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Vitamin A deficiencies and insufficiencies are widespread in developing countries, and

may be gaining prevalence in industrialized nations. To combat vitamin A deficiency (VAD),

theWorld Health Organization (WHO) recommends high-dose vitamin A supplementation

(VAS) in children 6–59 months of age in locations where VAD is endemic. This practice

has significantly reduced all-cause death and diarrhea-related mortalities in children,

and may have in some cases improved immune responses toward pediatric vaccines.

However, VAS studies have yielded conflicting results, perhaps due to influences of

baseline vitamin A levels on VAS efficacy, and due to cross-regulation between vitamin

A and related nuclear hormones. Here we provide a brief review of previous pre-clinical

and clinical data, showing how VAD and VAS affect immune responses, vaccines, and

infectious diseases. We additionally present new results from a VAD mouse model.

We found that when VAS was administered to VAD mice at the time of vaccination

with a pneumococcal vaccine (Prevnar-13), pneumococcus (T4)-specific antibodies

were significantly improved. Preliminary data further showed that after challenge with

Streptococcus pneumoniae, all mice that had received VAS at the time of vaccination

survived. This was a significant improvement compared to vaccination without VAS. Data

encourage renewed attention to vitamin A levels, both in developed and developing

countries, to assist interpretation of data from vaccine research and to improve the

success of vaccine programs.
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INTRODUCTION

Vitamin A deficiency (VAD) adversely affects children and adults worldwide. Today, the
World Health Organization (WHO) estimates that 250 million preschool children suffer from
VAD, with the highest frequencies among low-income areas of Africa and South-East Asia
[http://www.who.int (accessed March 01, 2019)]. Infectious diseases, particularly respiratory and
diarrheal diseases, occur at increased frequencies (at least 2:1) among populations with VAD
compared to vitamin-replete populations (1).

The global burden of VAD and its effects on populations in developing countries are well known,
but much less well appreciated are incidences of VAD and vitamin insufficiencies in the developed
world (2–5). In Memphis, TN, we tested influenza virus-infected children and their household
contacts for retinol binding protein (RBP) as a surrogate for vitamin A (6), and found that 13
of 21 individuals were either vitamin A insufficient or deficient (5). We found that both infected
and uninfected study participants exhibited low RBP levels. Low RBP can be a consequence of
illness (7), but also reflects conditions of malnutrition when individuals in low-income families
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have limited access to nutrient-rich foods (8–10). Whereas,
infants in the United States may receive government-funded,
vitamin-fortified formulas, comparable support is not given to
older children (11). Instead, diets for older children and adults
may be calorie-dense and nutrient-poor. As is the case in
developing countries, vitamin insufficiencies and deficiencies in
the developed world correlate with weakened immune responses
and poor outcomes upon hospitalization for infectious disease
(2, 4). Unlike the situation in the developing world, individuals
in the United States are usually assumed to be vitamin A-replete.
Malnutrition may therefore go unnoticed.

Vitamin A Requirements, Metabolism,
and Trafficking
Vitamin A is acquired from the diet in the form of
retinoids (preformed vitamin A) or carotenoids (provitamin
A). Retinoids include retinol or retinyl esters from animal
sources, whereas carotenoids include beta-carotenes from plants.
The recommended daily allowance (RDA) for vitamin A is
dependent on age and sex. The Office of Dietary supplements
(ODS) at the National Institutes of Health (NIH) currently
recommends an RDA ranging from 300 to 600 µg retinoic
acid equivalents (RAE) for young children. For individuals aged
≥14 years, RDAs are 700 µg RAE for non-pregnant females
and 900 µg RAE for males (1 IU retinol = 0.3 microgram
RAE) [https://ods.od.nih.gov (accessed March 01, 2019)]. A
blood level of <0.7µM retinol is considered vitamin “deficient”
or “inadequate,” and levels between 0.7 and 1.05µM retinol
are considered “insufficient” or “marginal” for some biological
functions (12).

