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Abstract
Screening already approved drugs for activity against a novel pathogen can be an important part of global rapid-response 
strategies in pandemics. Such high-throughput repurposing screens have already identified several existing drugs with poten-
tial to combat SARS-CoV-2. However, moving these hits forward for possible development into drugs specifically against 
this pathogen requires unambiguous identification of their corresponding targets, something the high-throughput screens are 
not typically designed to reveal. We present here a new computational inverse-docking protocol that uses all-atom protein 
structures and a combination of docking methods to rank-order targets for each of several existing drugs for which a plural-
ity of recent high-throughput screens detected anti-SARS-CoV-2 activity. We demonstrate validation of this method with 
known drug-target pairs, including both non-antiviral and antiviral compounds. We subjected 152 distinct drugs potentially 
suitable for repurposing to the inverse docking procedure. The most common preferential targets were the human enzymes 
TMPRSS2 and PIKfyve, followed by the viral enzymes Helicase and PLpro. All compounds that selected TMPRSS2 are 
known serine protease inhibitors, and those that selected PIKfyve are known tyrosine kinase inhibitors. Detailed structural 
analysis of the docking poses revealed important insights into why these selections arose, and could potentially lead to more 
rational design of new drugs against these targets.
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Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV-2) is the etiological agent of the COVID-19 
pandemic. Since the first cases reported in December 2019, 
this virus has spread over 223 countries with more than 111 
million positive confirmed cases and almost 2.5 million 
deaths counted up to February 2021 [1]. By the end of 2020, 
several vaccines have been approved for human immuniza-
tion against the virus. However, there is a constant need to 
discover antiviral agents for the treatment of SARS-CoV-2, 
in order to help control the possibility of new outbreaks, 
especially from several mutant strains of the virus [2, 3].

The process of de novo drug design against a novel patho-
gen can require many years of effort, which in the case of 
the COVID-19 pandemic is a luxury that the world cannot 
afford. In the light of this difficulty, drug repurposing pre-
sents a very practical strategy for drug development against 
SARS-CoV-2 [4–6]. Drug repurposing is based on the use 
of already approved drugs for the treatment of other dis-
eases, in this case COVID-19, bypassing the clinical trials 
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and regulatory stages associated with the development of a 
new drug. The reduction in the number of required steps for 
approval potentially reduces the time required for the drug to 
reach the market [4–6]. As a consequence, many repurposed 
drugs are currently in clinical trials, although there is not 
yet any approved antiviral medication against SARS-CoV-2.

SARS-CoV-2 is a single-stranded positive-sense RNA 
virus that belongs to the family of betacoronaviruses. Its 
genome encodes four structural proteins: envelope (E), 
nucleocapsid (N), membrane (M) and spike (S) proteins [7], 
and 16 non-structural proteins, such as the main protease 
(3CLpro), Papain like protease (PLpro), polimerase (RdRp), 
helicase, and others [8]. It has already been suggested that 
the non-structural proteins 3CLpro, PLpro, RdRp and Heli-
case enzymes are viable antiviral drug targets [8]. During 
the COVID-19 pandemic a large number of research groups 
dedicated time and effort to resolve the structures of almost 
all the previously mentioned viral proteins. For instance, the 
RCSB Protein Data Bank currently houses approximately 
1000 published SARS-CoV-2 related proteins [9, 10]. 
SARS-CoV-2 proteins whose structures remain unresolved 
have been the object of structure-predictions made using a 
variety of computational approaches (Swissmodel [11, 12], 
Zhang Lab [13, 14], and Alphafold [15]). These predicted 
structures could become quite important if experimental 
difficulties slow the release of validated X-ray or cryo-EM-
derived structures. Besides the studies on viral proteins, 
researchers have also focused on key human proteins, iden-
tifying several drugs that have anti-SARS-CoV-2 activity 
by inhibiting host enzymes essential for the SARS-CoV-2 
life cycle [16, 17].

Several groups around the world have been combining 
drug repurposing strategies with high-throughput screen-
ing (HTS) in order to find already approved drugs that show 
in vitro activity against SARS-CoV-2. The antiviral activity 
in these HTS studies can be measured against an individual 
known SARS-CoV-2 target, such as some viral enzymes 
[18, 19], or against cultured viral-infected cells [20–22]. 
In these later publications, promising compounds showing 
high antiviral activity on the HTS assay were identified. One 
disadvantage in these studies, unlike the target-based assays 
mentioned prior, is that the molecular targets of the tested 
drugs remain unknown.

The combination of this limitation of the cell-based HTS 
assays with the accumulated knowledge of all the resolved 
and predicted SARS-CoV-2 and human related structures 
provides strong motivation for in silico repurposing cam-
paigns aimed at identifying potential targets. Identifying the 
viral or human target for any anti-SARS-CoV-2 repurposed 
drug would be beneficial for focused structural and muta-
genic studies as well as optimization.

A powerful in silico methodology to conquer this chal-
lenge is inverse docking (INDO), which aims to find the 

best target(s) for a given drug within a large collection of 
biologically relevant macromolecular targets [23–26], using 
molecular docking. Given that molecular docking methods 
are not conceived to identify potential target(s) for a given 
ligand, INDO protocols are still relatively immature, and 
new strategies for improve true positive ligand–protein pairs 
continue to be reported [24, 26–28].

