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Abstract: IgLON5 is a cell adhesion protein belonging to the immunoglobulin superfamily and has
important cellular functions. The objective of this study was to determine the role played by IgLON5
during myogenesis. We found IgLON5 expression progressively increased in C2C12 myoblasts
during transition from the adhesion to differentiation stage. IgLON5 knockdown (IgLON5kd)
cells exhibited reduced cell adhesion, myotube formation, and maturation and reduced expressions
of different types of genes, including those coding for extracellular matrix (ECM) components
(COL1a1, FMOD, DPT, THBS1), cell membrane proteins (ITM2a, CDH15), and cytoskeletal protein
(WASP). Furthermore, decreased IgLON5 expression in FMODkd, DPTkd, COL1a1kd, and ITM2akd

cells suggested that IgLON5 and these genes mutually control gene expression during myogenesis.
IgLON5 immunoneutralization resulted in significant reduction in the protein level of myogenic
markers (MYOD, MYOG, MYL2). IgLON5 expression was higher in the CTX-treated gastrocnemius
mice muscles (day 7), which confirmed increase expression of IgLON5 during muscle. Collectively,
these results suggest IgLON5 plays an important role in myogenesis, muscle regeneration, and that
proteins in ECM and myoblast membranes form an interactive network that establishes an essential
microenvironment that ensures muscle stem cell survival.

Keywords: extracellular matrix; IgLON5; muscle stem (satellite) cell; myoblast; myogenesis; skele-
tal muscle

1. Introduction

Skeletal muscles are contractile tissues constitute ~40% of total body weight [1,2]
and consist of cylindrical multinucleated myofibers and resident stem cells, i.e., muscle
stem cells (MSCs; satellite cells) [3,4]. These cells have a regeneration ability that gradu-
ally declines with age [5,6]. Myogenesis involves cell cycle arrest, myogenic activation,
cell alignment, multiple cell fusion, an increase in nuclear size, and the peripheral localiza-
tion of nuclei [7].

MSCs are located between basal lamina and sarcolemma [5,6], which provides anatom-
ical and functional stability to skeletal muscle [8]. MSCs actively control myofiber growth,
and progression, which are regulated by myogenic regulatory factors (myoblast determina-
tion protein; MYOD, myogenin; MYOG, and muscle regulatory factor 4; MRF4) [9].
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Collagens, laminins, and fibronectin (FN) are glycoproteins and major components of
extracellular matrix (ECM) and adhere to cellular proteoglycans (PGs). Glycoproteins also
support skeletal muscle integrity, facilitate architectural support, and participate in myoge-
nesis regulatory signaling [10]. ECM participates in various cell-signaling processes and
serves as a modulator of growth factors during cell growth [10,11]. Furthermore, PGs like
fibromodulin (FMOD) participate in ECM assembly [3] and are profoundly associated with
myogenesis [3,8].

FMOD was found to be elevated during bovine MSCs differentiation as determined
by a comparative DNA microarray analysis [4], and a microarray analysis of FMOD knock-
down C2C12 myoblast cells showed down regulation of integral membrane protein 2A
(Itm2A), type I collagen, dermatopontin (DPT) [12], Itm2A, and DPT participate in muscle
differentiation and myotube formation [13,14]. Type I collagen and non-collagenous matrix
protein DPT [14,15] provide tensile and mechanical strengths to tissues [14]. Furthermore,
it was reported thrombospondin-1 (THBS1) expression was suppressed in DPT knockdown
C2C12 cells at the mRNA and protein levels [14]. THBS1, a multidomain calcium-binding
glycoprotein [16], is highly expressed during muscle development following injury [17].

In addition, to explore the role of FMOD in myoblast differentiation, FMOD knock-
down resulted in the downregulation of IgLON5 (immunoglobulin-like cell adhesion
molecule 5) [8]. The IgLON family (a component of the immunoglobulin superfamily
(IgSF) [18]) is composed of a large group of cell-surface proteins, such as OPCML (opioid-
binding cell adhesion molecule, IgLON1), NTM (neurotrimin, IgLON2), LSAMP (limbic
system-associated membrane protein, IgLON3), NEGR1 (neuronal growth regulator 1,
IgLON4), and IgLON5 (immunoglobulin-like cell adhesion molecule 5) are widely ex-
pressed in the central nervous system [19]. IgLON protein family members possess three
Ig domains and a glycosylphosphatidylinositol (GPI) anchor [20,21], which facilitate them
to attach to lipid rafts of cytoplasmic membranes [22], and communicate as homo- and
heterodimers [23]. IgLON5 has a 336 amino acid chain and shows the closest similarity with
OPCML (50%), NTM (48–49%), and LSAMP (46–47%), and the least similarity with NEGR1
(41%). IgLON protein family members participate in neuronal pathfinding, neurite growth,
and synapse formation during brain growth [24] and are importantly associated with
encephalopathies, sleep dysfunction, chronic neurodegenerative diseases, and cell-surface
related autoimmune disorders [25,26], and have also been involved in the pathogeneses of
autism spectrum diseases and solid tumors [27].

