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Biomarker development is currently a high priority in neurodevelopmental disorder
research. For many types of biomarkers (particularly biomarkers of diagnosis), reliability
over short periods is critically important. In the field of autism spectrum disorder (ASD),
resting electroencephalography (EEG) power spectral densities (PSD) are well-studied
for their potential as biomarkers. Classically, such data have been decomposed into
pre-specified frequency bands (e.g., delta, theta, alpha, beta, and gamma). Recent
technical advances, such as the Fitting Oscillations and One-Over-F (FOOOF) algorithm,
allow for targeted characterization of the features that naturally emerge within an EEG
PSD, permitting a more detailed characterization of the frequency band-agnostic shape
of each individual’s EEG PSD. Here, using two resting EEGs collected a median of
6 days apart from 22 children with ASD and 25 typically developing (TD) controls
during the Feasibility Visit of the Autism Biomarkers Consortium for Clinical Trials, we
estimate test-retest reliability based on the characterization of the PSD shape in two
ways: (1) Using the FOOOF algorithm we estimate six parameters (offset, slope, number
of peaks, and amplitude, center frequency and bandwidth of the largest alpha peak)
that characterize the shape of the EEG PSD; and (2) using nonparametric functional
data analyses, we decompose the shape of the EEG PSD into a reduced set of basis
functions that characterize individual power spectrum shapes. We show that individuals
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exhibit idiosyncratic PSD signatures that are stable over recording sessions using
both characterizations. Our data show that EEG activity from a brief 2-min recording
provides an efficient window into characterizing brain activity at the single-subject
level with desirable psychometric characteristics that persist across different analytical
decomposition methods. This is a necessary step towards analytical validation of
biomarkers based on the EEG PSD and provides insights into parameters of the PSD
that offer short-term reliability (and thus promise as potential biomarkers of trait or
diagnosis) vs. those that are more variable over the short term (and thus may index state
or other rapidly dynamic measures of brain function). Future research should address
the longer-term stability of the PSD, for purposes such as monitoring development or
response to treatment.

Keywords: EEG, autism, autism spectrum disorder, test-retest, power, FOOOF, reliability

INTRODUCTION

The development of translational biomarkers is a crucial
step towards clinical trial readiness for neurodevelopmental
disorders such as autism spectrum disorder (ASD; Sahin et al.,
2018). The recent failure of several promising clinical trials
(Krueger et al., 2017; Berry-Kravis et al., 2018) underscores
the importance of biomarker development, and the need for a
range of biomarkers serving a range of purposes. For example,
a diagnostic biomarker can confirm the presence or absence of
a disorder, or identify individuals with a biologically-defined
subtype thereof (FDA-NIHBiomarkerWorking Group, 2016), to
guide patient selection for clinical trials. Amonitoring biomarker
can serially assess the status of a disorder (FDA-NIH Biomarker
Working Group, 2016), and thus measure the response to
medical therapies or other exposures. The ideal properties of a
given biomarker thus depend largely on its context of use. For
example, a diagnostic biomarker should not change significantly
over a given time window if the biology of the disorder it is
indexing has not changed. On the other hand, a monitoring
biomarker should change over time in a manner that reflects the
biological impact of a medical treatment.

One of the most promising imaging tools for
biomarker development in neurodevelopmental disorders is
electroencephalography (EEG). EEG is an index of the neural
networks that bridge genotype to phenotype across a variety of
ages, disorders, and species, and thus offers substantial promise
for the development of scalable biomarkers that are relevant
to the brain mechanisms underlying ASD (Port et al., 2014;
Jeste et al., 2015). Within EEG, the power spectral density
(PSD), which represents the contributions of oscillations at
various frequencies to the EEG, offers both diagnostic and
monitoring potential. For example, among children with
ASD compared to typical development, there is evidence
that the resting PSD shows (at a group level) higher power
in the low (delta, theta) and high (beta, gamma) frequency
bands and lower power in the middle (alpha) frequency
bands (Wang et al., 2013). This suggests the potential utility
of some aspects of the PSD as a diagnostic biomarker for
autism. Moreover, EEG is a measure of cortical activity
and is thus fundamentally dynamic; it changes throughout

development, across awake and asleep states, and in response
to pharmacological treatment. This suggests that there
may be aspects of the PSD that offer potential in other
categories of biomarker development (e.g., monitoring or
response biomarkers).

Thus, to inform the development of biomarkers using
EEG-based measures, it is necessary to evaluate the reliability
of the PSD within an individual over brief time intervals,
as well as across development and in response to various
therapies. This is of particular importance in ASD, given the
suggestion that intra-individual variability in brain activity
may itself be an endophenotype of ASD (David et al.,
2016). Different features of the PSD may exhibit different
measurement properties, with some parameters reflecting
more transient or ‘‘state-like’’ properties of brain activity
and others reflecting more stable ‘‘trait-like’’ interindividual
differences. To begin this process, in the present study,
we focus on test-retest reliability of the PSD and specific
parameters thereof over a short time window (median of
6 days) during which one would not expect significant changes
in underlying diagnosis, developmental changes are minimal,
no new treatments are given, and EEG is collected under
identical conditions.