Here we report an improvement to INDO that aims spe-
cifically to identify the potential targets of repurposed drugs 
with experimentally proved activity against SARS-CoV-2. 
This strategy is distinct from theoretical drug database 
screening [29–32] because we restrict our pool of drugs to 
those already shown by consensus of two or more experi-
mental HTS studies to have anti-SARS-CoV-2 activity. From 
a joint dataset built from three independent HTS assays that 
measure inhibition of infection of cultured cells [20–22], we 
built a ligand set from the top 25% most active compounds 
in two out of the three studies, comprising 158 distinct com-
pounds. Our target set consists of a total of 18 SARS-CoV-2 
proteins and 6 human proteins. Our INDO protocol uses a 
novel combination of several docking scores which yields 
increased accuracy in identifying the true positive ligand-
protein pairs in a validation set.

In the remainder of this work, we first present our INDO 
protocol applied over a test set of know protein–ligand com-
plexes in order to find the best scoring function combination. 
Then, a list of the ligands and targets considered, are indi-
cated. Finally, the INDO study results are analyzed, which 
in summary show that the preferential targets were human 
and viral enzymes. Further analysis over every one of this 
preferential targets were developed in detail, indicating the 
most suitable repurposed drug for every target, and reveal-
ing the molecular interaction patterns present on the binding 
sites. To the best of our knowledge, this is the first virtual 
HTS INDO study developed to connect highly active anti-
SARS-CoV-2 drugs, gathered from HTS assays, with their 
respective potential viral and human molecular targets.

Methods

Inverse docking using multiple scoring functions

In the context of ligand-protein interaction prediction, 
inverse docking (INDO) is a procedure which aims to pre-
dict, within a predefined set of proteins, the best target(s) 
for a given ligand using docking calculations [23–26]. For a 
successful INDO campaign the most important steps include 
(i) selection of docking software package(s), (ii) ligand and 
protein structure preparation, and (iii) proper analysis of the 
results. In this work, our strategy was first to evaluate dif-
ferent programs and analysis options using a well-defined 
test set, and then proceed with the identification of potential 
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targets for those molecules found to be active from experi-
mental HTS.

Docking software and methodology

The docking calculations were performed with a beta ver-
sion of Vinardo [33] and Ledock [34]. Vinardo has a scoring 
function based on Vina [35]. The new beta version is being 
developed by one of the present authors and was success-
fully used in the D3R grand challenge 4 competition (see 
Quiroga/Villarreal submission in Tables 2 and 3 of Parks 
et al. [36]). Ledock is commercial software with free access 
for academic use and which has shown good performance 
in docking benchmarks [37]. We also applied the recently 
developed coarse grained Korp-PL [38] scoring function 
to re-score the 10 best poses generated with Vinardo. All 
programs were used with default options, except the search 
space, which was adapted to every protein.

In those cases where a ligand is present in a crystallo-
graphic target structure, the docking box was defined by 
extending 8 Å from the ligand’s maximum and minimum 
x, y, and z coordinates. For the other cases, the docking box 
was defined to cover the active site of the enzyme or, if the 
goal was to test the drug action on protein–protein interac-
tions, the interface between protomers. In the Supplementary 
Materials, Table S6 shows details about the docking boxes 
and their intent, together with some illustrative figures. All 
the structures used here are available in PDB format in our 
repository [39].

Analysis

The docking calculations produced optimal poses of each 
ligand in every target, together with its score. Generally, 
any inverse docking protocol uses this set of information 
to decide which is the preferred target for a given ligand 
from among all tested targets. A basic approach could be 
to simply rank the targets for each ligand according to the 
scoring function in use, with the highest affinity at the top 
of the list. However, this algorithm does not work well in 
practice, mainly due to biases in the scoring functions aris-
ing from the limited datasets against which they themselves 
were developed. There are different strategies to overcome 
this problem, and we follow the approach of Kim et al. 
[23]. They proposed to normalize the docking scores using 
a Z-score approach before each ligand selects its preferred 
targets. An additional way to overcome scoring-function bias 
is to combine results of multiple distinct scoring functions. 
Because there are several ways to combine scores, we evalu-
ated both exponential consensus average ranking [40] and a 
simple arithmetic mean of Z-scores before the selection step. 
The latter approach was found to be superior in our test set 
and then was used for the rest of the analysis of the INDO 

results. When several structures for a given ligand and for a 
given protein were used, only the combination that produced 
the best score were considered for this analysis.

Test set

In order to validate the INDO methodology we prepared 
a control test which consisted of 209 crystallographic pro-
tein–ligand complexes taken from the PDBBIND database 
[41]. PDBBIND is a curated database where every com-
plex is annotated with the experimentally measured binding 
affinities and UniProt ID, among other useful information. 
Beginning with PDBBIND’s refined 2018 set, represent-
ing more than 4000 complexes, we applied several filters 
to build a subset more manageable in size and that better 
matches the properties of the set of drugs selected from the 
experimental HTS. Molecules in this test set were limited 
to a molecular weight between 200 to 700 Da, with 3 to 
7 rotatable bonds, and experimentally measured affinity of 
1 μM or lower. To eliminate redundancy we clustered mol-
ecules using a binning clustering method, with a Tanimoto 
coefficient of 0.6, as implemented in Chemmine tools [42]. 
Finally, we deleted all but one replica of repeated receptors 
based on UniProt IDs.

Ligand preparation

Up to five structures per ligand were prepared using Gyp-
sum-DL [43], from the SMILEs in the ChEMBL database. 
Using the available options of Gypsum-DL, ring conforma-
tions were explored for all molecules with aliphatic rings, 
while stereochemistry was explored only for those molecules 
without explicit prescription in the corresponding SMILE. 
Protonation states were explored in the 7.0 + − 1 pH range, 
and were manually adjusted when deemed necessary. Analy-
sis of the molecular weight (MW) distribution showed that 
most molecules were between 130 to 750 Da. Five mol-
ecules with higher MW and one with a lower MW were not 
considered.