However, as mentioned above, IgLON5 has only been studied in the nervous system
and its activities at a molecular level have not been elucidated. Therefore, as an exten-
sion of our previous studies, we aimed to determine whether IgLON5 is responsible for
myogenesis and if so, to investigate the mechanism involved. Our results demonstrate
that interactions between IgLON5 and various genes are involved in the initial adhesion
and differentiation of C2C12 cells and suggest IgLON5 is involved in muscle regeneration
in mice.

2. Materials and Methods
2.1. Cell Culture

Murine C2C12 myoblast cells (Korean Cell Line Bank, Seoul, Korea) were cultured in
growth media [DMEM (Dulbecco’s modified Eagle’s medium) supplemented with 10% FBS
(fetal bovine serum) and 1% P/S (penicillin/streptomycin; all from HyClone Laboratories,
South Logan, UT, USA)] in a humidified 5% CO2 incubator at 37 ◦C. After cells had
reached 90% confluency, growth media was switched to differentiation media (DMEM + 2%
FBS +1% P/S), and cells were cultured for 0, 2, 4, or 6 days, during which media were
changed daily.
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2.2. Neutralization of IgLON5

After reaching 90% cell confluency, growth media was switched to differentiation
media supplemented with 5 µg/mL IgLON5 antibody (Bioss, Woburn, MA, USA) and cells
were incubated for a further 2 or 4 days.

2.3. Gene Knockdown

Cells were grown until 30% confluent in growth media and transfected with 1 ng of
IgLON5, FMOD, DPT, COL1a1, or ITM2a shRNA or a scrambled vector containing the
GFP gene using transfection reagents and media (Santa Cruz Biotechnology, CA, USA).
Transfected cells were selected with 2 µg/mL puromycin (Santa Cruz Biotechnology, CA,
USA) for 3 days and knockdown efficiencies were confirmed by comparing IgLON5,
FMOD, DPT, COL1a1, and ITM2a mRNA levels in knockdown cells with those in scramble
vector-transfected cells. shRNA sequence information is provided in Table S1.

2.4. Cell Adhesion and Proliferation Assays

The equal numbers of IgLON5wt (IgLON5 wild type) and IgLON5kd (IgLON5 knock-
down) cells were cultured in growth media for 3 h (for the adhesion study) or 3 days (for the
proliferation study). For MTT assays, cells were then incubated in CellTiter 96® AQueous
One Solution Reagent (Promega, Madison, WI, USA) for 1 h at 37 ◦C. Absorbance was
measured at 490 nm using a microplate reader (Biotek Synergy H1, Winooski, VT, USA).

2.5. Co-Culture of IgLON5wt and IgLON5kd Cells

IgLON5wt and IgLON5kd cells were trypsinized, counted, and equal numbers of
IgLON5wt and IgLON5kd cells were co-cultured in growth medium until 90% confluent
and then in differentiation medium for 4 days.

2.6. Cell Adhesion Analysis Using Centrifugation

IgLON5wt or IgLON5kd cells were cultured in growth medium for 2 or 4 days
(until 30% or 100% confluent) or in differentiation medium for 4 days. Then, plates were
filled with growth or differentiation media and sealed with microplate sealing tape. Plates
were placed inverted, and centrifuged at different ‘g’ values in the centrifuge with a swing-
ing bucket rotor for 5 min. After removing media, MTT assays were performed as above to
measure the adhesion of cells.

2.7. Fusion and Maturation Indices

Fusion indices were determined as previously described [14]. In brief, cells were fixed
with methanol and stained with 0.04% Giemsa G250 (Sigma Aldrich, St. Louis, MO, USA)
and then washed with PBS. Images were taken randomly at three different places in dishes
(300×). Total numbers of nuclei in cells and numbers of nuclei in myotubes were counted,
and fusion indices were calculated by expressing numbers of nuclei in myotubes as radio
of total numbers of nuclei. Myotube indices were calculated as the ratio of five or more
nuclei in one myotube among the total nuclei.