Prior studies in healthy adults have demonstrated good to
excellent test-retest reliability for certain features of the PSD.
EEG power for mid-range frequencies (theta, alpha, and beta,
as opposed to delta and gamma; Ip et al., 2018) and relative
power (as opposed to absolute power; Salinsky et al., 1991)
have shown correlation coefficients >0.8 for EEG sessions a few
weeks apart; this is in the range of test-retest correlations for
commonly used tests of cognitive ability (Elliott, 2007; Canivez
and Watkins, 1999). Methodological advances in EEG pre-
processing, such as a robust reference to average and wavelet
independent component analysis which act to attenuate the
effects of data collection artifact, improve test-retest reliability
in higher frequency bands such as beta and gamma (Suarez-
Revelo et al., 2016). However, the reliability of these features
in children with or without neurodevelopmental disabilities
remains unmeasured.

Notably, traditional methods of characterizing the PSD
rely on measuring power within a particular frequency band,

Frontiers in Integrative Neuroscience | www.frontiersin.org 2 April 2020 | Volume 14 | Article 21

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Levin et al. ABC-CT EEG Test-Retest Reliability

which conflates important aspects of underlying EEG activity.
First, the EEG PSD typically contains a series of periodic
oscillations atop an aperiodic background activity in which
the power decreases as frequency (f) increases, leading to a
consistent 1/fα distribution to the PSD, with the exponent α

determining the slope of this background activity. This aperiodic
activity, and the offset thereof, may reflect crucial mechanistic
underpinnings of brain activity (He et al., 2010), such as
tonic excitation/inhibition balance or total spiking activity of
underlying neural populations respectively (Haller et al., 2018).
The influence of this background activity on the measurement of
oscillatory activity is partially (though not completely) eliminated
using techniques such as normalization or log transform of
the PSD. Second, a priori assumptions about the frequency
bands wherein oscillations occur may compromise accurate
measurement and fail to capture the meaningful variation
of these oscillations. For example, averaging power in the
predefined alpha range (e.g., 8–13 Hz) removes information
about the peak alpha frequency in a given individual; however,
the exact location of this alpha peak is well known to change with
age and cognitive status (Angelakis et al., 2004; Grandy et al.,
2013) and can even occur outside of the 8–13 Hz range. Because
oscillations rarely span the exact range specified in a frequency
band, their activity can be inadvertently included in neighboring
frequency bands if they are wide or shifted. Finally, in cases where
a periodic oscillation has a narrow bandwidth or is nonexistent
with a prespecified frequency band, measurement of activity in
that band will predominantly reflect the aperiodic activity. For
these reasons, it is useful to characterize the EEG as a unique
profile, with parameterization informed by the shape of each
individual’s PSD rather than piecemeal averages across distinct
frequency bands.

As of October 2019, ClinicalTrials.gov reported 315 currently
recruiting studies collecting EEG data and of those 102 were
recruiting pediatric populations. Given the extent of this ongoing
research, addressing how best to characterize the profile of
the EEG PSD and determine its reliability and stability over
time, particularly in clinical and developmental populations,
is both important and timely. Such work forms an important
foundation onwhich to base future research, and provides critical
information to contextualize current findings.

In this study, we, therefore, explore the test-retest reliability
of the profile of the EEG PSD in children with ASD and
typical development (TD) over EEG recordings conducted
within a short (∼6 days) time-span. We applied two approaches
to characterizing the profile of the PSD: (1) parametric
model-based decomposition of the PSD into offset, slope,
and oscillatory peaks using the Fitting Oscillations and
One-Over-F (FOOOF) algorithm (Haller et al., 2018); and
(2) nonparametric functional data analysis, which identifies a
small set of principal component functions that combine to
describe the shape of the power spectrum. We hypothesized that
these complementary approaches would exhibit high levels of
short-term test-retest reliability. In this way, we demonstrate the
utility of resting EEG PSD shape, and some specific parameters
thereof, as stable biomarkers of cortical activity over short
time windows.

MATERIALS AND METHODS

These data were collected as part of the ongoing Autism
Biomarkers Consortium for Clinical Trials (ABC-CT1;
McPartland, 2016). Details of the ABC-CT data acquisition
are reported elsewhere (Webb et al., 2019; McPartland et al.,
2020). The objective of the ABC-CT is to evaluate a set
of electrophysiological (EEG), eye-tracking, and behavioral
measures for use in clinical trials for ASD. The ABC-CT began
with a ‘‘Feasibility Study,’’ which included the participants
described below and involved two EEGs separated by a short
window of time (median 6 days) as described below. The
ABC-CT then moved on to the ‘‘Main Study,’’ which included
a larger number of participants, with EEGs separated by longer
windows of time (6 weeks, and then 6 months). Only the data
from the ‘‘Feasibility Study’’ is included here, as the focus of
this manuscript is on the shorter-term test-retest reliability of
the EEG PSD; this type of information (two EEGs separated by
a few days) was not collected in the ‘‘Main Study.’’ This study
was carried out following the recommendations of the central
Institutional Review Board at Yale University, with written
informed consent from a parent or legal guardian and assent
from each child before their participation in the study.

