proportion of variance for PC1 = 88.8% and for PC2 = 6.4%.
b) PCA for ENFA driven predictor set (note: eight variables were loaded,
most informative across the 4 ‘‘species’’) Proportion of variance for
PC1 = 68.4% and for PC2 = 24.6%.
doi:10.1371/journal.pone.0090121.g002
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species are found in hot or extremely hot climates with varying

rainfall regimes, from moist through to arid (Fig. 1b).

Background and Predictor Sets
The Köppen-Geiger defined backgrounds resulted in fewer

climate zone classes and therefore wider geographic regions than

did the backgrounds defined by occupied GEnS strata. The ENFA

derived variables were different for each of the Bactrocera species

(Table 1). There are no shared variables between the B. dorsalis and

B. invadens datasets across both the Köppen-Geiger and GEnS

backgrounds. Bactrocera philippinensis and B. papayae each share four

variables with B. dorsaliş and B. papaya shares four variables with B.

invadens, while B. philippinensis only two (Table 1). Bactrocera invadens

has the lowest scores for marginality and specialization (Table 1),

Figure 3. Reciprocal distribution models RDM for B. dorsalis s.s. + B. philippinensis + B. papayae (blue dots) and B. invadens (red dots).
Ecological Niche Models shown here were constructed on ENFA-derived predictor sets as they had higher AUCTEST and D scores than did those built
on expert-driven predictor sets (see Table 2). Shading indicates suitability and solid grey areas are those that fall outside Asia and Africa. a) RDM
trained on B. dorsalis + B. papayae + B. philippinensis distribution projected to the background of B. invadens, Model H (Table 2). b) RDM trained on B.
invadens distribution projected to the background of B. dorsalis s.s. + B. philippinensis + B. papayae, Model E (Table 2).
doi:10.1371/journal.pone.0090121.g003
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indicative of a widespread species across a variety of habitats.

Bactrocera dorsalis has also low marginality and specialization scores,

though higher than B. invadens. Bactrocera philippinensis and B. papayae

have high specialization scores (Table 1), reflective of the small

distributions across only a few climatic zones (Figs. 1a, b). The

specialization scores for the combined dataset of all species are the

lowest, although the marginality score is still higher than for B.

invadens alone (Table 1).

Niche Overlap
When examined in E-space, the PCAs for both the expert

predictor set (Fig. 2a) and the ENFA derived predictor set (Fig. 2b)

display high overlap across the four species. The accessible E-space

(represented as light and dark grey dots in Figs. 2a and b) across

the B. dorsalis and B. invadens backgrounds form two largely

overlapping clouds when plotted on the first two principal

component axes, though displays clear divergence along the two

axes, particularly for the light grey points depicting the

background in Asia.

As well as being high overlap in E-space there is also high

overlap in G-space, as demonstrated through RDM transferability

(Figs. 3a, b) and supported in high AUCTEST, TSS and niche

overlap scores (Table 2). The RDMs for B. invadens and B. dorsalis

show that each species is able to project across to the distribution

of the other, but in particular B. dorsalis s.s. over to B. invadens

(ENFA: AUCTEST = 0.84, D = 0.86; Expert: AUCTEST = 0.80,

D = 0.81) and this overlap even further enhanced by incorporating

the points for B. philippinensis and B. papayae and projecting to

Africa (ENFA: AUCTEST = 0.83, D = 0.91; Expert: AUCT-

EST = 0.845, D = 0.93). Combining the Bactrocera dorsalis species in

Asia gives better prediction of the B. invadens range in Africa and

gives high spatial congruence with this distribution. Schoener’s D

values for B. invadens projected to the Asian background range

from 0.51–0.68, indicating moderate success in projecting to this

Table 2. RDM performance.

Model Calibration Project Dataset AUCTRAIN AUCTEST TSS D

A B. invadens B. dorsalis ENFA 0.888 0.762 0.559 0.51

B B. invadens B. dorsalis Expert 0.881 0.683 0.480 0.51

C B. dorsalis B. invadens ENFA 0.891 0.841 0.579 0.86

D B. dorsalis B. invadens Expert 0.894 0.804 0.461 0.81

E B. invadens DPP ENFA 0.888 0.787 0.568 0.76

F B. invadens DPP Expert 0.881 0.731 0.494 0.68

G DPP B. invadens ENFA 0.884 0.83 0.553 0.91

H DPP B. invadens Expert 0.886 0.845 0.563 0.93

Models were assessed on their ability to predict the distribution of the other species with the AUCTEST (area under the receiver operating characteristic curve) score
(independent dataset not included in model construction). DPP = B. dorsalis + B. philippinensis + B. papayae. True Skill Statistic (TSS) values were calculated to evaluate
model performance at the threshold of maximum training sensitivity plus specificity. Schoener’s D values are the overlap of the given model in the projected range
where the reciprocal model was calibrated.
doi:10.1371/journal.pone.0090121.t002

Table 3. Ecological Niche Model (ENM) performance for different Bactrocera dorsalis complex datasets.