Vitamin A is generally stored in the liver as esters, but can
also be found in extra-hepatic sites such as lung, intestine,
kidney, and adipose tissue (13, 14). Retinol is the most common
vitamin A metabolite in the blood and typically circulates in a
complex bound to RBP with a 1:1 molar ratio. Retinol-bound
RBP (holo-RBP) is, in turn, often bound to transthyretin, a
common serum transport protein (15, 16). Retinoids can also be
transported by chylomicrons or chylomicron remnants in lymph
and blood (14, 17). Intracellularly, retinol is converted by retinol
dehydrogenases (RDH, ubiquitous enzymes) to retinal, and
then by retinaldehyde dehydrogenases (RALDH, e.g., ALDH1A)
in select tissues to retinoic acid (RA) (18–21). RA is the
vitamin A metabolite best known for its ability to regulate
innate and adaptive immune cell function, proliferation, and
survival. Importantly, metabolism and trafficking of vitamin
A, and consequent effects on the immune system, can be
influenced by genetic backgrounds, diets, conditions of mal-
adsorption, and obesity (22). In the case of obesity, animal
experiments suggest that vitamin A may be deficient in tissues

Abbreviations: RA, retinoic acid; RAR, retinoic acid receptor; RXR, retinoid-X
receptor; PPAR, peroxisome proliferator-activated receptor; RARE, retinoic acid
response element; VAD, vitamin A deficiency; VAS, vitamin A supplementation;
CFU, colony forming units; AID, activation induced deaminase; RDA,
recommended daily allowance; RAE, retinoic acid equivalents; RBP, retinol
binding protein; WHO, world health organization; ODS, Office of Dietary
Supplements; NIH, National Institutes of Health; CSR, class switch recombination;
TCR, T cell receptor; IP, intraperitoneally.

such as the lung, even when levels in blood appear to be
replete (23).

Regulatory Functions of Vitamin A
Virtually every mammalian cell, including epithelial and immune
cells, is affected by vitamin A (7, 24–34). Vitamin A is perhaps
best known for its regulation of gene transcription. RA is
a nuclear hormone that binds nuclear hormone receptors
including the retinoic acid receptor (RAR) and the peroxisome
proliferator-activated receptor (PPARβ/δ) (35, 36). Receptors, in
turn, bind DNA and serve as transcription factors to enhance
or inhibit gene expression (27). Multiple isoforms exist for RAR
[e.g., RARα, β, and γ (37)], and each protein can bind to the
retinoid X receptor (RXR) in a heterodimeric complex (27, 38).

Receptors are promiscuous in binding to their ligands and to
DNA. The RAR-RXR heterodimer will often bind two half-site
sequences, known as retinoic acid response elements (RAREs),
separated by a short spacer in the DNA (27, 39–44). RAREs have a
consensus sequence of 5′-(A/G)G(G/T)TCA-3′, though receptors
can be bound to non-consensus DNA sites as well. The exact
sequence and spacer length (typically zero to eight bases) can alter
binding affinity. Additionally, receptors can bind indirectly to
DNA by tethering to other DNA-bound factors. Cross-regulation
between vitamin A and related nuclear hormones (e.g., vitamin
D, thyroid hormone, or sex hormones) may occur, because
nuclear hormone receptors can compete for binding to ligands,
co-receptors, and DNA (27, 40, 45–48).

RAREs are found throughout the genome, often within gene
promoters or enhancers. Notably, hotspots for RARE have been
identified in switch sites of the immunoglobulin heavy chain
locus, positions instrumental in class switch recombination
(CSR) (49). The potential binding of nuclear hormone receptors
to switch sites and regulatory elements in immunoglobulin and
T cell receptor (TCR) loci predicts a direct mechanism by which
vitamin A may modulate lymphocyte function (49–52).