2.8. Cell Cycle Analysis

IgLON5wt and IgLON5kd cells were cultured in growth medium for 3 days, trypsinized,
washed twice with ice-cold PBS, and left overnight in 70% ethanol at −20 ◦C. The ethanol
was then removed by centrifugation, and cells were washed twice with ice-cold PBS.
Cells were then treated with cell cycle reagent (Merck Millipore, Darmstadt, Germany)
for 30 min in the dark at room temperature and performed with flow cytometry (Easy-
Cyte5HT; Merck Millipore, MA, USA). The measurement data were analyzed by Guava®

InCyte software (Merck Millipore, MA, USA).



Cells 2021, 10, 417 4 of 15

2.9. Metabolite Analysis

IgLON5wt and IgLON5kd cells were cultured in growth medium for 1 or 3 days,
respectively. Cultured media were collected and an enzyme colorimetric method was
performed to estimate glucose, lactate, and NH3 concentrations using a bioanalyzer (Cedex;
Roche Diagnostics, Indianapolis, IN, USA).

2.10. Animal Experiment

C57BL/6 male mice (Daehan Biolink, Dae-Jeon, South Korea) were maintained in
a temperature-controlled room under a 12 h light/12 h dark cycle with free access to
water and food. A normal diet containing 4.0% (w/w) total fat (RodentNIH-31 Open
Formula Auto; Zeigler Bros., Inc., Gardners, PA, USA) was supplied for 16 or 26 weeks
when gastrocnemius (gas) muscle tissues were collected, fixed, and stored at −80 ◦C.
As previously described [14], mice were anesthetized with avertin, and then 100 µL of
10 µM cardiotoxin (CTX) or PBS (control) was injected into the left or right gas muscles,
respectively. Muscles were collected 7 and 14 days after injection for further analysis.
All experiments were carried out in accord with the guidelines issued by the Yeungnam
University Institutional Animal Care and Use Committee (AEC2015-006).

2.11. Immunocytochemistry

Immunocytochemistry was performed using antibodies against MYOD, MYOG,
MYL2 (Myosin light chain 2), FMOD, DPT, COL1a1, ITM2a, WASP (Wiskott–Aldrich
syndrome protein), CDH15 (Cadherin 15), and IgLON5. C2C12 cells were grown on
glass-bottomed dishes, washed twice with PBS, and fixed with 4% formaldehyde for
10 min. After permeabilization with 0.2% Triton X-100 (Sigma Aldrich, St. Louis, MO,
USA), cells were incubated with primary antibodies [MYOD, MYOG, FMOD, DPT, ITM2a,
WASP, CDH15 (1:50, Santa Cruz Biotechnology), MYL2, COL1a1 (1:50, Abcam, Cambridge,
MA, USA)], or IgLON5 (1:50, Bioss, Bioss Antibodies Inc. Massachusetts, USA) overnight
at 4 ◦C in a humid environment. Secondary antibodies (1:100, Alexa Fluor 488 or 594
goat anti-rabbit or mouse antibody SFX kit; Molecular Probes, Invitrogen, Carlsbad, CA,
USA) were applied for 1 h at room temperature in the dark. After rinsing cells twice
with PBS, nuclei were counterstained with DAPI (4′, 6-diamidino-2-phenylindole; 1:1000,
Sigma Aldrich). Fluorescence imaging was performed with Nikon Eclipse TE2000-U in-
verted fluorescence phase contrast microscope, using objective Nikon Plan Fluor ELWD
20X 0.45 (Nikon, Melville, NY, USA) and a ProgRes C3 CCD Digital Microscope Camera
(Jenoptik, Jena, Germany) controlled by i-solution software (IMT, Dae-Jeon, South Korea).

2.12. Total RNA Extraction, cDNA Synthesis, and Real-Time RT-PCR

Total RNA was extracted from cells using Trizol® reagent (Invitrogen, CA, USA),
according to the manufacturer’s instructions, and a high capacity cDNA reverse transcrip-
tion kit (Applied Biosystems, Foster City, CA, USA) was used to synthesize 1st strain
cDNA. Briefly, 2 µg of total RNA in a 20 µL reaction mixture containing random hexamers
and reverse transcriptase was used to synthesize 1st strand cDNA using the following
schedule; 25 ◦C for 10 min, 37 ◦C for 120 min, and 85 ◦C for 5 min. Gene expressions were
analyzed using cDNA (2 µL) and gene-specific primers (10 pmole, 2 µL) and a 7500 real-
time PCR system using Power SYBR Green PCR Master Mix (Thermo Fisher Scientific, MA,
USA). All reactions were performed in triplicate, and relative amounts of gene expressions
normalized vs. controls were calculated using 2−∆Ct, where ∆Ct= Ct gene−Ct control.
Glyceraldehyde 3-phosphate dehydrogenase was used as an internal control. The primers
used are detailed in Table S2.