AICc AUCTEST

Köppen-Geiger GEnS Köppen-Geiger GEnS

Species b Expert ENFA Expert ENFA Expert ENFA Expert ENFA

B. invadens 1 10082.55 10115.73 10067.98 10161.67 0.870 0.879 0.848 0.857

2 10015.31 9948.31 10040.87 10001.62 0.863 0.872 0.838 0.85

5 10033.44 10024.97 10054.66 10084.71 0.855 0.861 0.827 0.837

B. dorsalis 1 5185.53 5778.47 5055.31 5691.30 0.869 0.846 0.877 0.852

2 4847.52 5721.84 4869.70 5640.72 0.872 0.837 0.873 0.845

5 4785.07 5370.73 4799.10 5329.23 0.868 0.818 0.873 0.828

DPP 1 6330.44 6564.84 6233.28 6628.09 0.867 0.907 0.867 0.892

2 5975.67 6595.53 6008.80 6495.63 0.863 0.900 0.864 0.884

5 5942.12 6569.79 5977.70 6530.93 0.858 0.892 0.860 0.874

All 1 16698.46 16095.50 16239.09 16514.54 0.841 0.851 0.816 0.826

2 16044.53 16136.19 16185.38 16497.96 0.836 0.843 0.810 0.819

5 16016.01 16170.28 16131.59 16471.56 0.831 0.830 0.805 0.804

DPP = B. dorsalis + B. philippinensis + B. papayae, All = B. dorsalis + B. invadens + B. papaya + B. philippinensis AICc = sample size corrected Akaike information criteria
across 10 replicates, bold values represent significantly lowest AICc score (p,0.05); AUCTEST = area under the receiver operating characteristic curve; mean across 10
cross-validated replicates. b = regularization parameter.
doi:10.1371/journal.pone.0090121.t003
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range, though not predicting the northern extent of B. dorsalis in

Asia (Figs. 3b).

Range Expansion
Our final models for the four datasets were selected on

significantly lowest AICc (coupled with a high AUCTEST score)

(Table 3). Generally, the Köppen-Geiger background with the

expert-driven predictor set yielded ENMs with higher perfor-

mance, only separated on regularization changes (B. dorsalis b = 2,

p,0.05; All b = 5, p,0.05; B. dorsalis + B. papaya + B. philippinensis

b = 2, p,0.005), except for B. invadens where the ENFA variables

gave the lowest AICc value (b = 2, p,0.001) (Table 3). However,

variables describing minimum temperature of the coldest month

and annual temperature range are highly correlated therefore

causing some spurious spatial predictions for this ENM, so we

removed the latter variable post hoc. Generally, by increasing b to

values of 2 or 5, the AICc values were also significantly lowered –

further reducing model complexity (beyond selecting only hinge-

features) increased model performance (Table 3). Coupled with

significantly different AICc scores for all model selections (p,0.05)

the mean AUCTEST was .0.80, indicating high predictive ability

given model conditions (Table 3). In addition our final models

(bold in Table 3) all performed well with TSS values of: B.

invadens = 0.602, B. dorsalis = 0.596, B. dorsalis + B. philippinensis + B.

papayae = 0.607, All species = 0.532.

Niche breadth in southern Africa was significantly highest for

the B. dorsalis s.s. ENM (B = 0.59, p,0.001) (Fig. 4a). Niche

breadth for the combined dataset (B = 0.47) and the dataset of B.

dorsalis + B. philippinensis + B. papayae (B = 0.53) were significantly

higher than for B. invadens (B = 0.36, p,0.001 in both cases). Our

B. invadens ENM also had higher niche breadth than the De Meyer

et al. [38] B. invadens ENM in southern Africa (p,0.001) (Fig. 4a).

Pairwise comparisons of niche overlap in southern Africa between

the final B invadens ENM and three other models revealed that the

highest overlap was with the model considering all four species

simultaneously (Comparison D, D = 0.68, p,0.001, Fig. 4b). Niche

overlap between B. invadens and B. dorsalis was also high

(Comparison B, D = 0.66, p,0.01) and consistent with niche

breadth, there was higher overlap between B. invadens and the

model with the other three species combined (Comparison C,

D = 0.67, p,0.01). The De Meyer et al. [38] ENM and our B.

invadens ENM had the lowest overlap (Comparison A, D = 0.61, p,

0.001, Fig. 4b).