Protein targets

As previously mentioned, the SARS-CoV-2 RNA genome 
encodes for at least 20 structural and non-structural proteins. 
Any and all of these can be used as potential targets for the 
INDO study, but according to their roles in the viral life cycle 
and also on the availability of a three-dimensional structure 
(experimental or by structural modeling), 18 of them were 
selected for this work. In order to permit the selection of 
human proteins as targets in the INDO study, several were 
selected because of their important role on the early stages 
of SARS-CoV-2 infection. One of the most important is the 
angiotensin-converting enzyme II (ACE2) receptor, which 
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is responsible for viral recognition and entry into the host 
cell. After ACE2 recognition, SARS-CoV-2 can enter the 
host cell following either endosomal or nonendosomal path-
ways, depending on the infected cell-type. In both pathways, 
several human enzymes (TMPRSS2, Furin, PIKfyve, etc.) 
play critical roles in viral entry [16, 17]. Table S1 list the 
proteins targets used.

For almost all selected targets it was possible to obtain 
an experimentally solved three-dimensional structure. The 
exceptions were Nsp6, ExoN, M protein and TMPRSS2, 
which were obtained from different modeling sources (see 
Table S6 for more details). In most cases, at least two dif-
ferent structures for every target were used in order to have 
a wider representation of the conformations of the receptor 
selected in the INDO study. The exceptions were ORF3a, 
ORF7a, PIKfyve, and the M protein, for which we were able 
to either retrieve from the PDB database, or model, only one 
structure. For the four targets without experimental structure 
available, we first looked for already modeled structures by 
the AlphaFold project [15] or by the Zhang lab [13], and 
then modeled the remaining using the Swiss-Model server 
[11, 12]. Two modeled structures were obtained from the 
Alphafold project (Nsp6 and M protein) [15]. The structures 
of ExoN were obtained from the Swiss-Model server [11, 
12] and Zhang lab [13]. The structure retrieved from the 
Swiss-Model server was based on the structure of SARS-
CoV-1 ExoN (PDB accession code 5C8S), with a sequence 
similarity of 95% with respect to SARS-CoV-2 ExoN, 
while the model from the Zhang Lab was constructed with 
I-TASSER [14]. The structures for the soluble domain of 
TMPRSS2 were modeled with the Swiss-Model server. The 
templates used were Hepsin serine protease (PDB accession 
code 5CE1), with a 33% of sequence similarity, and Plasma 
kallikrein (PDB code 6O1G) with a 44% similarity.

For every viral and human target the docking region was 
selected based on the previous knowledge of importance on 
the biological function for the particular target. For enzymes 
(PLpro, 3CLpro, etc.), the selection was based on the posi-
tion of the catalytic site and also on the known position of 
the binding site for the natural substrate. For those targets 
for which two distinct bindings sites are known, both were 
included as potential sites in the study (RdRp, Hel, ExoN, 
2-O-MT, etc.). In the case of the non-enzyme targets, usu-
ally a protein–protein interface was selected as docking site, 
because this inhibition of interaction with other protein can 
prevent an important biological function on the viral life 
cycle. This is the case for several non-structural proteins 
(such as Nsp7, Nsp8 and Nsp10) that participate in viral 
replication by binding to functional enzymes. For modeled 
proteins the position of the ligand present in the template 
used to generate the structure was taken as reference to con-
struct the docking box. In the case of the M protein, for 
which no relevant information was available, the docking 

was set to explore the entire cytosolic domain. See Table S1 
and Table S6 for more details.

In the important case of the SARS-CoV-2 spike (S) pro-
tein complex, we searched for potential ligand binding sites 
at interprotomer interfaces, the rationale being that bind-
ing in such a location could either anchor the trimer in the 
closed conformation or prevent post-activation separation of 
protomers. First we analyzed the 10 μs molecular dynamics 
simulation trajectories of the glycosylated S trimer in the 
closed state from Shaw Research [44]. From these trajecto-
ries we calculated the atomic density of the highly flexible 
glycans, which revealed that almost all interprotomer inter-
faces at the complex surface are within reach of a glycan 
(Fig. S7). This suggested that the interprotomer interfacial 
sites on the exterior of S are not good candidates for high 
affinity binding sites due to glycan competition. We therefore 
elected to search for druggable sites in the interior of the 
S protein. We performed exploratory docking assays using 
probe molecules taken from a set of 300 randomly selected 
FDA approved drugs with molecular weight from 400 to 600 
Da and with a logP from 0 to 6. Structures and properties 
of the FDA molecules were obtained from the SuperDrug2 
database [45]. After exhaustive docking in the interior space 
of the S protein, clustering analysis of the center of mass 
positions of the docked molecules revealed six clear sites 
with extensive interchain contacts and with good predicted 
affinity for the FDA approved drugs (Figs. S8 and S9). 
Three of these sites are equivalent due to the symmetry of 
the trimer, leaving four distinct internal sites. Details of the 
locations of these sites are given in Table S6. Besides these 
interior sites, we also performed the INDO procedure on the 
RBD domain, which is occluded from water and glycans in 
the closed state, but fully exposed in the open state. In this 
case we used the structure co-crystallized with the ACE2 
receptor and explored independently the S and the ACE2 
sides of complex [46]. This is a critical point, since if we had 
explored the actual RBD:ACE2 complex, the search could 
produce enhancers of the interaction rather than inhibitors. 
Taking into consideration all the mentioned binding sites, a 
total of 65 protein structures representing 35 distinct sites 
were selected for the INDO study (Table  S6).

