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The overexpression of P-glycoprotein (P-gp/ABCB1), an ATP-binding cassette (ABC)
drug transporter, often contributes to the development of multidrug resistance (MDR)
in cancer cells. P-gp mediates the ATP hydrolysis-dependent efflux of a wide range
of chemotherapeutic agents out of cancer cells, thereby reducing the intracellular
drug accumulation and decreasing the chemosensitivity of these multidrug-resistant
cancer cells. Studies with tyrosine kinase inhibitors (TKIs) in P-gp-overexpressing
cells have shown that certain TKIs could reverse MDR mediated by P-gp, while
some TKIs are transported by P-gp. In the present work, we explored the prospect
of repositioning branebrutinib (BMS-986195), a highly selective inhibitor of Bruton’s
tyrosine kinase (BTK), to resensitize P-gp-overexpressing multidrug-resistant cancer
cells to chemotherapeutic agents. Our results demonstrated that branebrutinib is
capable of reversing P-gp-mediated MDR at sub-toxic concentrations, most likely by
directly inhibiting the drug transport function of P-gp. Our findings were supported by
the result of branebrutinib stimulating the ATPase activity of P-gp in a concentration-
dependent manner and the in silico study of branebrutinib binding to the substrate-
binding pocket of P-gp. In addition, we found that branebrutinib is equally cytotoxic
to drug-sensitive parental cell lines and the respective P-gp-overexpressing multidrug-
resistant variants, suggesting that it is unlikely that the overexpression of P-gp in cancer
cells plays a significant role in reduced susceptibility or resistance to branebrutinib.
In summary, we discovered an additional pharmacological action of branebrutinib
against the activity of P-gp, which should be investigated further in future drug
combination studies.
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INTRODUCTION

P-glycoprotein (P-gp or ABCB1) is the most well-characterized
member of the human ATP-binding cassette (ABC) transporter
family that has been linked to the development of multidrug
resistance (MDR) in cancer (Gottesman and Ambudkar, 2001;
Robey et al., 2018). P-gp uses energy derived from ATP hydrolysis
to actively efflux structurally unrelated chemotherapeutic drugs
out of cancer cells and reduces the intracellular accumulation
of these drugs. Some of the most well-known P-gp substrate
drugs include Vinca alkaloids, paclitaxel, colchicine, and
anthracyclines (Ambudkar et al., 1999; Gottesman et al., 2002).
Consequently, the overexpression of P-gp in cancer cells
frequently contributes to reduced chemosensitivity, treatment
failure, and recurrence in cancer patients (Szakacs et al., 2006;
Wu et al., 2011; Robey et al., 2018). In particular, the link
between the high expression of P-gp and poor clinical outcome
has been reported in patients with metastatic breast cancer
(MBC) (Kovalev et al., 2013) and blood cancers (Ross, 2000;
Robey et al., 2018) such as chronic lymphocytic leukemia
(CLL) (Matthews et al., 2006), chronic myeloid leukemia
(CML) (Maia et al., 2018), and multiple myeloma (MM)
(Schwarzenbach, 2002; Tsubaki et al., 2012). Therefore, the
discovery and development of P-gp modulators for clinical use
is of great significance.

For years, the advancement of P-gp inhibitors has not
been successful, which is frequently due to unforeseen
toxicities and adverse drug-drug interactions (Dong et al.,
2020). For example, tariquidar (XR9576) was developed as
a selective and potent inhibitor of P-gp (Mistry et al., 2001),
capable of increasing P-gp substrate drug accumulation in
drug-resistant tumors (Agrawal et al., 2003). Unfortunately,
unexpected toxicity caused two phase III clinical trials of
vinorelbine combined with tariquidar (ClinicalTrials.gov
Identifier: NCT00042315) and paclitaxel/carboplatin
combined with tariquidar (NCT00042302) as first-line
therapy in non-small cell lung cancer (NSCLC) to terminate
prematurely. To date, the US Food and Drug Administration
(FDA) has not approve any agent for the treatment of
multidrug-resistant cancers.

As an alternative to developing novel inhibitors, the drug
repositioning approach has been exploited by various research
groups to utilize tyrosine kinase inhibitors (TKIs) against
P-gp-mediated MDR (Beretta et al., 2017). As the result, some
well-known TKIs such as osimertinib (Hsiao et al., 2016)
and midostaurin (Hsiao et al., 2019), were identified as drug
candidates for resensitizing P-gp-overexpressing cancer cells
to chemotherapeutic agents (Wu and Fu, 2018). Branebrutinib
(BMS-986195) is an orally available, highly selective inhibitor of
Bruton’s tyrosine kinase (BTK) (Watterson et al., 2019; Zheng
et al., 2019). The safety, tolerability and pharmacokinetics of
branebrutinib in healthy participants (Catlett et al., 2020), both
as a single drug or in combination with other therapeutic agents,
have been studied in several clinical trials (NCT03245515,
NCT02705989, NCT03262740, NCT03131973). Currently,
branebrutinib is being evaluated as monotherapy in clinical trials
in patients with moderate to severe psoriasis (NCT02931838),

or active systemic Lupus Erythematosus or Primary Sjögren’s
Syndrome (NCT04186871).