2.13. Western Blot Analysis

C2C12 cells and muscle tissues were lysed using RIPA buffer containing 1% protease
inhibitor cocktail (Thermo Fisher Scientific, Waltham, MA, USA), and total protein concen-
trations were quantified by Bradford assay. Proteins (50 µg) were electrophoresed in 4–12%
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gradient SDS-PAGE (Invitrogen, CA, USA) and transferred to PVDF membranes (Millipore,
Billerica, MA, USA), which were then blocked with 3% skim milk or BSA (bovine serum
albumin) in TBS (Tris-buffered saline) containing 0.1% Tween 20 for 1 hr and incubated
with protein-specific primary antibodies [MYOD (1:400), MYOG (1:400), MYL2 (1:400),
IgLON5 (1:1000), FMOD (1:400), DPT (1:400), COL1a1 (1:400), IMT2a (1:400), THBS1 (1:400),
WASP (1:400), CDH15 (1:400), and β-actin (1:2000)] in TBS containing 1% skim milk or
BSA, overnight at 4 ◦C. Blots were subsequently washed and incubated with horseradish
peroxidase-conjugated secondary antibodies (goat anti-mouse or anti-rabbit; Santa Cruz
Biotechnology) at room temperature for 2 h and then reacted with Super Signal West Pico
Chemiluminescent Substrate (Thermo Fisher Scientific, MA, USA).

2.14. Immunohistochemistry and Immunofluorescence

Immunohistochemistry was performed as previously described [28]. Briefly, paraffin-
embedded gas muscle tissues (non-injected, CTX injected) were deparaffinized and hy-
drated using a xylene (Junsei, Tokyo, Japan) and ethanol (Merck Millipore, Massachusetts,
United States) series, and treated with 0.3% H2O2/methanol to block endogenous per-
oxidase activity. Sections were then either stained with H&E (hematoxylin and eosin)
or blocked with 1% normal goat serum (KPL, Gaithersburg, MD, USA), incubated with
IgLON5 antibodies (1:50) at 4 ◦C overnight, and then incubated with secondary anti-
body horseradish peroxidase-conjugated (1:100). Signals were visualized by adding di-
aminobenzidine and hydrogen peroxide. Negative controls were worked up by omitting
the primary antibody. Stained sections were observed under a light microscope (Leica,
Wetzlar, Germany).

Immunofluorescence was deparaffinized and hydrated in the same process as im-
munohistochemistry, and blocking was performed with 1% goat serum. Incubated with
IgLON5 and PAX7 (Santa Cruz Biotechnology, CA, USA) antibody (1:50) at 4 ◦C overnight,
and then incubated with secondary antibody (1:100, Alexa Fluor 488 or 594 goat anti-rabbit
or mouse antibody SFX kit). Fluorescence images were taken in the same way as previously
mentioned immunocytochemistry.

2.15. Statistical Analysis

Mean normalized expression was compared using Tukey’s studentized range (honestly
significant difference) to identify significant gene expressional differences. The p-values of
≤0.05 were considered statistically significant. Real-time RT-PCR data were analyzed by
one-way ANOVA using PROC GLM in SAS ver. 9.0 (SAS Institute, Cary, NC, USA).

3. Results
3.1. IgLON5 Regulated Myoblast Differentiation

IgLON5 mRNA expression was elevated during the early cell differentiation stage
(day 2) and then gradually decreased (days 4 and 6). However, IgLON5 protein expression
progressively increased during differentiation (Figure 1A,B). mRNA and protein expres-
sions of IgLON5 and myogenic marker genes (MYOD, MYOG, and MYL2) (Figure 1C,F and
Figure S1A,B), and fusion indices (FIs) and myotube indices [29] (Figure 1D,E) were lower
for IgLON5kd cells than IgLON5wt cells. The effect of IgLON5 knockdown was checked
using an IgLON5 specific antibody at different time points during differentiation. The re-
sults obtained, including myotube formation findings, were similar to those obtained for
IgLON5kd cells. Myogenic marker genes were downregulated in antibody-treated cells,
though MYOD protein levels were not significantly different on day 2 and IgLON5 pro-
tein levels were increased (Figure 1G). These results suggest IgLON5 controlled C2C12
differentiation and myotube formation, that myotube maturation was accomplished by reg-
ulating myogenic genes, and that IgLON5 mRNA and protein expressions were increased
to compensate for the blocking of IgLON5 protein in cell membranes.
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3.2. IgLON5 Expression and Myotube Formation