Adding to the complexity of vitamin A functions are the
extra-nuclear activities. Vitamins bind a complex array of
escort proteins at the cell membrane and in extra-nuclear
compartments. Each of these interactions can initiate or
modulate cell signaling (53, 54).

Vitamin A and Immune Activities in vitro

and in Small Animals
Essentially all cells of the immune system including innate cells,
B cells, and T cells, are affected by vitamin A (31, 55–59).
Research animals with VAD generate poor antibody responses
to many pathogens including parainfluenza virus and influenza
virus (34, 59–61). VAS, when administered either orally or
intranasally, can correct responses when given at the time of
vaccination (33, 59, 60, 62).

In vitro, vitamin A has been shown to upregulate IgA
production by B cells (18, 63, 64), and skew T cell phenotypes
toward Treg rather than Th17 populations (65–70), but in vivo,
outcomes are less predictable (71). For example, whereas VAD
cells may yield poor Treg activities in a tissue culture setting
indicating a predisposition for heightened immune responses
(65–68), Tregs are found at equal or greater frequencies in tissues
of VAD mice compared to controls following a respiratory virus
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infection (32). Furthermore, VAD mice exhibit relatively poor
pathogen-specific T cell responses in vivo. In studies of influenza
virus and parainfluenza virus infections, there are only weak
virus-specific CD8+ T cell responses in the lower respiratory
tract (LRT) of VAD mice (26). Responding CD8+ T cells in
VAD and vitamin A+D deficient (VAD+VDD) mice express
high levels of membrane CD103 (the αE subunit of αEβ7, an
e-cadherin receptor). Possibly, the poor recruitment of CD8+ T
cells to the LRT is because LRT tissues express relatively low levels
of e-cadherin, and CD103+ cells home preferentially to other
sites (26). When VAD+VDD mice receive VAS (with or without
supplemental vitamin D), CD103 levels on virus-specific CD8+
T cells are reduced, and the percentages of CD4+ and CD8+ T
cells in the LRT are improved (72). As another example of the
complex influences of vitamin A on immune responses, we find
that serum antibody isotype distributions differ between VAD
and control animals, but patterns are dependent on the animal’s
background and sex (50). As a last example, some studies show
that VAD biases the immune response toward a Th1 profile and
that high levels of vitamin A bias the response toward a Th2
profile (68, 73, 74). Nonetheless, outcomes are again dependent
on cell targets, environment, and activation state (25). Both Th1
and Th2 cytokine responses are evident in VAD mice, and VAD
animals express higher levels of Th1 and Th2 cytokines compared
to controls at late stages following a respiratory virus infection,
presumably as a consequence of poor virus clearance (32).

Vitamin A additionally influences epithelial cells and innate
immune cells associated with mucosal surfaces. Dendritic cells
of the intestine and epithelial cells of the respiratory tract
each express the ALDH1A enzymes required for conversion
of retinaldehyde to the end-metabolite RA (18, 26, 29).
These unique attributes of mucosal tissues help explain why
VAS assists immune responses when applied either orally or
intranasally (33, 62).

Due to the plethora of immune cell and barrier cell
requirements for vitamin A, it is not surprising that VAD
associates with poor immune responses to vaccines, and that
VAS can reverse these weaknesses when given at the time of
vaccination (33, 34, 59–62). One vaccine that deserves continued
study in the context of VAD and VAS is Prevnar-13. It is
estimated that worldwide pneumococcus kills close to 1 million
children under the age of 5 each year (75, 76). Prevnar-13
can protect against these mortalities (77, 78), but the vaccine-
induced immune response is not always protective. We suggest
that attention to, and correction of, low vitamin levels in
Prevnar-13 vaccine recipients may improve vaccine success.
Previous studies have shown that VAD inhibits responses both
to individual pneumococcus antigens and to Prevnear-13 in
mice (59, 61, 79–81). Here, we extend findings to show that
VAS improves the immunogenicity and protective capacity of
Prevnar-13 in VAD and control animals.