In the present study, we found that branebrutinib could
inhibit P-gp-mediated drug transport and consequently
resensitize P-gp-overexpressing multidrug-resistant cancer
cells to apoptosis and cytotoxicity induced by P-gp substrate
drugs. Moreover, we observed that P-gp-overexpressing cell
lines do not confer significant resistance to branebrutinib as
compared to their respective parental cell lines. In summary,
our study revealed an additional pharmacological action
of branebrutinib, which could potentially be utilized in
combination therapies against multidrug-resistant cancers and
warrant further studies.

MATERIALS AND METHODS

Chemicals
All culture media and supplements were obtained from
Gibco, Invitrogen (Carlsbad, CA, United States). Tools Cell
Counting (CCK-8) kit was purchased from Biotools Co., Ltd.
(Taipei, Taiwan). Annexin V FITC-Apoptosis Detection Kit was
obtained from BD Pharmingen (San Diego, CA, United States).
Primary and secondary antibodies were purchased from Abcam
(Cambridge, MA, United States). Branebrutinib was purchased
from Selleckchem (Houston, TX, United States). Tariquidar
(XR9576) and all other chemicals were purchased from Sigma (St.
Louis, MO, United States) unless stated otherwise.

Cell Lines
Human embryonic kidney 293 cells (HEK293) and P-gp-
transfected HEK293 cells (MDR19-HEK293); the mouse NIH3T3
and P-gp -transfected NIH3T3-G185 fibroblast cells; the human
epidermal cancer cell line KB-3-1 and its P-gp-overexpressing
variant KB-V-1 were maintained in Dulbecco’s Modified
Eagle’s Medium (DMEM). The human ovarian cancer cell
line OVCAR-8 and its P-gp-overexpressing variant NCI-ADR-
RES; the human myelogenous leukemia K562 and the P-gp-
expressing K562/i-S9 cell lines were maintained in Roswell
Park Memorial Institute (RPMI-1640) medium (Mechetner
et al., 1997). KB-V-1 cells were maintained in the presence
of 1 µg/mL of vinblastine (Shen et al., 1986), NIH3T3-G185
cells were maintained in the presence of 60 ng/mL colchicine
(Currier et al., 1992), whereas the HEK293 transfectants were
maintained in the presence of 2 mg/mL of G418 (Wu et al.,
2007). All cells were cultured at 37◦C in 5% CO2 humidified
air and grown in media supplemented with 10% FCS, L-
glutamine and 100 units/mL of penicillin and streptomycin.
Cells were maintained in a drug-free medium for 7 days
before assay.

Cytotoxicity Assay
Cytotoxicity was measured with MTT and Cell Counting Kit-
8 (CCK-8) assays. Cultured cells were seeded in 96-well flat-
bottom plates and allowed to attach for 24 h before incubated in
increasing concentrations of a single drug or drug combination
for an additional 72 h. Cytotoxicity (IC50 value) of each drug
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regimen was calculated using fitted concentration-response curve
from at least three independent experiments. The extent of
drug resistance was presented as a resistance-factor (RF) value,
whereas the chemosensitizing effect was presented as a fold-
reversal (FR) value as previously described (Wu et al., 2007;
Dai et al., 2008).

Apoptosis Assay
The concurrent annexin V–FITC and propidium iodide
(PI) staining method was used to determine the effect of
branebrutinib on colchicine-induced apoptosis in cancer cells as
previously described (Anderson et al., 2003). Briefly, cells were
treated with either DMSO, branebrutinib, a known apoptosis
inducer colchicine, or the combination of colchicine and
branebrutinib for 48 h. Cells were subsequently stained with
1.25 µg/mL of annexin V–FITC and 0.1 mg/mL of PI for 15 min
at room temperature, and analyzed using the FACSCalibur flow
cytometer equipped with CellQuest software (Becton-Dickinson
Biosciences, San Jose, CA, United States) as previously described
(Hsiao et al., 2016).

Flow Cytometry
The intracellular accumulation of the fluorescent P-gp substrate
drug calcein (Hollo et al., 1994) was determined in the
presence of DMSO (control), branebrutinib, or verapamil using
the FACSCalibur flow cytometer, and analyzed using the
CellQuest or FlowJo software (Tree Star, Inc., Ashland, OR,
United States) software according to the method described by

Gribar et al. (2000) and as previously described (Robey et al.,
2004; Wu et al., 2013).