Equal numbers of IgLON5wt cells transfected with the GFP gene via the transfec-
tion vector and IgLON5kd (lacking the GFP gene) cells carrying three different shRNA
constructs targeting IgLON5 mRNA were mixed and co-cultured. IgLON5wt cells were
evenly distributed as cells reached ~90% confluence (day 0) and a strong GFP signal was
observed where myotubes formed (day 4), which indicated that most myotubes were
derived from IgLON5wt cells (Figure 2A). Only GFP expressing cells (IgLON5wt) formed
myotubes and expressed IgLON5 (Figure 2B,I). Furthermore, GFP and IgLON5 were less
expressed in narrow myotubes, but strong and distinct expression was observed in thick
myotubes (Figure 2B, II and III). GFP and IgLON5 were rarely observed where myotubes
were not formed (Figure 2B, IV). These results imply that myotubes were formed by cells
normally expressing IgLON5, which suggests IgLON5 promoted myotube maturation by
thickening myotubes.
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cells were co-incubated in differentiation media for 0 days (D 0) and 4 days (D 4), respectively. Only IgLON5wt cells
containing GFP vector emitted green fluorescence on differentiation days 0 and 4 (Scale bar, 63 µm). (B) Observations of
green and red fluorescence from GFP (IgLON5wt cells) and IgLON5 cells on differentiation day 4. Pictures were taken in the
typical area (I) or in areas where narrower myotubes were formed [30], wider myotubes were formed (III), or where no
myotubes formed (IV), respectively (Scale bar, 63 or 32 µm). IgLON5wt indicates cells transfected with a scrambled vector.

3.3. The roles of IgLON5 during Adhesion and Proliferation

IgLON5wt and IgLON5kd cells were cultured in growth media for 3 h to investigate
adhesion or for 3 days to investigate proliferation. After 3 hrs of incubation, adhesion
by IgLON5kd cells was significantly less than for IgLON5wt cells. However, 3 days in-
cubation, no significant difference was observed between cell proliferation (Figure 3A).
When IgLON5wt and IgLON5kd cell cycles and metabolites in culture media were analyzed
on day 3, no significant difference was observed between the two cells types in terms of the
percentages of cells in the G0/G1, S, G2/M phases (Figure S2A) and metabolite (glucose,
lactate, NH3) concentrations in cell culture media (Figure S2B). These findings revealed
IgLON5 plays an important role in cell adhesion during myoblast attachment, and did not
affect the cell cycle and cellular metabolism.

The role played by IgLON5 in C2C12 cell adhesion during proliferation and dif-
ferentiation was investigated by exposing adherent cells to different ‘g’ forces during
centrifugation. IgLON5wt and IgLON5kd cells reached 30%, 100% confluency and on
differentiation day 4, and then cell culture dishes were inverted and centrifuged at 100× g
(30% confluency), 500× g (100% confluency), or 1000× g (differentiation day 4), respec-
tively. We found IgLON5kd cells adhered less than IgLON5wt cells in all three cell states.
Furthermore, 30% confluent IgLON5wt cells appeared normal after centrifugation whereas
IgLON5kd cells were abnormally shaped. Major changes were observed on differentiation
day 4, as IgLON5wt cells maintained the myotube shape whereas IgLON5kd cells did not.
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These observations suggest that IgLON5 helps maintain C2C12 cell integrity by increasing
cell-to-cell and cell-to-surface adhesion during proliferation and differentiation (Figure 3B).