Participants
Fifty-one participants (25 with ASD, 26 with TD), were enrolled
in the feasibility phase of the ABC-CT. Inclusion criteria included
age 4–11 years, IQ 50–150 (as assessed by the Differential Ability
Scales–2nd Edition), and participant and their parent/guardian
must be English speaking. Exclusion criteria included a
known genetic or neurological syndrome, metabolic disorder,
mitochondrial dysfunction, significant sensory and/or motor
impairment not correctable by a hearing aid or glasses/contact
lenses, and history of significant prenatal/perinatal/birth injury,
neonatal brain damage, or epilepsy. All participants (and at
least one biological parent, if accompanying the child to the
visit) were required to participate in a blood draw. Medication
was not exclusionary, but participants were required to have
been stable for 8 weeks on a current medication regimen.
Additionally, environmental circumstances likely to account for
ASD (e.g., severe nutritional or psychological deprivation) were
exclusionary in the ASD group. In the TD group, additional
exclusionary criteria included an active psychiatric disorder, a
historical diagnosis of ASD, or a sibling with ASD.

Group characteristics are presented in Table 1. Groups
differed significantly on age (t(45) = 2.3, p = 0.025) and
IQ (t(45) = 4.6, p < 0.001). One participant with ASD and
3 participants with TD were left-handed. The ‘‘Feasibility
Study Visit’’ consisted of two EEGs on two separate days
(termed here ‘‘Day 1’’ and ‘‘Day 2’’), separated by a short
window of time (range 1–22 days, median 6 days) during
this phase. Participants were characterized using rigorous
autism diagnostic standardized measures [Autism Diagnostic
Observation Schedule, 2nd edition (ADOS-2; Lord et al., 2001),
Autism Diagnostic Interview-Revised (ADI-R; Lord et al., 1994),

1www.asdbiomarkers.org
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TABLE 1 | Participant sex, age, and IQ by diagnostic group.

Group N (N female) Mean Age (Y) Min. Age (Y) Max. Age (Y) Mean IQ (SD)

ASD 24 (5) 8.0* 4.42 11.4 93 (18.2)*
TD 26 (9) 6.6 4.01 11.4 114 (9.4)

*Indicates measures that differ by group, as described in the text.

and Diagnostic and Statistical Manual of Mental Disorders
(DSM-5) criteria (American Psychiatric Association, 2013)] by
research-reliable clinicians (Webb et al., 2019), and cognitive
measures [Differential Ability Scales 2nd edition (DAS-II;
Elliott, 2007)].

EEG Protocol
In the feasibility phase of the ABC-CT, EEG acquisition included
six paradigms (Webb et al., 2019), with ‘‘Resting EEG eyes
open during calm viewing’’ of silent, chromatic digital videos
(similar to screensavers) collected twice on two separate days.
Video stimuli consisted of six 30 s non-social abstract videos
purchased from Shutterstock, which were presented to the
participant in random order in three blocks of 1 min on each
day (Webb et al., 2018). The videos were played forward for
15 s and then reversed for the following 15 s. To allow for
counterbalancing of the methods used in the ABC-CT (Eye
Tracking and EEG), at screening, participants were stratified
based on variables that could be assessed by phone to include
group (ASD/TD), biological sex (male/female), age (split at
8 years 6 months), and cognitive ability (ASD only, assessed in
person by a trained clinician at first visit). Half of the participants
received eye-tracking first at each visit and the other half received
EEG first.

Data were collected at five different sites. All sites had
a high-density EEG acquisition system (Philips Neuro,
Eugene, OR, USA), including either Net Amps 300 (Boston
Children’s Hospital, University of California Los Angeles,
University of Washington, and Yale University) or Net
Amps 400 amplifiers (Duke University). All sites used
the 128 electrode HydroCel Geodesic Sensor Nets, applied
according to Philips Neuro/Electrical Geodesics, Inc. standards.
Four of the five sites removed electrodes 125–128, which
are positioned on the participant’s face, from the EEG
caps to the tolerability of wearing the cap. Appropriate
EEG acquisition protocols and software (500 Hz sampling
rate, MFF file format, onset recording of amplifier and
impedance calibrations) were provided to each site. EPrime
2.0 (Psychological Software Tools, Sharpsburg, PA, USA)
was used for experimental control. The coordinating site
reviewed and provided feedback on the net application,
adherence to administration protocol, and data quality for
every session. Sites conducted regular monthly checks of
equipment function.

One participant with ASD refused to wear the net; EEG data
was therefore available on 24 ASD and 26 TD participants.
After the preprocessing described below, EEG from one
additional ASD participant was excluded from the parametric
and nonparametric data analyses due to having a substantially
lower number of observed segments than the rest of the sample

(61 segments vs. an average of 91 segments) and only 1 day of
EEG recording. Thus, in total, there was usable data on at least
1 day from 23 ASD and 26 TD participants (N: DukeASD = 4;
DukeTD = 5; BCHTD = 5; BCHASD = 5; YaleTD = 5; YaleASD = 5;
UWTD = 5; UWASD = 5; UCLATD = 6; UCLAASD = 5). Data
on one ASD and one TD participant were recorded only on
day 1. There was thus usable data on both days from 22 ASD
and 25 TD participants (of note, Table 1 includes data on all
participants who had EEG data available on at least 1 day, and
not just those who contributed 2 days of EEG; this is because the
mixed-effects models described below can still make use of the
data from participants who contributed just 1 day of EEG).