Immunoblotting
Cells were treated with either DMSO (control) or branebrutinib
(1–10 µM) for 72 h before being harvested and subjected to SDS-
polyacrylamide electrophoresis and immunoblotting as described
previously (Wu et al., 2007). Primary antibodies C219 (1:3,000
dilution), anti-alpha tubulin (1:100,000 dilution) (Abcam,
Cambridge, MA, United States) and the secondary horseradish
peroxidase-conjugated goat anti-mouse IgG (1:100,000 dilution)
were used to detect P-gp and the positive loading control
tubulin, respectively. The enhanced chemiluminescence (ECL)
kit was used for signal detection (Merck Millipore, Billerica,
MA, United States).

ATPase Assay
ATPase activity of P-gp in total membranes prepared from
High-Five insect cells (Invitrogen, Carlsbad, CA, United States)
infected with recombinant baculovirus carrying the MDR1
gene was measured by endpoint inorganic phosphate (Pi)
assay [33] and recorded as vanadate (Vi)-sensitive ATPase
activity as previously described (Ambudkar, 1998; Wu et al.,
2019). GraphPad Prism software (GraphPad Software, La
Jolla, CA, United States) was used to calculate the EC50
values based on fitted concentration-response curves obtained
from three independent experiments as previously described
(Wu et al., 2019).

FIGURE 1 | Branebrutinib reverses multidrug resistance (MDR) in P-glycoprotein (P-gp) -overexpressing cells. The effect of branebrutinib on P-gp-mediated
resistance to vincristine (A–C), paclitaxel (D–F) and colchicine (G–I) was tested in drug-sensitive parental human KB-3-1 epidermal cancer cell line (A,D,G-left
panel) and its P-gp-overexpressing multidrug-resistant KB-V-1 subline (A,D,G-right panel); drug-sensitive parental human OVCAR-8 ovarian cancer cell line
(B,E,H-left panel) and its P-gp-overexpressing multidrug-resistant NCI-ADR-RES subline (B,E,H-right panel); as well as parental HEK293 cells (C,F,I-left panel)
and MDR19-HEK293 cells, which are HEK293 cells transfected with human P-gp (C,F,I-right panel). Cells were treated with increasing concentration of vincristine,
paclitaxel or colchicine in the presence of DMSO (open circles) or branebrutinib at 1 µM (open squares), 3 µM (filled squares), 5 µM (open triangles), or at 10 µM for
72 h before analysis as described in Materials and methods. Points, mean values from at least three independent experiments; bars; S.E.M.
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TABLE 1 | Chemosensitizing effect of branebrutinib on drug-selected
P-glycoprotein (P-gp)-overexpressing human cancer cell lines.

Mean IC50
† ± SD and (FR‡)

Treatment Concentration
(µM)

OVCAR-8 (parental)
[nM]

NCI-ADR-RES
(resistant) [µM]

Vincristine – 6.48 ± 0.92 (1.0) 6.50 ± 1.19 (1.0)

+ branebrutinib 1 6.12 ± 0.85 (1.1) 5.03 ± 1.01 (1.3)

+ branebrutinib 3 5.21 ± 0.57 (1.2) 2.51 ± 0.39** (2.6)

+ branebrutinib 5 5.23 ± 0.89 (1.2) 1.40 ± 0.24** (4.6)

+ branebrutinib 10 3.92 ± 0.63* (1.7) 0.47 ± 0.07*** (13.8)

+ verapamil 5 1.84 ± 0.30** (3.5) 0.22 ± 0.05*** (29.5)

[nM] [µM]

Paclitaxel – 4.50 ± 0.81 (1.0) 8.93 ± 1.62 (1.0)

+ branebrutinib 1 3.85 ± 0.53 (1.2) 7.56 ± 1.31 (1.2)

+ branebrutinib 3 4.70 ± 0.68 (1.0) 4.00 ± 0.37** (2.2)

+ branebrutinib 5 3.88 ± 0.53 (1.2) 2.21 ± 0.28** (4.0)

+ branebrutinib 10 4.36 ± 0.79 (1.0) 0.61 ± 0.19*** (14.6)

+ verapamil 5 3.97 ± 0.71 (1.1) 0.57 ± 0.08*** (15.7)

[nM] [µM]

Colchicine – 18.96 ± 7.09 (1.0) 2.01 ± 0.49 (1.0)

+ branebrutinib 1 18.78 ± 7.34 (1.0) 1.93 ± 0.45 (1.0)

+ branebrutinib 3 18.51 ± 6.85 (1.0) 1.64 ± 0.36 (1.2)

+ branebrutinib 5 17.11 ± 6.61 (1.1) 1.15 ± 0.24 (1.7)

+ branebrutinib 10 15.37 ± 5.51 (1.2) 0.59 ± 0.12** (3.4)

+ verapamil 5 14.13 ± 5.64 (1.3) 0.46 ± 0.12** (4.4)

Treatment Concentration
(µM)

KB-3-1 (parental)
[nM]

KB-V-1 (resistant)
[µM]

Vincristine – 1.12 ± 0.34 (1.0) 1.72 ± 0.22 (1.0)