Results and discussion

Test set

The INDO validation test consisted of docking of every 
ligand against every target in the test set, resulting in a total 
of 43,681 (209 × 209) docking calculations with each of 
the three docking programs. Then based on the individual 
or composite Z-scores (see Analysis in Methods section), 
every ligand produced an ordered list of its preferred targets. 
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From these lists, the fraction of ligands which select the cor-
rect crystallographic target as its first option (“top-1”) or in 
general within the first N targets (“top-N”) was calculated. 
The results are shown in Fig. S1. Clearly, the combined use 
of Ledock, Korp-PL, and Vinardo scoring functions results 
in a better recovery of the correct protein–ligand complex 
compared to use of any one individually. The combined use 
of the scoring functions recovered 66%, 75%, 81% and 88% 
in the top-1, top-3, top-5, and top-10 respectively. We further 
characterized the discrimination performance of our pro-
cedure by plotting the ROC curves (Fig. S2). Two extreme 
cases were analyzed, first considering all the predictions, and 
second considering only top-1 predictions. When using all 
the predictions the AUC is 0.95, while for top-1 only predic-
tions the AUC is 0.85. However reassuring these high AUC 
values are, they may also reflect the fact that some molecules 
may only be good binders for certain target proteins. The 
major differences between true positive rate (TPR) and false 
positive rate (FPR) are obtained at the average Z-scores of 
− 0.90 and − 1.50 for each case. These threshold values are 
useful references and were used to guide analysis of the fol-
lowing results of INDO.

The highly active repurposed drug (HARD) list

In the work of Heiser et al. [20], the anti-SARS-CoV-2 
activity of 1670 drugs was studied via HTS, including FDA-
approved drugs, EMA-approved drugs, and compounds in 
late stage clinical trials. In the HTS made by Touret et al. 
[21], 1520 off-patent drugs from the prestwick chemical 
library, most of them approved by FDA, EMA and other 
agencies, were tested. Finally, the HTS by Ellinger et al. 
[22] use 5632 compounds including 3488 compounds that 
are marketed or have been tested in human clinical trials. 
All three HTS studies were conducted using different assays 
techniques in order to measured the anti-SARS-CoV-2 activ-
ity for every repurposed drug.

Our HARD list is constructed of those compounds that 
were among the top 25% most active compounds in at least 
two of the three studies mentioned above. This information 
was obtained from the ChEMBL database version 27 [47, 
48]. To make the activity entrees of different assays com-
patible, we associate those drugs that share the same parent 
compound according to the molecule-hierarchy table of the 
database. In this way, we avoid distinguishing different salts 
of the same drug. ChEMBL IDs of the resulting list can be 
found in our repository [39], together with the set of scripts 
and SQLite queries used to process the ChEMBL database. 
The preferred compound names of the resulting list is shown 
in the supporting information (Table S2).

This list comprises 158 drugs. After applying the MW 
filter mentioned in the Methods section, we obtain a total 
of 152 compounds. This HARD list was submitted to the 

INDO procedure in order to identify the most likely potential 
SARS-CoV-2-related target for every compound.

Control compounds (CC)

In order to further test the INDO procedure, 14 known inhib-
itors of different targets included in this study were added 
as control compounds (CC). The targets of these CC are 
five human (Cathepsin L, PIKfyve, TMPRSS2, Trypsin and 
Furin) and four viral (3CLpro, PLpro, E protein and 2-O-
MT) proteins. These CC, described in Table S3, which are 
known to inhibit the activity of one or two specific targets, 
were combined with the 152 compounds from the HARD list 
and all were analyzed in a single INDO experiment. Table S3 
and Fig. 1 displays the top-5 target selection for every CC 
after the INDO procedure. The number of CC compounds 
that select its correct target in top-1, top-3 and top-5 posi-
tion are 3, 10 and 12, which translates to 21%, 71% and 85% 
correct predictions respectively. This values are only slightly 
lower than the one obtained in the Test set, but this reduc-
tion is somewhat expected, as in this case the receptor is 
not always co-crystallized with the ligand as they are in the 
test cases, and also some CC’s showed reported inhibition 
for several selected targets, as is the case for several inhibi-
tors of serine-proteases, discussed on the next section. These 
confounding factors were mitigated in the design of the Test 
set by clustering the ligands and selecting the receptors by 
UniProt ID. Notably, in the case of CC with two known 
targets, like FOY251 and Diminazene, the INDO procedure 
was also able to pick both targets in the top-3 (Fig. 1). These 
results clearly show the robustness of the INDO procedure 
in finding the correct SARS-CoV-2 protein/enzyme target. 
In addition to this reassuring finding, the CCs also serve as a 
reference to analyze the interactions of the predicted binders 
of the HARD list. In this way, it is possible to advance in 
the chemical rationale behind the target selection and not to 
rely in the calculated Z-scores alone. A detailed discussion 
of the targets detected by INDO for both CC and HARD is 
given in next section.