MATERIALS AND METHODS

Mice and Vaccinations
Experiments were reviewed and approved by the Institutional
Animal Care and Use Committee (IACUC) at St. Jude Children’s

Research Hospital (St. Jude). St. Jude follows the standards of
the Animal Welfare Act and the document entitled “Principles
for the Use of Animals and Guide for the Care and Use of
Laboratory Animals.”

To produce VAD mice, pregnant C57BL/6 (H2-b) mice were
purchased from Jackson Laboratories (Bar harbor, ME). Mice
were placed on either a control or VAD diet upon their arrival
in the animal facility at St. Jude (days 4–5 gestation). VAD (cat.
no. 5WA2, Test Diets) and control (cat. no. 5W9M) diets differed
only in vitamin A content, containing either 0 or 15 IU/g vitamin
A palmitate, respectively. Mothers and progeny remained on
their assigned diets. Experiments were begun when progeny
reached adulthood. These adult mice were vaccinated with 2
doses of Prevnar-13 (PCV, Wyeth Pharmaceuticals Inc.) with 3
weeks intervals. Vaccine was diluted 1:40 in PBS and 100 µL of
PCV was administered intraperitoneally (IP). Immediately prior
to each vaccination, mice received either 600 IU vitamin A (from
Interplexus Inc., Kent, WA) or PBS by oral gavage (100 µL).

Antibody Measurements by ELISA
Animals were bled 10–14 days after boosting. ELISA plates
were coated with 50 µL/well of 5µg/mL T4 polysaccharide
(from American Type Culture Collection, ATCC, Manassas, VA)
in PBS using an Integra Viaflo384 robot (Integra Biosciences,
Hudson, NH) and incubated overnight at 4◦C. Plates were then
washed 3x with PBS using an Aquamax 4000 plate washer
(Molecular Devices, San Jose, CA). Block was 1% BSA in PBS
(200 µL/well) added robotically and incubated overnight at 4◦C.
Mouse serum samples were diluted 1:500 in dilution buffer (1%
BSA + 0.05% Tween in PBS). Block was removed and samples
were added to plates (50 µL/well) and incubated overnight at
4◦C. Plates were then washed 3x with PBS +0.05% Tween using
the plate washer. Developing antibodies were added robotically
(100 µL/well). These were anti-mouse IgM (cat. no. 1020-04;
Southern Biotech, Birmingham, AL), anti-mouse IgG1 (cat. no.
1070-04; Southern Biotech), or anti -mouse IgG3 (cat. no. 1100-
04; Southern Biotech), each diluted 1:1000 in dilution buffer.
Plates were incubated 1 h at room temperature and then washed
3x with PBS +0.05% Tween using the plate washer. Substrate (1
mg/mL of pNPP in diethanoloamine buffer; 100 µL/well) was
added robotically to plates. Plates were developed for 5–15min
and read at 405 nm on a VersaMax Tunable Microplate Reader
(Molecular Devices). Statistical comparisons were made using
Mann Whitney tests and GraphPad Prism software (∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001).

Challenges Post-vaccination
To prepare bacteria for challenge experiments, S. pneumoniae
strain TIGR4 (serotype 4) was inoculated from a glycerol stock
onto a Tryptic Soy Agar plate (GranCult, Millipore, Burlington,
MA) supplemented with 3% sheep blood (Lampire Biological
Laboratory, Pipersville, PA) and 20µg/mL neomycin, and grown
at 37◦C, 5% CO2. After overnight growth, bacteria were directly
inoculated into Todd Hewitt broth (Becton Dickinson, BD,
Sparks, MD) supplemented with 0.2% yeast extract (BD) and
grown until mid-log phase, OD620 = 0.4. Cells were washed in
PBS prior to animal infections.
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FIGURE 1 | VAS and T4 polysaccharide-specific immune responses. Results from T4 ELISAs are shown for VAD (top row) and vitamin A-replete control (bottom row)

mice. Separate ELISAs were conducted to measure T4-specific IgM IgG1, and IgG3 antibodies. Statistical comparisons were made using Mann Whitney tests and

GraphPad Prism software (*p < 0.05, **p < 0.01, ***p < 0.001). IgM levels (for VAD mice), and IgG1 levels (for VAD and control mice), but not IgG3 levels, were

significantly improved with VAS.