+ branebrutinib 1 1.09 ± 0.35 (1.0) 1.33 ± 0.16 (1.3)

+ branebrutinib 3 1.03 ± 0.32 (1.1) 0.80 ± 0.09** (2.2)

+ branebrutinib 5 1.05 ± 0.32 (1.1) 0.29 ± 0.03*** (6.0)

+ branebrutinib 10 0.77 ± 0.22 (1.5) 0.0913 ± 0.001*** (19)

+ verapamil 5 0.24 ± 0.08* (4.7) 0.0481 ± 0.001*** (36)

[nM] [µM]

Paclitaxel – 1.89 ± 0.49 (1.0) 1.95 ± 0.21 (1.0)

+ branebrutinib 1 1.56 ± 0.38 (1.2) 1.43 ± 0.09* (1.4)

+ branebrutinib 3 1.26 ± 0.28 (1.5) 0.76 ± 0.07*** (2.6)

+ branebrutinib 5 1.52 ± 0.37 (1.2) 0.78 ± 0.17** (2.5)

+ branebrutinib 10 1.34 ± 0.32 (1.4) 0.20 ± 0.04*** (9.8)

+ verapamil 5 1.51 ± 0.40 (1.3) 0.0676 ± 0.002*** (29)

[nM] [µM]

Colchicine – 10.92 ± 4.08 (1.0) 1.80 ± 0.18 (1.0)

+ branebrutinib 1 12.14 ± 4.69 (0.9) 1.68 ± 0.18 (1.1)

+ branebrutinib 3 11.70 ± 4.60 (0.9) 1.53 ± 0.15 (1.2)

+ branebrutinib 5 11.48 ± 4.63 (1.0) 1.31 ± 0.11* (1.4)

+ branebrutinib 10 10.19 ± 4.07 (1.1) 0.82 ± 0.06*** (2.2)

+ verapamil 5 11.75 ± 4.69 (0.9) 0.67 ± 0.09*** (2.7)

FR, fold-reversal.
† IC50 values were calculated from at least three independent experiments as
described in Materials and methods.
‡ FR value was calculated by dividing the IC50 value of a P-gp drug substrate by
the IC50 value of the same drug substrate in the presence of branebrutinib or the
P-gp reference inhibitor verapamil.
*p < 0.05; **p < 0.01; ***p < 0.001.

In silico Analysis of Docking of
Branebrutinib in the Drug-Binding
Pocket of P-gp
The cryo-EM structure of P-gp was obtained from the Protein
Data Bank (PDB:6QEX) and the protein was prepared by
addition of hydrogen atoms and partial charges based on
CHARMM force field at pH of 7.4 using Accelrys Discovery
Studio 4.0 (Alam et al., 2019). Branebrutinib structure was
optimized and docking was performed by the CDOCKER
module of the same software. The conformation with the lowest
CDOCKER Interaction Energy was selected and the respective
interaction energy was calculated.

Quantification and Statistical Analysis
Data are presented as mean ± standard deviation (SD) from
at least three independent experiments unless stated otherwise.
Statistical analysis was performed using KaleidaGraph software
(Synergy Software, Reading, PA, United States). Two-tailed
Student’s t-test was performed to analyze the difference between
mean values of experimental and control or improvement in

TABLE 2 | Chemosensitizing effect of branebrutinib on HEK293 cells transfected
with human P-glycoprotein (P-gp).

Mean IC50
† ± SD and (FR‡)

Treatment Concentration
(µM)

pcDNA3.1-HEK293
(parental) [nM]

MDR19-HEK293
(resistant) [nM]

Vincristine – 1.46 ± 0.37 (1.0) 305.07 ± 60.61 (1.0)

+ branebrutinib 1 1.39 ± 0.24 (1.1) 125.26 ± 20.31** (2.4)

+ branebrutinib 3 1.26 ± 0.18 (1.2) 39.70 ± 6.68** (7.7)

+ branebrutinib 5 1.10 ± 0.21 (1.3) 17.73 ± 1.96** (17.2)

+ branebrutinib 10 0.89 ± 0.18 (1.6) 4.94 ± 0.81** (61.8)

+ verapamil 5 0.44 ± 0.10** (3.3) 2.70 ± 0.25*** (113.0)

[nM] [nM]

Paclitaxel – 2.14 ± 0.56 (1.0) 520.29 ± 49.34 (1.0)

+ branebrutinib 1 2.23 ± 0.48 (1.0) 326.10 ± 33.09** (1.6)

+ branebrutinib 3 2.24 ± 0.47 (0.8) 143.26 ± 20.09*** (3.6)

+ branebrutinib 5 1.75 ± 0.37 (1.2) 86.34 ± 13.74*** (6.0)

+ branebrutinib 10 1.50 ± 0.36 (1.4) 66.06 ± 10.81*** (7.9)

+ verapamil 5 2.22 ± 0.39 (1.0) 32.15 ± 7.43*** (16.2)