Cells 2021, 10, 417 8 of 15 
 

 

The role played by IgLON5 in C2C12 cell adhesion during proliferation and differ-

entiation was investigated by exposing adherent cells to different ‘g’ forces during cen-

trifugation. IgLON5wt and IgLON5kd cells reached 30%, 100% confluency and on differen-

tiation day 4, and then cell culture dishes were inverted and centrifuged at 100 g (30% 

confluency), 500 g (100% confluency), or 1000 g (differentiation day 4), respectively. We 

found IgLON5kd cells adhered less than IgLON5wt cells in all three cell states. Furthermore, 

30% confluent IgLON5wt cells appeared normal after centrifugation whereas IgLON5kd 

cells were abnormally shaped. Major changes were observed on differentiation day 4, as 

IgLON5wt cells maintained the myotube shape whereas IgLON5kd cells did not. These ob-

servations suggest that IgLON5 helps maintain C2C12 cell integrity by increasing cell-to-

cell and cell-to-surface adhesion during proliferation and differentiation (Figure 3B). 

 

Figure 3. Adhesion, proliferation, and differentiation of IgLON5wt and IgLON5kd C2C12 cells. (A) IgLON5wt and IgLON5kd 

cells were allowed to attach to culture dishes for 3 h or 3 days (Scale bar, 63 µm). Cell adhesion was expressed as the 

relative values of adhered cells, determined by MTT assay in IgLON5wt and IgLON5kd cells at 3 h. Cell proliferation at day 

3 was expressed as the relative values of the cells as determined by MTT assay in IgLON5wt and IgLON5kd cells at 3 days 

after normalization by the relative values of adhered cells at 3 hr. (B) IgLON5wt and IgLON5kd cells were cultured until 

30% or 100% confluent, or for 4 days from the differentiation commencement (before centrifugation), and then sealed cell 

culture dishes were placed inverted and centrifuged using a swinging bucket rotor at 100, 500, or 1000 g (after centrifuga-

tion , scale bar, 63 or 32 µm). Relative values of the remained cell numbers in IgLON5wt and IgLON5kd cells after centrifu-

gation, measured by MTT assay and normalized with the each initial cell numbers before centrifugation, respectively 

(graphs at the bottom). IgLON5wt indicates cell transfected with scrambled vector. Means ± SD (n ≥ 3). * p < 0.05, ** p < 0.01. 

  

Figure 3. Adhesion, proliferation, and differentiation of IgLON5wt and IgLON5kd C2C12 cells. (A) IgLON5wt and IgLON5kd

cells were allowed to attach to culture dishes for 3 h or 3 days (Scale bar, 63 µm). Cell adhesion was expressed as the relative
values of adhered cells, determined by MTT assay in IgLON5wt and IgLON5kd cells at 3 h. Cell proliferation at day 3 was
expressed as the relative values of the cells as determined by MTT assay in IgLON5wt and IgLON5kd cells at 3 days after
normalization by the relative values of adhered cells at 3 h. (B) IgLON5wt and IgLON5kd cells were cultured until 30% or
100% confluent, or for 4 days from the differentiation commencement (before centrifugation), and then sealed cell culture
dishes were placed inverted and centrifuged using a swinging bucket rotor at 100, 500, or 1000× g (after centrifugation,
scale bar, 63 or 32 µm). Relative values of the remained cell numbers in IgLON5wt and IgLON5kd cells after centrifugation,
measured by MTT assay and normalized with the each initial cell numbers before centrifugation, respectively (graphs at the
bottom). IgLON5wt indicates cell transfected with scrambled vector. Means ± SD (n ≥ 3). * p < 0.05, ** p < 0.01.

3.4. Gene Expression Profiles in IgLON5wt and IgLON5kd Cells

To elucidate the mechanism whereby IgLON5 regulates myoblast cell differentiation,
we examined gene expressions in IgLON5wt cells and IgLON5kd cells. IgLON5kd cells
showed downregulation of ECM components (COL1a1, FMOD, DPT, THBS1) (Figure 4A),
membrane proteins (ITM2a, CDH15) (Figure 4B), and a cytoskeletal protein (WASP)
(Figure 4C), which confirmed that IgLON5 expression affects the genes expressions of ECM
components and the membrane and cytoskeletal proteins required for normal myogenesis.