Preprocessing of the EEG
Processing of the raw EEG data was done using the Harvard
Automated Processing Pipeline for Electroencephalography
(HAPPE; Gabard-Durnam et al., 2018) embedded within the
Batch EEG Automated Processing Platform (BEAPP; Levin
et al., 2018). In brief, data were 1 Hz high pass and 100 Hz
low pass filtered, downsampled to 250 Hz, and run through
the HAPPE module including a selection of 18 channels
corresponding to the 10-20 system channels (excluding Cz,
as data were originally collected in reference to Cz), 60 Hz
electrical line noise removal, bad channel rejection, wavelet-
enhanced thresholding, independent component analysis
with automated component rejection (Winkler et al., 2011,
2014), automated segment rejection, interpolation of bad
channels, and re-referencing to average (Of note, the selection
of 18 channels from the full 128-channels is necessary to
generate a robust signal decomposition using independent
component analysis, given the short length of the EEG
recording. Details of how to determine an appropriate number
of channels included in an independent component analysis
decomposition are provided elsewhere; Gabard-Durnam
et al., 2018; Levin et al., 2018). Data were then segmented
into two-second segments, and the PSD was calculated via
multitaper spectral analysis (Thomson, 1982; Babadi and
Brown, 2014) using three tapers. The PSD was estimated
for each participant and electrode by averaging the PSDs
of artifact-free segments. Scalp-wide spectral densities were
obtained by averaging spectral densities across the 18 electrodes
for each subject on each day. Parametric analyses were based on
absolute power, whereas nonparametric analyses were based on
relative power.

Parametric Decomposition of Periodic and
Aperiodic Activity
In order to characterize periodic and aperiodic features of the
PSD profile, we used the Fitting Oscillations and One-Over-
F (FOOOF) algorithm (Haller et al., 2018). The algorithm
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FIGURE 1 | Parameters extracted from FOOOF decomposition of the power
spectral densities (PSD). FOOOF models individual oscillatory peaks atop the
PSD and estimates the slope and offset of aperiodic activity below those
peaks. Shaded regions (blue and orange) indicate distinct oscillatory peaks
identified by model fitting.

operates by removing an aperiodic slope (Figure 1) from the
absolute PSD in the semilog-power space (linear frequencies and
logged power), which is fully characterized by offset and slope
terms. After removing the aperiodic component, the spectral
density contains periodic oscillatory peaks that are modeled
as a finite sum of Gaussians. Each Gaussian peak is defined
by its amplitude, center frequency, and bandwidth (defined
as two standard deviations of the fitted Gaussian). Thus, the
PSD profile, including both the aperiodic background and
periodic oscillations, can be fully parameterized by the following
parameters: offset, slope, number of peaks (Gaussians), and the
center frequency, amplitude, and bandwidth for each peak. These
scalar features are then available for analysis across recording
sessions using standard statistical techniques. The FOOOFmodel
parameters were chosen by visually inspecting model fit across
a range of parameters, blind to participant group and recording
session, and selecting those which best captured oscillatory peaks
across all of the recordings. A single parameter set was selected
for all recordings. Specifically, the bandwidth of oscillatory peaks
ranged between 1 and 10 Hz, and the minimum peak height (to
be included in the fit) was 1.85 standard deviations above the
aperiodic background activity.

Since the number of total peaks identified on each spectral
density varied across subjects and days, for comparison purposes
across consecutive days we first considered the agreement of
the location [in terms of frequency band, i.e., delta (2–4 Hz),
theta (4–6 Hz), low alpha (6–9 Hz), high alpha (9–13 Hz),
beta (13–30 Hz), and gamma (30–55 Hz)] of the peak with the
largest amplitude between days. For comparison of the largest
peak features (center frequency, amplitude, and bandwidth), we
then considered the largest peak in the entire alpha band for
stability of results and ease of comparison between diagnostic
groups. This allowed characterization of each scalp-wide spectral
density by six FOOOF parameters: offset, slope, number of
peaks, and (for the largest peak in the alpha range) center

frequency, amplitude, and bandwidth. The agreement of these
six FOOOF parameters across the 2 days for each diagnostic
group was evaluated using the intraclass correlation coefficient
(the ratio of between-person variance to total variance; ICC;
Donner and Koval, 1980). Age-adjusted and IQ-adjusted ICCs
are also presented, by adding these variables as predictors in the
mixed-effects model. ICC values less than 0.40 are considered
poor, between 0.40 and 0.59 fair, between 0.60 and 0.74 good,
and between 0.75 and 1.00 excellent (Cicchetti, 1994). For all
reported ICC values, bootstrap based on resampling subjects with
replacement was used for forming percentile confidence intervals
(CIs). Bootstrap methods yield more reliable inference in small
samples (bootstrap CIs were based on 200 resampled data sets).