Inverse docking (INDO)

Preferential targets

Based on the results for the test set, it is clear that lower 
average Z-scores correlate with higher probability of cor-
rectly assigning the target for a given compound (Fig. S2). 
In order to give an overview of the preferred targets for the 
drugs in the HARD list, we analyzed which targets were 
selected as top-1 for every compound, with an average 
Z-score of − 1.0 or lower. With this threshold value we 
expected to include all true positive results. In total we 
found 52 repurposed drugs, and we show how they are 
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distributed across targets in Fig. 2 and, with further details, 
in Table S4. The most preferred targets are enzymes, with 
the human enzymes TMPRSS2 and PIKfyve being the 
most populated with 7 and 6 drugs, respectively. These tar-
gets were followed by three viral targets, two enzymes and 
one structural protein: the catalytic site of Helicase, the S 
protein at the internal site S4 and PLpro, with 5, 5 and 4 
compounds respectively. Notable absences on this list are 
the non structural (NSP) viral proteins, the ACE2 receptor 
and the RBD of the S protein. This analysis clearly shows 
that the human enzymes included in this INDO procedure 
were highly selected as top-1 targets, over all the viral tar-
gets included in the same study, possibly due to a critical 
role of those enzymes in the viral cycle of SARS-CoV-2, 
but also possibly due to the fact that the original targets for 
these drugs were also human enzymes of similar functions 
to those found here.

Analysis of selected targets

In this section, some of the preferred targets have been 
selected in order to thoroughly analyze the repurposed drugs 
from the HARD list that showed potential as inhibitors. We 
based this selection on a combination of Z-scores values and 
a predicted mode of interaction resembling the pharmaco-
phoric interaction of known inhibitors used in the Control 
Compounds section. All the gather information is resumed 
on Fig. 3 and Table S5.

Host targets

Serine proteases
The infection of SARS-CoV-2 to the human cell depends 

on the ACE2 receptor and a diverse set of host proteases [16, 
49, 50]. These proteases prime the S protein of SARS-CoV-2 

Fig. 1  Target identification for control compounds. Green arrows 
indicate that the corresponding target is obtained among the top-5 
of each compound. Orange dashed lines indicate those compounds 

for which the corresponding target was not found in the top-5. Line 
thickness shows a fine partition of the prediction ranking as indicated 
in the legend
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and are responsible for efficient fusion with the host lipid 
membrane to deliver the viral genetic material [16]. Among 
the most important proteases, three serine proteases, trans-
membrane protease/serine 2 (TMPRSS2), furin, and trypsin 
[16] recognize a similar protease cleavage site pattern 
(Arginine-Serine, R-S) present on the S1/S2 and S2 sites 
of the SARS-CoV-2 S protein [16]. In the case of furin, 
the S1/S2 site also contains the furin multibasic cleavage 
motif (RRAR) [7, 51]. Similar protease cleavage patterns 
indicated similar catalytic binding sites for the three serine 
proteases, composed of a catalytic triad (Ser-His-Asp) and 
a pocket containing an Asp residue, responsible for the sub-
strate Arg interaction recognition [7]. Comparable catalytic 
binding sites suggest the possibility that one compound can 
inhibit the biological function of more than one of these 
enzymes. This is the case for two of the selected CC, Dimi-
nazene (CC7) [7] and the Camostat derivative, FOY251 
(CC6) [52, 53], that have been reported to have inhibitory 
activity against furin/trypsin and TMPRSS2/trypsin, respec-
tively (Table S3).

After INDO, Diminazene’s top-3 target matches rep-
resented the three serine proteases with a high average 
Z-score (between − 2.01 and − 2.62, Table S3). Previous 
work showed that Diminazene displays inhibitory activity 
against furin and trypsin [7, 54]. This experimental evidence 
agrees with the present INDO analysis, where these targets 
represent the second and third position among Diminazene’s 
selections. Diminazene’s top-selected target is TMPRSS2, 

making this serine protease a very reasonable preferred tar-
get for Diminazene. From the HARD list, two compounds 
share the same top-3 potential target patterns: Nafamostat 
and Hydroxystilbamidine (Fig. 3). Nafamostat displayed 
the mentioned top-3 sequence with a high average Z-score 
(between − 1.99 to − 2.70, shown in Table S5). Previous 
work showed that this drug inhibits trypsin and TMPRSS2 
[53], which is consistent with our results. A superposition 
of the lower energy interaction conformation of Diminazene 
and Nafamostat in the active binding site of furin showed 
that both drugs display identical interaction pattern with 
residues of the active site (Figs. 4a, S3a and S3b), produc-
ing hydrogen bonds and ionic interactions in three separated 
pockets: (1) the Asp pocket with Asp306, (2) the catalytic 
triad site with Ser368 and (3) the opposite side with Asp191 
or Asn192. This common interaction motif and the high 
average Z-score strongly suggest that furin is also a preferred 
target for Nafamostat.

Hydroxystilbamidine also displayed the same top-3 tar-
gets as did Diminazene and Nafamostat (Figs. 1 and 3). 
Hydroxystilbamidine, selected furin as preferred target on 
the third position and with a lower average Z-score than 
Diminazene and Nafamostat. Previous work showed that 
Hydroxystilbamidine does not inhibit furin [7], and con-
sistent with this fact, our docking calculations showed that 
Hydroxystilbamidine only displays hydrogen bond interac-
tions with two of the previously mentioned pockets: (1) the 
Asp pocket with Asp306 and (2) the opposite side pocket 
with Asp191 (Fig. S3c). We therefore attribute Hydroxystil-
bamidine’s lack of furin activity to the absence of a third 
hydrogen bond interaction with residues from the the cata-
lytic triad site (Ser368). According to the present analysis, 
only trypsin and TMPRSS2 were selected as preferred tar-
gets for Hydroxystilbamidine.