Overall, the final models for the B. invadens dataset and the all

species combined dataset predict slightly different geographic area

in Africa, particularly in the northern parts of the African range for

B. invadens and in the southern parts of the range for the combined

dataset (Fig. 5a). The De Meyer et al. [38] model predicts a more

conservative distribution than these two models (Fig. 5a). The 11

points (4 grid cells) from the recent invasion of B. invadens in South

Africa, all fall within a small area in the Limpopo province

(hatched area, Fig. 5a). Consistent with the results for niche

breadth, the AUCTEST values for these points were low for B.

invadens (AUCTEST = 0.547), but then high for all species combined

(AUCTEST = 0.844) and very high for B. dorsalis (AUCT-

EST = 0.937) and B. dorsalis + B. philippinensis + B. papayae

(AUCTEST = 0.924) ENMs. While these AUC values should be

interpreted cautiously given the low number of test points they do

provide an indication of ENM performance for predicting this

recent range expansion. The predicted global invasion potential of

B. invadens and all four species combined is shown in Figure 5b.

Discussion

The recent range expansion and invasion of Bactrocera invadens

into South Africa is a major concern for fruit growing industries

within the country. Through ENMs and niche-exploration

methods, we elucidated species-environment relationships and

likely drivers of the geographical expansion of B. invadens. In

answer to the questions posed by our study aims, B. invadens

displays a highly overlapping niche in terms of both E-space and

G-space with B. dorsalis s.s. (and B. philippinensis and B. papayae),

supporting evidence that these species may indeed be conspecific.

Secondly, the range expansion and invasion of Bactrocera invadens

into South Africa is better explained through incorporating the

species-environment relationships of these other members of the B.

dorsalis complex. Thirdly, these results provide important infor-

mation to predict the ongoing invasion of these Bactrocera dorsalis

Figure 4. Niche metrics calculated for Bactrocera spp. Ecological Niche Models. a) Niche breadth (Levin’s B) for 10 replicates of each final
ENM projected to mainland southern Africa (see Fig. 5a). Note: DPP = B. dorsalis + B. philippinensis + B. papayae. b) Niche overlap (Schoener’s D)
between ENMs projected to mainland southern Africa (see Fig. 5a): A = B. invadens & B. invadens De Meyer et al. (2010); B = B. invadens & B. dorsalis;
C = B. invadens & B. dorsalis + B. philippinensis + B. papayae (DPP); D = B. invadens & All four species combined.
doi:10.1371/journal.pone.0090121.g004

Niche Overlap of Congeneric Invasive Fruit Flies

PLOS ONE | www.plosone.org 8 February 2014 | Volume 9 | Issue 2 | e90121



complex members and help direct recommendations for global

management of these high risk species.

High overlap in both E- and G-space, and for both predictor

sets used, is consistent with the hypothesis for Bactrocera invadens, B.

philippinensis and B. papayae to be conspecific with B. dorsalis s.s. It is

evident however, that E-space changes between ranges, as climatic

variables are often anisotropic across large geographic extents like

the backgrounds employed here [68]. This was largely visible

through our PCA biplots, and may help explain the low

transferability of the B. invadens RDM to Asia, rather than a niche

shift as concluded elsewhere (e.g. [13–15]). The incomplete

transferability may also be due to B. invadens being in a state of

range expansion: that B. dorsalis s.s. is found in more strata from

the GEnS analysis may be further indicative of this suggestion.

Figure 5. Final Bactrocera spp. Ecological Niche Models (ENMs) projected spatially a) Final ENMs projected to southern Africa to
predict the range expansion of B. invadens. Hatched area = area affected by recent B. invadens incursions. Red points are known localities of
trapped flies. Models displayed at a binary presence/absence threshold set at maximum training sensitivity plus specificity. b) Final ENMs projected to
show global invasion potential of Bactrocera invadens and when considered as a single species with B. dorsalis, B. philippinensis and B. papayae.
Shading indicates variables outside training range and extrapolation (calculated with the multivariate environmental similarity surface (MESS) analysis
in Maxent [26]). Models displayed at a binary presence/absence threshold set at maximum training sensitivity plus specificity.
doi:10.1371/journal.pone.0090121.g005
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The advantages of updating distribution data is demonstrated by

geographic differences and lowest niche overlap between the De

Meyer et al. [38] model and the ENMs explored herein.