Nonparametric Analysis of the Relative
Spectral Density via Functional
Data Analysis
Scalp-wide relative spectral densities were obtained by averaging
relative spectral densities across electrodes for each subject
observed on each day. The agreement in relative spectral density
across days for both electrode-specific and scalp-wide relative
spectral densities was computed by functional ICC within
each diagnostic group. Since a trend of lower functional ICC
was observed for the most peripheral electrodes [electrodes
9 (FP2), 22 (FP1), 45 (T3), 70 (O1), 83 (O2) and 108
(T4)] across diagnostic groups, a sensitivity analysis was also
run through the functional ICC of the scalp-wide relative
spectral densities excluding these six electrodes. Computation
of functional ICC follows a functional ANOVA decomposition
of the data within each diagnostic group with days as the
within-subject factor. Functional ICC is the functional analog
of the intra-class correlation in standard mixed-effects models.
It corresponds to the ratio of the between-subject variability to
total variance (between + within) similar to ICC but estimates
variance parameters using functional data analysis techniques.
Hence it can be interpreted as the intra-subject correlation
of the entire relative spectral density across days, as opposed
to the ICC for the FOOOF parameters which refer to the
stability of certain features of the spectral density (but not
the spectral density in its entirety). The functional ANOVA
model is fit using a multilevel functional principal component
decomposition (Di et al., 2009) which entails estimation of
the subject- and day-level eigenvalues and eigenfunctions
that enrich interpretations by allowing us to connect the
nonparametric functional data analysis to results from the
parametric analysis via FOOOF. For all reported functional
ICC values, bootstrap percentile CIs were formed based on
200 resampled data sets based on resampling from subjects
with replacement.

RESULTS

Age, sex, and IQ for study participants are in Table 1.
The power spectrum of each individual on day 1 and day

2 is plotted in Figure 2. Within participants, PSD shapes exhibit
visual similarity across separate recording sessions.
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FIGURE 2 | PSDs for each session by participant. Panel (A) displays an expanded, single participant, PSD with the log-10 axis labels. Each electrode is a single
line. Day one PSDs are shown in blue and day 2 PSDs are shown in red. Panels (B) and (C) show individual PSDs for TD (B) and ASD (C) participants. Each smaller
figure is data from a single participant.

Data quality metrics output from HAPPE (Gabard-Durnam
et al., 2018) are described in Table 2. Overall, data quality was
high across groups.

Parametric Analysis of the Absolute Power
Spectral Density via FOOOF
The location of the dominant peak (i.e., the peak with the
greatest amplitude according to the FOOOF algorithm) from
both days is provided in Table 3 for both diagnostic groups.
The dominant peak occurred most frequently in the high alpha
frequency band in the ASD group and low alpha frequency band
in the TD group. Across days, while the dominant peak stayed
within the alpha band (low and high alpha) mostly for the TD
group, it stayed more broadly within the alpha-beta range in the
ASD group.

The estimated ICCs along with their bootstrap CIs for
an agreement of the six FOOOF parameters derived from
scalp-wide absolute PSD across the two experimental days are
provided in Table 4 for both diagnostic groups. Among offset,
slope, and number of peaks, offset yielded consistently fair
agreement in both groups [TD 0.484 95% CI (0.004, 0.775);
ASD 0.525 95% CI (0.167, 0.806)], with slope between the 2 days
showing poor agreement in the TD group (0.284 95% CI (0,
0.674) but good agreement in the ASD group [0.699 95% CI
(0.527, 0.815)]. Among the three FOOOF parameters describing
the largest alpha peak, amplitude had the highest ICC in both
groups [TD 0.862 95% CI (0.729, 0.939); ASD 0.828 95% CI
(0.664, 0.926)], followed by center frequency [TD 0.700 95% CI
(0.437, 0.862); ASD 0.619 95% CI (0.342, 0.852)], and bandwidth
[TD 0.424 95% CI (0.028, 0.696); ASD 0.340 95% CI (0.034,
0.727)]. While the agreement of the largest alpha peak amplitude
was high in both groups, agreement in the peak frequency was
slightly higher in the TD group than the ASD group. In the
sensitivity analysis, when the analysis was repeated on FOOOF
parameters derived after the exclusion of the six peripheral
electrodes, these results remained unchanged. Age-adjusted ICC
values (Supplementary Table S1) are notable predominantly

for a decrease in the ICC of the center frequency of the alpha
peak (as compared to unadjusted ICC values). This decrease
is larger in the TD group than the ASD group. The TD group
also shows a decrease in ICC of the alpha bandwidth when
adjusting for age. IQ-adjusted ICC values (Supplementary
Table S2) remain largely unchanged from unadjusted
ICC values.