Camostat belongs to the same family as Nafamostat and 
it inhibits trypsin and TMPRSS2 [53]. Our INDO analysis 
showed these enzymes as the top-2 selected targets (Fig. 3), 
with average Z-score of − 2.02 and − 2.09, respectively 
(Table S5), supporting the present analysis as an adequate 
tool to find serine-protease inhibitors.

Finally, Fig. 3 showed that Mosapride, Apixaban and 
Clebopride also displayed trypsin and TMPRSS2 in their 
top-3 for preferred targets, with high average Z-scores 
between − 1.09 and − 1.75 (Tables S5). Considering that 
these average Z-score values are similar to those from known 
trypsin and TMPRSS2 inhibitors (FOY251, Table S3 and 
Camostat, Table S5) [52, 53], we suggest that these three 
drugs are potential inhibitors of the above-mentioned serine 
proteases.

PI-3P-5-kinase (PIKfyve)
Binding of a virus to specific host cell receptor triggers 

membrane fusion, which can occur directly at the plasma 
membrane or following endocytic uptake [55]. Viruses that 

Fig. 2  Preferred target distribution. Top-1 predictions with a average 
Z-score ≤ −1.0
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require endocytic uptake can use different initial traffick-
ing routes [55]. One endolysosomal system used by SARS-
CoV-2 is conducted through phosphoinositides, where 
the phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) is 
particularly important for endosome homeostasis [55, 56]. 
PI(3,5)P2 is produced by PI-3P-5-kinase (PIKfyve) through 
the phosphorylation of the D-5 position in phosphatidylino-
sitol-3-phosphate (PI3P) [55–57]. It has been reported that 
inhibitors of PIKfyve can inhibit infection by several viruses, 
including Ebola and Lassa [58, 59]. Among these inhibitors, 
Apilimod was reported to inhibit viral entry of MERS-CoV, 
SARS-CoV and SARS-CoV-2 [55]. This agrees with our 
INDO study, where Apilimod displays PIKfyve as the top-1 
preferred target (Fig. 1) with a very high average Z-score 
of − 2.21 (Table S3). This supports the value of the INDO 
procedure as a tool in the search for PIKfyve inhibitors.

In a recent publication reporting the structure of the PIK-
fyve lipid kinase complex, Lys1877 was confirmed as cata-
lytically essential in the enzyme active site [57]. A detailed 
observation of the active site shows that it is formed mostly 
by hydrophobic residues, such as Ile54, Lys56 (Lys1877), 

Phe69, Ala90, Met116, Phe120, Leu199, Tyr216 and Ile217. 
The lowest energy interaction conformation of Apilimod on 
the active site of PIKfyve (Figs. 4b and S4a) shows mainly 
hydrophobic interactions with these residues, separated into 
two different binding pockets. Apilimod’s 3-methylphenyl 
moiety is placed in binding pocket 1, lined by Phe66, Phe69, 
Ala90, Ile92, Leu114, Tyr216 and Ile217 present on one side 
of the active site. Apilimod’s pyridine ring occupies pocket 
2 on the other side of the PIKfyve binding site, formed by 
Ile54, Leu119, Phe120 and Leu199, and also displays a 
hydrogen bond interaction with Leu119. To the best of our 
knowledge, this is the first study to postulate a structural 
model of a putative inhibitor such as Apilimod bound in the 
PIKfyve active site.

Several HARD have selected PIKfyve as a top-1 preferred 
target (Fig. 3), with average Z-scores between − 1.08 and 
− 1.94 (Table S5). These compounds belong to the pharma-
cological group of tyrosine kinase inhibitors, developed for 
a variety of clinical purposes. Several previous publications 
have reported that approved drugs from the family of tyros-
ine kinase inhibitors, in particular Imatinib, Dasatinib and 

Fig. 3  Selected cases for target identification obtained in this work 
and discussed in the text. Line thickness shows the predicted ranking 
as indicated in the legend. The colors of the arrows allows to visual-

ize the different discussion sections in the text. Target identification 
for the 152 drugs of the HARD list is available in our repository [39]
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Saracatinib, can block coronavirus infection (SARS-CoV 
and MERS-CoV) at early stages of the viral life cycle [17, 
60–62]. This activity has been attributed to the inhibition of 
various tyrosine kinases, such as Abelson tyrosine kinase 
2 (Abl2) [61, 62] and the Src-family of tyrosine kinases 
(SFKs) [60], but the reported results were not conclusive 
on whether these enzymes are the actual targets for these 
inhibitors in the context of their anti-coronavirus activity.

Figures 4b and S4, displayed that this family of com-
pounds exhibited high similar interaction pattern to the refer-
ence compound Apilimod. Figure S4 shows that Pexidartinib 
and Vatalanib place the halogenated ring, present in every 
structure, in pocket 1, and the heteroaromatic ring displaying 
the previously-mentioned hydrogen bond interaction with 
Leu119 and the hydrophobic interactions, in pocket 2.

Considering that PIKfyve is a lipid kinase, it is reason-
able to speculate that it shares a similar active domain with 
the family of tyrosine kinase enzymes. It has been reported 
that active domains in tyrosine kinases showed the presence 

of an ATP binding pocket, where a Lys residue (Lys52) is 
responsible for holding the ATP alpha and beta-phosphates 
in position for the phosphorylation catalysis procedure. 
As was previously mentioned, PIKfyve has Lys1877 in 
the active site, which is critical kinase activity. It stands to 
reason, therefore, that drugs that compete for ATP binding 
can be active against both tyrosine kinases and PIKfyve. 
The gathered information previously reported, added to the 
INDO study performed in this work, suggests that tyros-
ine kinase inhibitors show activity against coronaviruses, 
including SARS-CoV-2, potentially through the inhibition 
of the PIKfyve enzyme during the early stages of the viral 
life cycle.