Information from trap catches (there are now over 3000 Methyl

Eugenol traps throughout South Africa [69]), including seasonality

and abundance, should provide essential data to construct

dispersal models, revisit ENMs, and further understand the rate

at which B. invadens is spreading.

Without having true absence data to calibrate our ENMs, we

are providing an assessment of invasion potential rather than the

actual distributions for B. invadens/dorsalis [16]. By incorporating

information from other members of the B. dorsalis complex into the

B. invadens ENMs, some insight into the recent range expansion

into South Africa can be achieved. Importantly, rather than a

niche shift for B. invadens, range expansion is likely to be a single

conspecific invader filling its potential niche. The differences in

overlap and geographic extent between the B. invadens and the

combined models may be due to sub-taxon consideration of

datasets [23,30]. The B. invadens model and the combined model of

the four species may reflect differences in ecology and thus provide

complementary information for determining invasion potential

[22]. To describe invasion potential we also attempted to increase

transferability and minimize false negative predictions through

reducing model complexity (e.g. feature selection). Associated

error is thus more likely to fall on the side of over-prediction

(commission error) rather than under-prediction (omission error)

and this is likely to be a more desirable outcome when predicting

the spread of a rapidly expanding species, though caution is

required when translating this to management practices [18].

Invasive species that occupy large geographic extents may be

modelled effectively through generalised bioclimatic backgrounds,

as we found that the Köppen-Geiger was less restrictive than the

GEnS background, resulting in higher model performance (or

presence/background discrepancy). While use of wide back-

grounds has typically been found to show lower transferability

[70], model performance is affected by either too wide or too

narrow a background [47]. A background based on dispersal

would likely provide a useful test against these bioclimatic

backgrounds, but quantifying and accurately modelling both

active and passive dispersal remains challenging at present, due

partly to the dispersal of tephritids through factors such as human-

assisted dispersal [71]. It is likely that the GEnS selected

backgrounds are suited to ENM applications for niches that are

not under rapid change, such as conservation and biogeography

monitoring-type analyses [52]. The fact that ENMs that were

constructed on the expert-driven predictor variable set generally

performed better than our ENFA one(s) provides good support for

variable selection to be based on knowledge of physiological (or

other functional) limits that define distributions [72]. However,

often such knowledge is not present for an invasive species, and as

our Bactrocera ENMs built on ENFA selected variables gave high

performance, transferability and spatial congruence with the

expert-driven predictor sets, we recommend that ENFA provides

a valid alternative where such functional information is lacking,

given that correlated predictors are identified.

Ecological niche models are useful tools for understanding

invasion potential on condition that the weaknesses are identified

and future research plans are centred on testing processes outside

model capabilities (e.g. biotic interactions, dispersal and adapta-

tion) (see [10]). For instance, competition has been observed

between Bactrocera invadens and the indigenous Ceratitis cosyra,

although in this case B. invadens was able to outcompete C. cosyra

[73]. Likewise, thermal tolerance traits have been shown to differ

between closely related tephritids, Ceratitis capitata and C. rosa, and

this may translate into a competitive advantage to the former or a

broader thermal niche [74]. By using established thermal tolerance

and desiccation protocols it should be possible to test whether

overlaps in E-space are related to a high degree of physiological

similarity between the species [74], or if there are any shifts in

physiological traits [27]. Testing for local adaptation in functional

traits (such as physiological tolerances or host plant switching) can

also reveal evolutionary processes that facilitate range expansion

(e.g. [28]). Phenological studies and abundance data could be used

to predict outbreaks and persistence of B. invadens across the

geographic area of invasion potential (e.g. Ceratitis rosa [75]). For

example, such information could be used to revise the existing

Bactrocera dorsalis CLIMEX model [37] to examine invasion

processes of B. invadens.

From previous climate-based models [37,38], both Bactrocera

invadens and B. dorsalis s.s. appeared to have the potential to

independently invade large geographic areas and, given the global

invasion of other tephritids to date (e.g. C. capitata [53]), this seems

like a reasonable assertion. Our results support a growing body of

evidence that species boundaries in the B. dorsalis complex may

require revision (e.g. [32,33,35,36]). Thus, we suggest that

considering these B. dorsalis complex members separately has led

to the underprediction of the invasive potential in both South

Africa and globally. Proper management of pest invertebrates

relies on correct identification of species, and due to the economic

importance of these species, quarantine and management recom-

mendations for B. invadens and B.dorsalis s.s. may need to be revised

[32,36]. However, we agree with Shutze et al. [33,36] that

behavioural and cytogenetic studies need to be completed before

complete taxonomic revision.
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