[nM] [nM]

Colchicine – 18.36 ± 5.73 (1.0) 135.76 ± 32.28 (1.0)

+ branebrutinib 1 17.84 ± 5.01 (1.0) 116.26 ± 24.33 (1.2)

+ branebrutinib 3 18.01 ± 5.01 (1.0) 102.40 ± 18.01 (1.3)

+ branebrutinib 5 17.15 ± 4.42 (1.1) 78.81 ± 14.59* (1.7)

+ branebrutinib 10 15.73 ± 3.92 (1.2) 43.65 ± 9.23** (3.1)

+ verapamil 5 17.48 ± 5.16 (1.1) 57.08 ± 13.83* (2.4)

FR, fold-reversal.
† IC50 values were calculated from at least three independent experiments as
described in Materials and Methods.
‡FR value was calculated by dividing the IC50 value of a P-gp drug substrate by the
IC50 value of the same drug substrate in the presence of branebrutinib or the P-gp
reference inhibitor verapamil.
*p < 0.05; **p < 0.01; ***p < 0.001.
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fit and labeled with asterisks as “statistically significant” if the
probability, p, was less than 0.05.

RESULTS

Branebrutinib Resensitizes
P-gp-Overexpressing
Multidrug-Resistant Cells to Cytotoxic
Therapeutic Agents
We investigated the potential chemosensitizing effect of
branebrutinib on P-gp-mediated resistance to known P-gp
drug substrates (Kartner et al., 1983) such as vincristine,
paclitaxel and colchicine in P-gp-overexpressing multidrug-
resistant human epidermal KB-V-1 cancer cells, human ovarian
NCI-ADR-RES cancer cells, and P-gp-transfected MDR19-
HEK293 cells. We discovered that without significantly affecting
the respective drug-sensitive parental cells (Figure 1, left
panels), branebrutinib significantly reversed P-gp-mediated
resistance to vincristine in KB-V-1 (Figure 1A, right panel),
NCI-ADR-RES (Figure 1B, right panel), and MDR19-HEK293
(Figure 1C, right panel) cells in a concentration-dependent
manner. Moreover, we found that P-gp-mediated resistance
to paclitaxel (Figures 1D–F) and colchicine (Figures 1G–
I) in these P-gp-overexpressing multidrug-resistant cells
was reversed by branebrutinib in the same manner. The
respective IC50 values and the extent of chemosensitization
by branebrutinib in these cell lines, represented by the fold-
reversal (FR) values (Dai et al., 2008), are summarized in
Tables 1, 2. The FR value was calculated by dividing the
IC50 value of a P-gp drug substrate by the IC50 value of the
same drug substrate in the presence of branebrutinib or the
P-gp reference inhibitor verapamil (Dai et al., 2008). Our
data show that branebrutinib restores the chemosensitivity
of P-gp-overexpressing cells to chemotherapeutic drugs at
sub-toxic concentrations.

Branebrutinib Antagonizes the Drug
Efflux Function of P-gp
Previous studies have demonstrated that a common way for a
modulator to resensitize P-gp-overexpressing cells to P-gp drug
substrates is by directly inhibiting the drug efflux function of
P-gp (Hsiao et al., 2016, 2018, 2019; Wu et al., 2019, 2020b).
To this end, we examined the effect of branebrutinib on the
drug transport function of P-gp by performing a short-term
fluorescent drug efflux assay in NCI-ADR-RES (Figure 2A)
and KB-V-1 (Figure 2B) cancer cells, as well as in MDR9-
HEK293 (Figure 2C) cells. Cells were incubated with a P-gp
substrate calcein-AM (Hollo et al., 1994) in the presence
of DMSO (solid line), or 20 µM of branebrutinib (filled
solid line) or 20 µM of verapamil (dotted line), and the
intracellular accumulation of calcein, a fluorescent product
of calcein-AM, was monitored for 10 min as described in
Materials and methods. We discovered that without affecting
the accumulation of calcein in drug-sensitive parental cells
(Figure 2, left panels), branebrutinib significantly increased

FIGURE 2 | Branebrutinib inhibits P-glycoprotein (P-gp)-mediated drug efflux.
The effect of branebrutinib on the intracellular accumulation of calcein, a
fluorescent product of a known P-gp substrate calcein-AM, was determined
in (A) OVCAR-8 (left panel) and NCI-ADR-RES cancer cells (right panel);
(B) KB-3-1 (left panel) and KB-V-1 (right panel); and (C) HEK293 cells (left
panel) and P-gp-transfected MDR19-HEK293 cells (right panel). Cells were
treated with DMSO (control, solid lines), 20 µM of branebrutinib (filled solid
lines) or 20 µM of a reference inhibitor verapamil (dotted lines) as a positive
control. The fluorescence signal was analyzed by flow cytometry as described
previously (Wu et al., 2007). Representative histograms of at least three
independent experiments are shown.

the intracellular accumulation of fluorescent calcein in P-gp-
overexpressing NCI-ADR-RES, KB-V-1, and MDR9-HEK293
cells (Figure 2, right panels).