Nonparametric Analysis of the Relative
Power Spectral Density via Functional
Data Analysis
The estimated functional ICC for the scalp-wide relative spectral
density was excellent in both groups, though higher in the TD
group than the ASD group [TD 0.858 95% CI (0.748, 0.926); ASD
0.807 95% CI (0.650, 0.914)]. The estimated functional ICC for
each of the 18 electrodes and their 95% bootstrap CIs are shown
by diagnostic group in Figure 3. While the average electrode-
specific ICC in the TD group is approximately equal to that
of the ASD group, there is greater variation in the functional
ICC among electrodes in the TD group (both higher and lower
values of the functional ICC) compared to the ASD group. In
the sensitivity analysis, the estimated scalp-wide functional ICC
for both diagnostic groups was slightly higher when the six
peripheral electrodes are excluded [TD 0.874 95% CI (0.741,
0.931); ASD 0.815 95% CI (0.712, 0.913)], though the magnitude
of difference between the two diagnostic groups was unchanged.

The functional ANOVAmodel captures individual deviations
from the mean scalp-wide relative spectral density over the
2 days by partitioning the total variance into participant-
and day-level variation. Participant-level variation captures
the variation among participants whereas day-level variation
captures the variation within a subject across days. Within
each level of variation, ordered curves known as eigenfunctions
identify which portions of the frequency domain account
for the most variation by placing more magnitude at these
locations. The two estimated leading participant- and day-level
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TABLE 2 | Data quality measures, based on HAPPE metrics.

Group Day Good Channels (%) # of EEG segments Rejected EEG variance Mean retained artifact Median retained artifact
retained components (%) retained (%) probability probability

ASD 1 95.4 (3.4) 90.7 (1.8) 29 (11) 70.2 (17.1) 0.08 (0.03) 0.03 (0.02)
2 95.9 (3.9) 90.7 (1.8) 30 (12) 70.6 (15.8) 0.08 (0.03) 0.02 (0.02)

TD 1 97.4 (3.8) 90.8 (1.7) 18 (10) 82.5 (13.2) 0.05 (0.02) 0.01 (0.01)
2 97.1 (3.8) 90.9 (1.7) 19 (10) 80.2 (15.2) 0.06 (0.04) 0.02 (0.02)

Data are reported as mean (SD). EEG segments are 2 s long.

TABLE 3 | The location of the dominant peak in day 1 (rows) vs. day 2 (columns)
among the TD and ASD groups.

Day 1/2 Low_Alpha High_Alpha Beta Gamma

TD
Low_Alpha 6 6 0 0
High_Alpha 5 3 0 1
Beta 1 1 0 0
Gamma 1 0 0 1
ASD
Low_Alpha 2 2 1 0
High_Alpha 2 4 3 0
Beta 2 3 1 0
Gamma 0 1 1 0

Values indicate the number of participants with a given combination of dominant peak
locations across days.

eigenfunctions for both diagnostic groups are shown in Figure 4.
We restrict our discussion to the first two participant-level
eigenfunctions, since combined they explain at least 60% of
the total variation in both groups. We include the first 2
day-level eigenfunctions for completeness. The first participant-
level eigenfunction for both groups displays that most variation
in the data is explained by the variation in the amplitude

TABLE 4 | The estimated intraclass correlation coefficients (ICCs) and their 95%
bootstrap CI for the six FOOOF parameters for each diagnostic group.

FOOOF Parameter TD ASD

Offset 0.484 (0.004, 0.775) 0.525 (0.167, 0.806)
Slope 0.284 (0, 0.674) 0.699 (0.527, 0.815)
Number of peaks 0.021 (0, 0.571) 0.226 (0.003, 0.609)
Largest alpha peak: Center 0.700 (0.437, 0.862) 0.619 (0.342, 0.852)
Frequency
Largest alpha peak: Amplitude 0.862 (0.729, 0.939) 0.828 (0.664, 0.926)
Largest alpha peak: Bandwidth 0.424 (0.028, 0.696) 0.340 (0.034, 0.727)

of the alpha peak (with maximal variation at approximately
9 Hz), explaining similar total variation for the TD group
(48% total variance explained) and the ASD group (43%
total variance explained). While the first participant-level
eigenfunction highlights variation in the amplitude of the largest
peak, the second participant-level eigenfunction highlights the
variation in the frequency (location) of the largest peak, where
TD participants show the largest variation in the low and high
alpha band (24% total variance explained) and ASD participants
show it in high alpha and beta relative power (18% variance
explained). These findings are consistent with the locations of

FIGURE 3 | The estimated scalp-wide (bold) and electrode-specific functional intraclass correlations and their 95% bootstrap CI by diagnostic group.
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the largest peak summarized in Table 3 across days for the
two groups. While the first day-level eigenfunction highlights
across day variability in alpha and beta relative power, the
second eigenfunction highlights across day variability in the
location of the largest peak (between high and low alpha
for TD, and between high alpha and beta for ASD) similar
to the second participant-level eigenfunction. The fact that
most of the variation is explained by the participant-level
eigenfunctions (compared to day-level eigenfunctions) supports
our interpretation that most of the variation in the data is
variation across subjects and there is less variability within a
subject across days. Also, participants maintain stable alpha
peaks across experimental days, both in terms of peak frequency
and amplitude, consistent with the high ICCs reported in Table 4
for alpha peak amplitude and frequency in the two groups in the
FOOOF analysis.