To challenge mice, 2 weeks after the vaccine boost, animals
were sedated with 3% isoflurane. They were then inoculated
intranasally with 5 × 105 CFU S. pneumoniae in 100 µL PBS.
To collect and titer lungs, 24 h after infections groups of animals
were euthanized by CO2 asphyxiation and cervical dislocation.
Lungs were removed, washed twice in ∼1mL of PBS and
then placed in 0.5mL PBS. Lungs were then pulverized with a
mechanical tissue grinder. Following emulsification, lungs were
spun for 5min at 300 g to pellet debris. Supernatants from the
lung homogenates were collected and serially diluted 1:10 in PBS
five times. From each dilution, 10µLwere plated on a Tryptic Soy
Agar plate (GranCult, Millipore) supplemented with 3% sheep
blood (Lampire Biological Laboratory) and 20µg/mL neomycin.
Plates were incubated overnight at 37◦C. Colonies were counted
and Excel software was used to calculate titers. Separate groups of

animals were infected as described above, monitored for signs of
symptomatic infection, and euthanized when moribund.

RESULTS

Vaccine studies were conducted with male and female mice
(either VAD mice or vitamin-replete controls) that were given
two successive IP immunizations, separated by 3 week intervals,
with the Prevnar-13 vaccine. Mice received either 600 IU of
vitamin A as retinyl palmitate by oral gavage or phosphate
buffered saline (PBS) at the time of vaccination. Antibody
responses were measured 10–14 days after the second vaccine
dose. ELISAs were conducted to examine antibodies specific
for the type 4 (T4) component of the vaccine. As shown
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FIGURE 2 | VAS with vaccination improves survival after challenge. Challenge results are shown for VAD (top row) and vitamin-replete control (bottom row) mice. CFU

per lung were measured 24 h after challenge (left). In separate groups of mice, survival was monitored (right). Animals were sacrificed when moribund. Survival curves

were compared using GraphPad Prism software (*p < 0.05, **p < 0.01).

in Figure 1, there was significant improvement of T4-specific
antibodies, including IgM and IgG1 isotypes in VAD mice
and IgG1 in control mice when VAS was used. IgG3 levels
were not significantly changed. Results were reminiscent of
previous studies in rats using bacterial antigens and retinol
treatments (79–82).

In a preliminary set of experiments, vaccinated animals were
also challenged with a high-dose (5 × 105 colony forming units,
CFU) of pneumococcus (Streptococcus pneumoniae strain TIGR4
[serotype 4]). At this dose, >90% of unvaccinated VAD and
vitamin-replete control mice developed an infection, and the
dose was 100% lethal in unvaccinated VAD animals (Figure 2).
After 24 h, groups of 8–10 mice were sacrificed to measure
lung titers. As shown, there were trends toward lower CFU in
both VAD and control animals that received VAS at the time
of vaccination. A separate set of mice were tested for survival
post-challenge. There were significant improvements in survival
for VAD and control animals that received VAS at the time of
vaccination compared to unsupplemented, vaccinated animals.
In fact, all animals that received VAS at the time of vaccination,
regardless of original vitamin A status, survived.

DISCUSSION

We have shown that VAS supports improvements in the
immunogenicity of Prevnar-13 in VAD and control mice.

With a preliminary study, we also showed that when VAS
was given coincident with vaccination, protection against a
subsequent challenge with S. pneumoniae was improved. Based
on these promising results, we are now initiating a randomized
clinical study to test the effects of VAS among Memphian
children vaccinated with Prevnar-13 (clincaltrials.gov,
PCVIT NCT03859687).