Next, studies have also reported that a drug-induced, transient
down-regulation of a drug transporter is another mechanism to
resensitize multidrug-resistant cancer cells to anticancer drugs
(Cuestas et al., 2012; Natarajan et al., 2013). For that reason, we
examined the protein expression of P-gp by immunoblotting with
specific antibodies after treating P-gp-overexpressing NCI-ADR-
RES and KB-V-1 cancer cells with branebrutinib (1–10 µM)
for 72 h as described in Materials and methods. Our results
show that the expression of P-gp at protein level in NCI-ADR-
RES (Figure 3A) and KB-V-1 (Figure 3B) cancer cells was not
significantly altered by branebrutinib over a period of 72 h,
suggesting that branebrutinib reverses P-gp-mediated MDR in
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FIGURE 3 | Branebrutinib has no significant effect on the P-glycoprotein (P-gp) protein levels after 72 h exposure. The P-gp-overexpressing (A) NCI-ADR-RES and
(B) KB-V-1 cancer cells were treated with DMSO (vehicle control) or branebrutinib at 1, 3, 5, or 10 µM for 72 h and processed for immunoblotting with indicated
antibodies as described in Materials and methods. Representative Western blots (upper panel) and the corresponding quantification (lower panel) of P-gp are shown.
α-Tubulin was used as an internal loading control. Values are presented as mean ± SD. Calculated from at least three independent experiments.

these cancer cell lines (Table 1) by blocking the drug efflux
function of P-gp.

Branebrutinib Enhances
Colchicine-Induced Apoptosis in
P-gp-Overexpressing Cancer Cells
To exclude the potential growth retardation effect of
branebrutinib on P-gp-overexpressing multidrug-resistant
cancer cells, we tested the effect of branebrutinib on drug-
induced apoptosis in P-gp-overexpressing cancer cells. In
addition to being a known drug substrate of P-gp (Kartner et al.,
1983), colchicine is also a known inducer of apoptosis (Riordan
and Ling, 1979). OVCAR-8 and NCI-ADR-RES cancer cells were
treated with 0.5 µM of colchicine in the presence of DMSO
(control) or 20 µM of branebrutinib for 48 h and proceed as
described in Materials and methods. As expected, we found
that colchicine induced the level of apoptosis in drug-sensitive
parental OVCAR-8 cancer cells, from approximately 3% basal
level to 82% of total apoptosis (Figure 4A, upper panels). In
contrast, due to the activity of P-gp, the apoptosis-inducing
effect of colchicine in P-gp-overexpressing NCI-ADR-RES
cancer cells was significantly less (Figure 4A, lower panels).
More importantly, we found that branebrutinib by itself does
not induce substantial apoptosis in either cell line, however,
it significantly enhanced colchicine-induced apoptosis in
NCI-ADR-RES cancer cells, from 10 to 60% of early and late
apoptosis (Figure 4B).

Branebrutinib Stimulates ATPase Activity
of P-gp
Knowing that the transport activity of P-gp is coupled to
ATP hydrolysis (Ambudkar et al., 1999, 2003), the effect
of branebrutinib on its ATP hydrolysis was examined to
gain additional biochemical information on the interactions
between branebrutinib and P-gp. As shown in Figure 5,

branebrutinib stimulated Vi-sensitive ATPase activity of P-gp in
a concentration-dependent manner, with maximum stimulation
of almost 85% higher than the basal level of 45.6 ± 4.3 nmole
Pi/min/mg protein, and the half maximal effective concentration
(EC50) value (concentration for branebrutinib to obtain 50% of
maximum stimulation of P-gp ATPase activity) of approximately
4.5 µM. Furthermore, to determine whether branebrutinib
and verapamil interact at the same substrate site of P-gp, we
examined the effect of branebrutinib on verapamil-stimulated
ATPase activity of P-gp. We found that branebrutinib had no
significant effect on the ATPase activity stimulated by 5 µM of
verapamil (Supplementary Figure 1). These results suggested
that branebrutinib does not interact at the same P-gp substrate
binding site as verapamil.