3.5. IgLON5 Expressions in FMOD, DPT, COL1a1, and ITM2a Knockdown Cells

IgLON5 expressions and fusion indices were significantly less for FMODkd (FMOD knock-
down), DPTkd (DPT knockdown), COL1a1kd (COL1a1 knockdown), and ITM2akd (ITM2a
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knockdown) cells than wild type cells. Interestingly, myotube index reductions were signifi-
cantly greater than fusion index reductions for DPTkd, and ITM2akd cells, but not for FMODkd
and COL1a1kd cells (Figure 5 and Figure S3). These results support the notion that these four
genes are involved in the regulation of IgLON5 expression and myotube formation, and that
DPT and ITM2a are more associated with myotube maturation than FMOD or COL1a1.
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Figure 4. Expressions of myogenic related genes in IgLON5wt and IgLON5kd C2C12 cells. IgLON5wt and IgLON5kd

cells were cultured in differentiation medium for 0, 2, 4, and 6 days. mRNA and protein expressions of (A) COL1a1,
FMOD, DPT, and THBS1, (B) ITM2a and CDH15, and (C) WASP were determined by real-time RT-PCR, Western blot,
and immunocytochemistry. Controls are baseline values. Wt indicates cells transfected with scrambled vector. Means ± SD
(n ≥ 3). ** p < 0.01. (Scale bar, 32 µm).

3.6. IgLON5 Expression during Muscle Regeneration

To investigate the role of IgLON5 in muscle regeneration, IgLON5 protein expression
in CTX injected mouse muscles (7 and 14 days) was compared with non-injected muscles
(controls). IgLON5 protein levels were greater in CTX injected mice muscles than in
controls, (Figure 6A, Figure S4). In addition, IgLON5 expression was detected in control
and CTX-injected muscle tissues by immunofluorescence, IgLON5 expression was observed
on the membrane of the control muscle tissues, and the CTX-injected muscle undergoing
regeneration showed higer IgLON5 expression compared to the control muscles (Figure 6B).
Pax7 (MSCs marker) and IgLON5 proteins were simultaneously expressed in 7 days CTX
injected muscles (Figure S5). Based on the findings, it was confirmed that IgLON5 was
expressed not only in muscle bundles during muscle regeneration, but also in MSCs and in
the entire process of muscle regeneration.
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Figure 5. IgLON5 gene expressions in FMODkd, DPTkd, COL1a1kd, and ITM2akd C2C12 cells during
differentiation. FMOD, DPT, COL1a1, ITM2a mRNA expressions, fusion indices, IgLON5 mRNA
and protein expressions in FMODkd (A), DPTkd (B), COL1a1kd (C), and ITM2akd (D) cells during
differentiation as analyzed by real-time RT-PCR, Giemsa staining, and Western blot. Plots on the
left in (A–D) represent relative values of the mRNA expressions in FMODkd, DPTkd, COL1a1kd,
and ITM2akd cells. (E) Localizations of IgLON5 protein in scrambled vector-transfected [31], FMODkd,
DPTkd, COL1a1kd, and ITM2akd cells on differentiation day 4. Control indicates the day 0 value.
FMODwt, DPTwt, COL1a1wt, and ITM2awt indicate cells transfected cells with scrambled vector.
Means ± SD (n ≥ 3). * p < 0.05, ** p < 0.01. (Scale bar, 63 or 32 µm).
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Figure 6. IgLON5 protein expression during muscle regeneration in mice. (A) Immunolocalization
and protein expression of IgLON5 in the muscles of control and CTX- injected mice 7 days after injec-
tion as determined by immunohistochemistry and Western blot (B) Immunolocalization expression
of IgLON5 in the muscles of control and CTX- injected mice 7 days after injection as determined by
Immunofluorescence. (Scale bar, 32 µm).

4. Discussion

Myogenic stem cells (MSCs) proliferate in vitro and fuse to form myotubes, which are
the most basic functional units in skeletal muscle tissue and reminiscent of myofibers
in vivo [32–34]. During myotube formation, MSCs attach to the surfaces of cell culture
dishes and communicate with neighboring cells, which is essential for cell survival and
myotube formation [2,35]. In our previous study, the IgLON5 gene was found to be
markedly downregulated in FMODkd C2C12 cells during myogenic differentiation [8].
The product of this gene is a cell surface protein and member of the immunoglobulin
superfamily and has been shown to be involved in neuronal cell adhesion [23]. However,
no study has addressed the involvement of IgLON5 in the proliferation and differentiation
of MSCs.