DISCUSSION

In this manuscript, we examine the test-retest reliability of the
EEG power spectral density in children with ASD and TD.
EEG power-based measures are currently being evaluated and
employed as biomarkers in a variety of neurodevelopmental
and psychiatric disorders, and analytical validation (including
understanding the test-retest reliability of these measures) is
an important early step in the biomarker development process
(Micheel and Ball, 2010).

Overall, our findings demonstrate excellent test-retest
reliability for scalp-wide EEG profiles. This high test-retest
reliability reflects the overall stability of the EEG power
spectrum over relatively short time windows (a few days). For
the development of diagnostic biomarkers, this reliability is
crucial—we would not expect the fundamental biology of the
brain to change over several days without intervention, and
therefore biomarkers indexing brain function for diagnostic
purposes should not change significantly over this period.

On the other hand, there are scenarios in which we would
not expect (or want) aspects of the EEG power spectrum to
remain stable. For example, while markers of phenotypic traits
may remain stable, markers of state and other modifiable factors
(e.g., epileptiform activity) may vary over short periods. For
example, changes in the emotional state during testing, and
attention to the stimuli, may lead to changes in EEG power
that reflect true physiologic changes in brain function over even
short time windows. Similarly, scarce epileptiform activity may
occur in some of a participant’s EEG recordings but not others.
While the ABC-CT does not involve a specific intervention, this
concept will become particularly relevant when treatments target
a specific modifiable factor (e.g., psychotropic medications which
may modify state; spike suppressing anti-epileptic medications
which may modify epileptiform activity). Identifying the
parameters of the EEG PSD that predominantly reflect stable
factors (e.g., traits), and separately those that predominantly
reflect modifiable factors (e.g., state, mood, attention, and
epileptiform activity), while beyond the scope of the study
described here, will allow us to harness the wealth of information
available from EEG recordings to develop a range of biomarker

types in future studies. This concept will be crucial for clinical
trials as well. For example, monitoring biomarkers will ideally
remain relatively stable when treatment is not given, but
show a significant change in response to targeted medical and
behavioral treatments.

The high test-retest reliability for EEG profiles is present
in both TD and ASD groups, though reliability was higher
overall in the TD group (ICC 0.858) than the ASD group
(ICC 0.807). This is consistent with prior findings suggesting
more variable neural activity in ASD compared to TD (David
et al., 2016) and may suggest that reliability, in addition to
providing important information for biomarker development,
may in and of itself represent a potential biomarker. Notably,
higher neural variability may reflect (or provoke) more variable
emotional states during testing and more variable attention to
the stimuli. Such factors are often found to be clinically more
variable among children with ASD. Notably, there is also a
decrease in ICC of the alpha peak frequency when adjusted
for age. This is likely related to the fact that alpha peak
frequency typically increases with age; therefore, adjustment
for age will absorb some of the across-subject variations, thus
making the ratio of across-subject variation to total variation
(ICC) decrease. The larger decrease of alpha peak frequency
ICC in the TD group with age adjustment may reflect a
stronger tendency for alpha peak frequency to increase with
age in the TD group as compared to the ASD group; this
tendency has been previously described (Edgar et al., 2019).
The decrease in alpha bandwidth ICC in the TD group with
age adjustment may reflect a similar tendency; however, to our
knowledge alpha bandwidth has not been extensively studied
in the past, and thus this may be an interesting direction for
future studies.

Because the EEG PSD captures a range of parameters, it is
important to consider specifically which of those parameters
have high short-term test-retest reliability (and thus offer the
potential for diagnostic biomarker development), vs. those with
low short-term test-retest reliability (potentially reflecting state,
attention or perhaps noise). Our findings suggest that within the
PSD, a relatively small set of parameters is largely responsible for
capturing the fingerprint-like quality of each individual’s EEG.
FOOOF-based parameterization suggests that the alpha peak
is particularly useful for individualizing the power spectrum.
Within the alpha peak, amplitude offers particular promise
in this regard, although the center frequency of the alpha
peak also provides strong reliability within individuals. Here,
it is particularly notable that the frequency of alpha is often
considered to be an individual trait (changing only gradually with
age and other factors but otherwise remaining relatively stable
in most cases), whereas alpha amplitude varies more with the
state. For example, the posterior dominant rhythm tends to arise
when the eyes are closed and is suppressed with eye-opening;
similarly, mu rhythms over the motor cortex are suppressed by
imagining or engaging in motor tasks. However, our findings
suggest that in the context of the environment in which EEGs
were collected in the ABC-CT (watching a silent, screen-saver
type videos), alpha amplitude remains quite stable—even more
so, in fact, than alpha frequency.
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FIGURE 4 | The estimated first and second leading eigenfunctions for the participant-level variation (top row) and day-level variation (bottom row) for each
diagnostic group. The total variation explained by each component is included in the legend.