Viral targets

Papain-like protease (PLpro)
SARS-CoV-2 PLpro is a cysteine protease which is 

responsible for the early cleavage of the viral polypeptide 

Fig. 4  3D superposition of: a Diminazene (orange), Nafamostat (yel-
low) and Hydroxystilbamidine (green) on the catalytic site of Furin; 
b Apilimod (orange), Pexidartinib (yellow) and Vatalanib (green) on 
the active site of PIKfyve; c GRL-0617 (orange), Clebopride (yellow) 

and Mosapride (green) on the S3 and S4 PLpro subsites; d Sofalcone 
(orange), Bumetanide (yellow) and Stepronin (green) on the Helicase 
NTPase binding site. Hydrogen bond interaction represented as black 
dashed lines
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[63] during virus maturation. PLpro has also been reported 
to suppress host innate immune responses through the rever-
sal of certain post-translational protein modifications [64, 
65]. Ratia et al. developed a series of naphthalene deriva-
tives as SARS-CoV-1 PLpro inhibitors, among which the 
compound GRL-0617 displayed the highest activity against 
SARS-CoV-1 PLpro [63]. Recently, Freitas et al. tested sev-
eral of those naphthalene derivatives against SARS-CoV-2 
PLpro [66]. As with SARS-CoV-1, GRL-0617 displayed the 
highest activity in inhibiting PLpro as well as SARS-CoV-2 
replication [66]. In Table S3 (CC10) we show that our INDO 
protocol indeed selects SARS-CoV-2 PLpro as the top-1 tar-
get for GRL-0617.

Crystallographic structures of SARS-CoV-1 and SARS-
CoV-2 PLpro-GRL-0617 complexes have been reported 
[63, 67]. In both cases, the inhibitor occupies the same posi-
tion away from the catalytic active site and instead bound 
to the S3 and S4 PLpro subsites, because despite the dif-
ferences between SARS-CoV-1 and SARS-CoV-2 PLpro, 
the residues lining the active site and the nearby S3 and S4 
cavities are identical [63, 66, 67]. The interaction between 
GRL-0617 and PLpro is stabilized mainly through a pair of 
hydrogen bonds and a series of hydrophobic interactions 
[63, 66, 67]. The present INDO study successfully recapitu-
lates the crystallographic interaction pattern of the PLpro-
GRL-0617 complex. The amide moiety of GRL-0617 dis-
plays two hydrogen bond interactions with residues Asp165 
and Gln270. The rest of the inhibitor structure, including the 
naphthyl and the substituted benzyl rings, shows hydropho-
bic interactions with non-polar residues lining the mentioned 
sites: Leu163, Gly164, Pro249, Tyr265, Try269 and Tyr274 
(Figs. 4c and S5a) [63, 66, 67].

The INDO procedure on the HARD list shows numer-
ous compounds beyond GRL-0617 with PLpro as the top-1 
preferred target (Table S5). A closer look at the interaction 
patterns of these compounds with PLpro showed that none 
were able to participate in the previously mentioned hydro-
gen bond interactions with both Asp165 and Gln270 resi-
dues. From Fig. 3, Mesopride and Clebopride display PLpro 
as a potential target on their top-3 position. The interaction 
patterns of the mentioned compounds with the residues of 
PLpro showed a similar interaction pattern as GRL-0617, 
especially because of the presence of an amide group on 
their structures, allowing hydrogen bond interactions with 
residues Asp165 and Gln270 (Figs. 4c,  S5b and S5c). The 
similarities between these two compounds, regarding both 
the high average Z-score and the interaction with residues 
from S3 and S4 PLpro subsites with the PLpro inhibitor 
GRL-0617, explain why Mosepride and Clebopride also 
claim PLpro as their potential target.

Helicase
Helicase, together with the RNA-dependent RNA 

polymerase (RdRp), form the main components of the 

replication-transcription complex (RTC) responsible for 
viral genome replication and transcription of coronaviruses 
like SARS-CoV-2 [8, 68, 69]. Previous reports revealed that 
Helicase exhibits multiple enzymatic activities, including 
hydrolysis of NTPs and dNTPs, unwinding of DNA and 
RNA duplexes and RNA 5′-triphosphatase activity [8, 69]. 
This enzyme is one of the most evolutionarily conserved 
proteins in coronaviruses and therefore an important tar-
get for drug development [8, 68]. It had been reported that 
small molecules can inhibit the NTPase activity of helicase 
through interference with ATP binding [8, 68]. This NTPase 
domain is positioned in a cleft between domains 1A and 
2B, lining by the residues Lys288, Ser289, Asp374, Glu375, 
Gln404 and Arg567 [8, 68].

The present INDO study showed various HARD with 
helicase as their most preferred target option (Fig. 3). All 
the mentioned compounds present a carboxylic acid on 
their structures. From this list of compounds, Sofalcone, 
Bumetanide and Stepronin displayed the most relevant 
interaction pattern with residues from the helicase NTPase 
binding domain (Figs. 4d and S6). These compounds placed 
their acid groups on the phosphate binding position from the 
natural NTPs substrates [68], producing extensive hydrogen 
bond interactions with residues Gly285, Gly287, Lys288, 
Gln404, Arg443 and Arg567. This interaction pattern resem-
bles that of natural substrates across the NTPase binding 
site residues and the elevated average Z-score obtained on 
the INDO suggest Sofalcone, Bumetanide and Stepronin as 
promising potential inhibitors of helicase.