In the present study, we investigated the gene expression patterns of IgLON5 and the
mechanisms by which IgLON5 is involved in the proliferation and differentiation of C2C12
cells. We observed that during the transition from cell adhesion to differentiation, IgLON5
gene expression gradually increased and that IgLON5 protein eventually accumulated on
the membranes of newly formed myotubes. Knockdown of the IgLON5 gene in C2C12 cells
resulted in significant reductions in myotube formation and the expressions of myogenic
markers (MYOD, MYOG, and MYL2). Similar results were obtained when wild-type cells
were treated with IgLON5-specific antibody, which suggested IgLON5 controlled C2C12
differentiation. Notably, the expressions of the IgLON5 mRNA and protein were increased
after this antibody treatment. We speculate that when IgLON5 protein on the surfaces
of C2C12 cells was blocked by antibody, a compensatory intracellular signal upregulated
IgLON5 gene expression. Interestingly, our observations showed that an increase in
IgLON5 protein expression affected differentiation but not proliferation (Figure 1). In fact,
percentages of cells in each stage of the cell cycle, glucose uptake, and metabolites (lactate,
NH3) production were similar in proliferating IgLON5wt and IgLON5kd cells (Figure S2).
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Observations of IgLON5 expression increases during differentiation and of much
reduced myotube formation by IgLON5kd C2C12 cells, raised the following two questions:
1) What is the molecular mechanism responsible for IgLON5 expression during differen-
tiation? and 2) What is the function of IgLON5 during differentiation? In an experiment
where C2C12 cells were monitored by GFP fluorescence, only cells that normally express
IgLON5 formed myotubes, affecting the maturation of myotubes (Figure 2). In another
experiment, when IgLON5wt or IgLON5kd C2C12 cells cultured in dishes placed inverted
and centrifuged with a swinging bucket rotor, IgLON5wt cells adhered better to surfaces
of culture dishes and more tightly bound to neighboring cells (Figure 3). This indicated
IgLON5 is involved in C2C12 cell adhesion, myotube formation, and maturation during
differentiation, which concurs with a previous study, in which it was suggested IgLON5
plays an important role in neuronal cell adhesion [36].

To investigate in more depth the mechanism whereby IgLON5 regulates C2C12 differ-
entiation, we examined the expressions of genes believed to be involved in myogenesis in
IgLON5kd, FMODkd, DPTkd, Cola1kd, or ITM2akd cells and compared these with IgLON5wt
cells (Figures 4 and 5). Interestingly, all seven genes examined in IgLON5kd cells were
downregulated as compared with IgLON5wt cells, and IgLON5 gene expression was also
downregulated in FMODkd, DPTkd, Cola1kd, and ITM2akd cells. These results suggest
these genes are involved in the regulation of IgLON5 gene expression and myotube forma-
tion, and as mentioned above, DPT and ITM2a appear to be more associated with myotube
maturation than FMOD or COL1a1. In previous studies [1,8,11], we observed that several
genes including DPT and FMOD influence each other’s expressions. We hypothesize that
during myogenesis, the abilities of these genes to regulate each other is a considerable
advantage as it facilitates complementary activities. in vitro knockdown studies have also
shown some genes have profound effects on myogenesis, though in a mouse knockout
model, no dramatic effect was observed [37,38]. We believe that this inconsistency between
in vitro and in vivo results was caused by microenvironmental differences. In addition,
in the case of genes essential for the survival of organisms, another appropriate explanation
would be “gene redundancy”, where several genes with similar functions exist.

IgLON5 protein levels were higher in injured muscles than in non-injured muscles
(Figure 6A,B and Figures S4 and S5). Our in vitro and in vivo studies provided evidence
that IgLON5 is involved in myogenesis, muscle regeneration, and our previous studies and
this study show that during myogenesis, myoblasts produce a variety of ECM proteins that
presumably create a microenvironment commensurate with proliferation and differentia-
tion and a range of membrane proteins that relay signals of environmental change from cell
surfaces to cell interiors. Furthermore, it appears ECM and membrane proteins may control
each other’s expressions and compensate for functional losses to create/maintain microen-
vironments required for myotube formation, maturation, and maintenance (Figure 7).
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Abbreviations

MSCs myogenic stem (satellite) cells
ECM Extracellular matrix
IgSF Immunoglobulin superfamily
OPCML Opioid-binding cell adhesion molecule
GPI Glycosylphosphatidylinositol
LSAMP limbic system-associated membrane protein,
IgLON5 Immunoglobulin-like cell adhesion molecule 5
MYOG Myogenin
MYOD Myoblast determination protein
MYL2 Myosin light chain 2
PSP Progressive supranuclear palsy
FMOD Fibromodulin
DPT Dermatopontin
Itm2A Integral membrane protein 2A
THBS1 Thrombospondin-1
COL1a1 Collagen type 1 alpha 1
WASP Wiskott–Aldrich syndrome protein
CDH15 Cadherin 15
CTX Cardiotoxin
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