Docking Analysis of Branebrutinib
Binding to the Drug-Binding Pocket of
P-gp
Branebrutinib was docked into the human P-gp model based on
cryo-EM structure (pdb.6QEX) and the binding was predicted
to take place in the drug-binding cavity in the transmembrane
region. The best binding conformation was selected with the
binding energy calculated to be −52.83 kcal/mol. The residues
from transmembrane helix (TMH) 1, 5, 6, 7, 11, and 12 were
found to interact with branebrutinib. Most amino acids in
the binding site interact with branebrutinib via hydrophobic
interactions. The residues Met68, Met69, Phe72, Phe336, and
Tyr953 of TMH 1, 6, and 11, respectively were predicted to
interact with the propynyl, the residue Leu339 of TMH 6
with piperidine ring, and the indole moiety was predicted to
interact with Met986 of TMH12 of P-gp. Hydrogen bonds
were also found between Gln990 of TMH 12 and Gln725
of TMH7 with the amide moiety on 7-indole position of
branebrutinib (Figure 6).
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FIGURE 4 | Branebrutinib enhances colchicine-induced apoptosis in P-glycoprotein (P-gp)-overexpressing cancer cells. Drug-sensitive OVCAR-8 and the
P-gp-overexpressing multidrug-resistant NCI-ADR-RES cancer cells were treated with DMSO (control), branebrutinib at 20 µM (+BMS), colchicine at 500 nM
(+ colchicine), or a combination of colchicine and branebrutinib (+colchicine + BMS) for 48 h, processed and analyzed by flow cytometry as described in Materials
and methods. Representative flow cytometric dot plots are shown (A) and the corresponding quantification (B) are presented as mean ± SD. Calculated from at
least three independent experiments. ***p < 0.001, versus the same treatment in the absence of branebrutinib.

P-gp-Overexpressing Cells Are Not
Resistant to Branebrutinib
P-glycoprotein is known to mediate the transport of many TKIs
(Eechoute et al., 2011; Tang et al., 2011, 2012; Robey et al.,
2018; van Hoppe et al., 2019) and confer resistance to some
of these TKIs (Mahon et al., 2003, 2008; Hiwase et al., 2008),
including the BTK inhibitor ibrutinib (van Hoppe et al., 2018).
To this end, we examined whether P-gp-overexpressing cells
are less susceptible to branebrutinib treatment by determining
the cytotoxicity of branebrutinib in multiple pairs of drug-
sensitive parental cell lines and respective P-gp-overexpressing

FIGURE 5 | Branebrutinib stimulates the ATPase activity of P-glycoprotein
(P-gp). The effect of 0–30 µM of branebrutinib (0–10 µM, inset) on
P-gp-mediated ATP hydrolysis was measured in the membrane vesicles
prepared from High-Five insect cells overexpressing human P-gp and
recorded as vanadate (Vi)-sensitive ATPase activity as previously described
(Wu et al., 2013). Points, mean from at least three independent experiments;
bars, SD.

multidrug-resistant cell lines. As shown in Table 3, branebrutinib
is equally cytotoxic to P-gp-overexpressing human ovarian NCI-
ADR-RES cancer cells, human epidermal KB-V-1 cancer cells,
human K562/i-S9 chronic myelogenous leukemia cells, and the
corresponding drug-sensitive parental OVCAR-8, KB-3-1, and
K562 cells. In addition, P-gp-transfected NIH3T3-G185 mouse
fibroblast cells and MDR19-HEK293 cells, and the corresponding

FIGURE 6 | Docking of branebrutinib in the drug-binding pocket of
P-glycoprotein (P-gp). Binding modes of branebrutinib with the protein
structure of P-gp (PDB: 6QEX) was predicted by Accelrys Discovery Studio
4.0 software as described in Materials and methods. Branebrutinib is shown
as a molecular model with highlighted yellow color and the atoms for
interacting amino acid residues were colored as oxygen-red, nitrogen-blue,
hydrogen-light gray and carbon- gray. Proposed interactions are presented as
dotted lines.
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TABLE 3 | Cytotoxicity of branebrutinib in drug-sensitive and P-glycoprotein
(P-gp)-overexpressing multidrug-resistant cell lines.

Cell line Type Transporter expressed IC50 (µM) † RF‡

OVCAR-8 Ovarian – 39.28 ± 11.30 1.0

NCI-ADR-RES Ovarian P-gp 50.08 ± 17.26 1.3

KB-3-1 Epidermal – 21.27 ± 8.45 1.0

KB-V-1 Epidermal P-gp 26.35 ± 9.62 1.2

K562 Leukemia – 57.66 ± 29.71 1.0

K562/i-S9 Leukemia P-gp 54.11 ± 25.77 0.9

NIH3T3 – – 23.59 ± 5.10 1.0

NIH3T3-G185 – P-gp 29.41 ± 12.29 1.2

pcDNA3.1-HEK293 – – 41.39 ± 16.61 1.0

MDR19-HEK293 – P-gp 47.17 ± 16.21 1.1

RF, resistance factor.
† IC50 values were calculated from at least three independent experiments as
described in Materials and methods.
‡RF value was obtained by dividing the IC50 value of branebrutinib in P-gp-
overexpressing cells by the IC50 value of branebrutinib in respective parental cells.

parental NIH3T3 and pcDNA3.1-HEK293 cells are also equally
sensitive to branebrutinib treatment.