Previous Research on VAD and VAS
in Humans
Public health organizations strive to improve dietary nutrition
worldwide, but this goal depends on delivering vitamin-rich
foods to all populations, a formidable task. For infants in
countries where VAD is known to be endemic, the WHO has
supported high-dose VAS programs (83). Children often receive
100,000 IU vitamin A between the ages of 6–11 months and
200,000 IU every 4–6 months between the ages of 12–59 months
(84). Research analyses of VAS have yielded positive results in
countries where VAD is frequent. In meta-analyses of clinical
trials, VAS was shown to reduce deaths by 12–24%, and in
isolated studies, reductions of 35–50% were observed (1, 85–92).
VAS reduced morbidities due to infectious diseases, including
measles, Plasmodium falciparum, and HIV (93–96). VAS benefits
were also observed when antibody responses were measured,
including those to vaccination (97, 98). Some studies have shown
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improved responses to the measles and tetanus toxoid (TT)
vaccines following VAS (99–101).

Unfortunately, despite the positive influences described above,
results from clinical VAS research have been inconsistent. VAS
studies have often failed to show benefit, and have in some
cases demonstrated risk. As an example, Malaba et al. did not
observe an effect of VAS on infant mortality among children
born to HIV-negative mothers with apparently adequate baseline
vitamin A levels (102). There have also been reports of increased
mother to child transmission (MTCT) of HIV in the context
of VAS (103, 104). Additional noted risks of high-dose VAS
were fontanelle bulging in infants (105, 106) and bone density
loss [possibly due to cross-inhibition between related nuclear
hormones, in this case vitamins A and D (107, 108)].

VAS studies in the context of vaccine programs have also
yielded conflicting data (97, 109, 110). Brown et al. for example,
showed no improvements by VAS on TT vaccinations (110) and
a study of HIV-infected individuals showed no improvements by
VAS on influenza virus vaccinations (111). A study by Semba
et al. showed a negative influence of VAS on responses to the
measles vaccine in 6 month old infants (112), unlike the situation
for older infants (100, 113, 114). Explanations for differences in
VAS efficacy among clinical studies have addressed effects of age,
maternal antibodies, serum antibody levels, and serum vitamin
levels, but a consensus has not been reached (90).

The contradictory results described above have encouraged
the scientific community to question indiscriminate use of
VAS, particularly in communities where nutrition has improved
and where many children are vitamin replete (97, 106, 115).
Suggestions are made to redirect efforts toward the use of low-
dose VAS and/or toward support of improved diets (116).

One clear weakness in past clinical research is that
comprehensive baseline vitamin levels of study participants for
vitamin A and the related, cross-regulatory nuclear hormone
vitamin D (47, 117–119) were rarely reported. Instead, vitamin
status has often been predicted based on previous population
studies (e.g., frequencies of xerophthalmia). This strategy does
not address changing diets within communities or individual
differences among study participants. Currently, perceptions of
VAD frequencies may thus be falsely high for certain developing
countries and falsely low for the developed world. The situation

differs dramatically from research studies in small animals,
wherein host backgrounds and diets are homogeneous and test
animals differ from controls by a single defined variable. A
full comprehension of how VAS differentially affects humans
with replete, insufficient, or deficient vitamin A and D levels
remains elusive.

A long-term solution to VAD in humans will require close
attention to host characteristics, particularly baseline vitamin A
and D levels (52). Improvements in diets should be a primary
focus, with VAS programs developed as a back-up solution
to malnutrition. For best outcomes with VAS, programs may
require customization, with modification of supplements by
frequency or dose, dependent on baseline characteristics of
vaccine recipients. With attention to pre-existing vitamin levels
and cautious administration, VAS programs may ultimately
ensure that, (i) vaccinated children and adults are vitamin A
replete worldwide, (ii) toxicities are avoided, and (iii) world
populations maintain robust immune responses to pathogens
and vaccines.
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