S protein
SARS-CoV-2 S protein plays a key role in the early stage 

of viral infection, with the S1 domain responsible for the 
molecular recognition to ACE2 and the S2 domain mediat-
ing the membrane fusion. Due to this important role in the 
viral cycle, we analyzed several docking sites in the interior 
of S protein as previously described in the Methods section. 
The S protein has no known catalytic function, but in order 
to interact with the ACE2 receptor a conformational change 
from the closed to the open state must occur. The interior 
docking sites found in the closed state (See Methods sec-
tion and Figs. S7, S8 and  S9) have extensive interprotomer 
contacts and therefore ligands at those sites may stabilize the 
closed state or prevent post-activation separation of protom-
ers. We also explored the spike RBD and the ACE2, in this 
cases searching for molecules that may impair its interaction. 
As was already mentioned, our results showed that no com-
pound from the HARD list selected either the spike RBD 
or the ACE2 in their respective top-3 choices. This result 
indicated that these interfaces are not druggable sites for 
these compounds.

However, from the four distinct internal sites analyzed 
(Figs. S29 to  S32), internal site 4 is preferred, both in terms 
of number of drugs and in Z-scores values (Fig. 2, Table S5). 
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This site is located at the apex of the trimer in the closed 
state, and it permits access to residues of the RBD that form 
the interaction interface with ACE2. It is reasonable to spec-
ulate that drugs at this position may prevent the opening 
of the RBD, resulting in inhibition of SARS-CoV-2 entry. 
Ponatinib and Silodosin select the internal site 4 as their 
top-1 choice with average Z-scores of − 2.20 and − 1.57, 
respectively (Fig. 3 and Table S5). Figure  S10 schematically 
shows this interaction.

Conclusion

In this work, an inverse docking procedure was performed 
on 152 approved drugs experimentally determined to be 
highly active against SARS-CoV-2 (HARD) in three inde-
pendent in vitro HTS assays. Our objective was to iden-
tify potential human and viral targets for these drugs. Our 
INDO approach was first validated on a test set of 209 pro-
tein–ligand crystallographic complexes not involving SARS-
CoV-2 targets. This validation showed that the combined 
use of three different scoring functions (Ledock, Korp-PL 
and Vinardo) resulted in accurate recovery of the correct 
protein–ligand complex compared to use of any one scoring 
function individually. When applied to known inhibitors of 
different SARS-CoV-2 targets this INDO methodology suc-
cessfully identified 10 out of 14 in their top-3 preferences, 
showing good accuracy in identifying the correct SARS-
CoV-2 protein/enzyme target.

Through this work we have relied mostly on experimental 
evidence to define the docking search space. This approach 
has the advantage of concentrating the computational efforts 
on known interaction sites. Alternatively, it is possible to use 
blind docking techniques to reveal new interaction sites that 
have not yet been experimentally tested. This would open up 
the possibility of discovering new druggable binding sites.

The analysis of the INDO results of the 152 potentially 
repurposable drugs showed that the preferential targets were 
the human enzymes TMPRSS2 and PIKfyve, followed by 
the viral enzymes Helicase and PLpro. This observation is 
in line with the fact that enzymes are more druggable tar-
gets that any other non-structural or structural SARS-CoV-2 
protein.

A closer analysis over the preferential targets showed 
that the three human serine proteases included in this work 
were selected as top-3 position targets for Nafamostat, show-
ing the same preference as one of the control compounds, 
Diminazene. The fact that these drugs are proven inhibitors 
of different serine-proteases included in this work supports 
the present analysis as a powerful tool to find serine-pro-
tease inhibitors. Conversely, we found Hydroxystilbami-
dine and Camostat as inhibitors of only human Trypsin 

and TMPRSS2, because they were not able to perform the 
required molecular interaction on the active site of furin.

The INDO procedure selected PIKfyve as the top-1 target 
for five drugs from the HARD list. These compounds belong 
to the family of tyrosine-kinase inhibitors and they were able 
to establish the same molecular interaction as did Apilimod, 
a well-known PIKfyve inhibitor, on the active site of the 
enzyme. This information suggests that a tyrosine-kinase 
inhibitor can show anti SARS-CoV-2 activity by inhibiting 
the human PIKfyve enzyme.

The observations over the two preferential viral targets 
showed that PLpro select this target as top-1 for the GRL-
0617, the control compound reported as specific inhibi-
tor of this viral enzyme. Also the docked pose reproduce 
the crystallographic interaction pattern observed in the 
PLpro:GRL-0617 complex. These pharmacophoric interac-
tions were also observed by two drugs from the HARD list: 
Mosapride and Clebopride, which display PLpro as their 
top-3 target choices. For helicase, the present study found 
several compounds selected this enzyme as their top-1 tar-
get, acting on the catalytic site of the enzyme. All such drugs 
share a carboxylic acid moiety on their structures, possibly 
playing the role of the phosphate group present on the natu-
ral NTPs substrates.

Overall, to the best of our knowledge, this is the first 
INDO study that suggests potential viral and/or human tar-
gets for a list of HARD with anti-SARS-CoV-2 activity. The 
results presented in this work contribute to the characteriza-
tion of drugs with potential for directly repurposing against 
SARS-CoV-2 and to the further development of novel com-
pounds with anti-SARS-CoV-2 activity. When combined 
with high-throughput screening and structure-based rational 
drug design, the INDO protocol demonstrated here should 
therefore contribute substantially to the fight against SARS-
CoV-2 and other diseases.
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