DISCUSSION

Cancer patients with poor response to conventional cytotoxic
anticancer drugs, associated with the overexpression of P-gp in
cancer cells, remains a major challenge in cancer chemotherapy
(Gillet and Gottesman, 2010; Robey et al., 2018). While there
is no effective and clinically safe inhibitors of P-gp available
to date (Robey et al., 2018; Leopoldo et al., 2019; Dong et al.,
2020), the results of several clinical trials have shown that cancer
patients could benefit from the co-administration of conventional
anticancer agents with TKIs (Geyer et al., 2006; Moore et al.,
2007; Yang et al., 2013; Cetin et al., 2014; Alemany et al., 2018).
Results of the combination therapy trial of gemcitabine and
erlotinib were much better than monotherapy with gemcitabine
in advanced pancreatic cancer patients (Moore et al., 2007;
Yang et al., 2013). Similarly, results of combination therapy
trial of capecitabine with lapatinib were significantly better
than monotherapy with capecitabine in patients with human
epidermal growth factor receptor 2 (HER2)-positive advanced
breast cancer (Geyer et al., 2006; Cetin et al., 2014). More
recently, encouraging results were reported in a combination
therapy trial of doxorubicin with nilotinib, used to inhibit the
activity of P-gp, in patients with sarcomas (Alemany et al.,
2018). Together, these studies indicate that further investigation
into combination therapies of multidrug-resistant cancers using
conventional anticancer drugs and TKIs as modulators of P-gp
is warranted. Consequently, we and others have been exploring
the possibility of exploiting the polypharmacology properties
of these TKIs for an additional mode of action against P-gp
(Hsiao et al., 2016, 2019; Zhang et al., 2017; Wu and Fu, 2018;
Wu et al., 2019, 2020a,b).

In the current study, we investigated the in vitro
chemosensitizing effect of a BTK inhibitor branebrutinib
in P-gp-overexpressing multidrug-resistant cancer cells. We

FIGURE 7 | Simplified schematic of branebrutinib resensitizing P-glycoprotein
(P-gp)-overexpressing multidrug-resistant cancer cells to anticancer drugs by
blocking the drug efflux function of multidrug transporter. The intracellular
concentration of a P-gp substrate drugs (blue circles) in P-gp-overexpressing
cells is significantly reduced by the drug efflux function of P-gp. However, in
the presence of branebrutinib (red triangles), branebrutinib outcompetes the
binding of P-gp substrate drug to the same drug-binding pocket of P-gp and
consequently restores the intracellular accumulation and efficacy of substrate
drugs in P-gp-overexpressing multidrug-resistant cells.

determined the intrinsic toxicity of branebrutinib in several pairs
of drug-sensitive and P-gp-overexpressing multidrug-resistant
cell lines. Although P-gp is known to mediate resistance to
numerous TKIs (Mahon et al., 2003; Hiwase et al., 2008), we
found that P-gp does not confer resistance to branebrutinib in
these cell lines (Table 3). Our results suggest that branebrutinib
is not rapidly pumped out of cancer cells by P-gp and that the
overexpression of P-gp is not likely to contribute significantly
to the development of branebrutinib resistance in patients.
Nevertheless, the mechanisms of resistance to branebrutinib in
patients remain to be determined in clinical studies. Next, we
examined the effect of branebrutinib, at sub-toxic concentrations,
on P-gp-mediated resistance to anticancer drugs vincristine,
paclitaxel, and colchicine. We found that branebrutinib
resensitizes P-gp-overexpressing multidrug-resistant KB-V-
1 and NCI-ADR-RES cancer cells, as well as HEK293 cells
transfected with human P-gp, to these anticancer drugs in a
concentration-dependent manner (Figure 1, Tables 1, 2). The
results of branebrutinib inhibiting P-gp-mediated drug efflux
(Figure 2) without altering the protein expression of P-gp
(Figure 3) in KB-V-1 and NCI-ADR-RES cancer cells suggest
that branebrutinib reverses P-gp-mediated MDR by blocking
the drug transport function of P-gp and consequently restores
the susceptibility of P-gp-overexpressing multidrug-resistant
cancer cells to drug-induced apoptosis (Figure 4). These results,
together with the P-gp-specific ATPase data (Figure 5) and
the in silico docking analysis of branebrutinib binding to the
substrate-binding site of P-gp in the inward-open conformation
(Figure 6), indicate that this compound attenuates the binding
of another drug substrate by interacting with numerous amino
acid residues within the drug-binding pocket of P-gp (Figure 7).

In summary, we demonstrated that branebrutinib could
effectively reverse P-gp-mediated MDR in cancer cells by
modulating the activity of P-gp. Although the possibility of other
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mechanisms contributing to the resensitization of multidrug-
resistant cancer cells remains, and that unexpected adverse
drug interactions may occur in combination therapies (Stewart
et al., 2004; Shukla et al., 2008; Libby and Hromas, 2010;
Robey et al., 2018), we report here an additional action of
branebrutinib that could be utilized in combination therapy
with conventional anticancer drugs to treat multidrug-resistant
cancers associated with the overexpression of P-gp, which should
be investigated further.
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