For the slope of the power spectrum as measured by FOOOF,
ICC was good in the ASD group but poor in the TD group.
This suggests that slope (at least as measured by FOOOF with
the parameters used here) is unstable across sessions in the
TD group. One possible explanation for this is that the TD
group may be more sensitive to session effects (e.g., due to
habituation, adaptation, or learning) than the ASD group, and
this is being reflected in the slope. It is also possible that
the older mean age or lower mean IQ of the ASD group,
rather than TD or ASD status per se, contributed to this
difference. An alternative explanation, supported by a visual
review of Figure 2, is that there is very little inter-individual
variability in the PSD slope among the TD group; therefore,
intra-individual reliability (across days) cannot be much higher
than inter-individual reliability (across participants) in the TD
group, because inter-individual reliability is high to begin with.
In the ASD group, which may be more heterogeneous given
the wide variety of genetic and other underlying factors that
lead to ASD, the inter-individual variability in slope is higher.
In this case, similarly strong intra-individual reliability in the
TD and ASD groups would lead to a higher ICC in the

ASD group, because of the higher inter-individual variability in
this group.

Importantly, the eigenfunctions which best characterized PSD
shape exhibited the most variance at relatively low frequencies
(4–13 hz), corresponding to overall offsets of the PSD and
in the theta to alpha range of the EEG, aligning with the
parametric findings from FOOOF and highlighting the import
of this frequency range for characterizing stable interindividual
differences in brain activity. This finding, combined with the
tendency for a variance to be explained by activity at slightly
higher frequencies in the ASD group (alpha-beta) than TD
participants (predominantly alpha), may help to explain the
higher estimated ICC for offset and slope in the ASD group
compared to TD. Because the slope and offset terms in FOOOF
are fit in the semilog-power space, these parameters are sensitive
to power dynamics at higher frequencies, which are often of
lower magnitude.

For the nonparametric analyses of relative power, reliability
in both groups improves with the removal of peripheral
electrodes. Notably, because peripheral electrodes are closer
than central electrodes to many non-brain-based sources of
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detected activity (e.g., muscle and eye movements), they are
often more susceptible to artifact than more central electrodes.
This suggests (perhaps reassuringly) that brain-based findings,
more so than artifact-based findings, remain stable across
EEG sessions within an individual. On the other hand, for
the parametric analyses of absolute power, the removal of
peripheral electrodes does not improve reliability. This may be
because the majority of parameters identified by FOOOF are
not significantly affected by an artifact in peripheral electrodes,
raising the possibility that FOOOF is less susceptible to artifact
contamination than nonparametric analyses; this may be further
studied in future work.

Nonparametric analyses otherwise reveal complementary
results to the parametric analyses. Parametric analyses reveal
excellent ICC for the amplitude of the largest alpha peak and
good ICC for the frequency of the largest alpha peak. This is
true in both the ASD and TD groups, though the ICC in the
TD group is slightly higher than that in the ASD group for both
of these parameters. Similarly, nonparametric analyses highlight
alpha amplitude as capturing the majority of variance for the
participant-level spectral densities, followed by alpha frequency.
This is again true in both the ASD and TD groups, though slightly
more variance is captured by the first two eigenfunctions in the
TD as compared to the ASD group. Parametric functions also
demonstrate that the dominant peak tended to stay within the
alpha band for the TD group, but tended to stay more broadly in
the range of both the alpha and beta bands for the ASD group.
Similarly, nonparametric functions demonstrate that the TD
participants show the largest variation in the alpha band, whereas
ASD participants show variation in alpha but also extending
into beta.

Nonparametric functional data analysis and FOOOF
thus provide convergent and complementary approaches to
characterizing the PSD. Nonparametric functional data analysis
characterizes PSD shape accurately and with a small number of
principal functions yielding high levels of reliability. However,
it relies on ‘‘learning’’ these functions based on the current
data set and thus yields different principal functions based on
the input data, as we see here between our diagnostic groups.
Additionally, the resulting functions need careful interpretation
to ground their relationship with brain activity. Conversely,
FOOOF estimates require more parameters to characterize
the PSD. However, fitting these parameters does not depend
on the presence of other members of the data set (although
the algorithm fitting settings can indirectly force information
sharing among power spectra). Also, the interpretation of
FOOOF parameters is more direct. FOOOF explicitly attempts
to separate biophysically meaningful model parameters such as
slope, offset, and oscillatory peaks.

It is important to note the specific questions that the
present study is designed to answer. First, the two testing days
for each individual took place within approximately a week.
While this suggests promise for biomarker development in
trials where EEG-based findings are expected to change over
very short periods, many pharmacological interventions aim to
change neural activity over the longer term (weeks, months,
or longer). Examining test-retest stability of the EEG power

spectrum over these longer periods is part of ongoing analyses
for the ABC-CT main study, which will include 6 weeks and
6-month follow-up recordings. Additionally, here we report only
test-retest reliability for a single set of EEGmeasures, all based on
the power spectrum. EEG is a rich source of information beyond
that which can be captured in the power spectrum, in both
the time domain and the frequency domain. As future studies
suggest additional EEG-based measurements that may offer
promise for biomarker developments, the test-retest reliability of
the measurements will need to be explicitly evaluated. Finally,
the data presented here specifically evaluates ICC and group
variability thereof (ASD vs. TD); however, our sample size was
not large enough to compare ICC across sites. Other analyses
relevant to the EEG power (e.g., comparing power, rather than
ICC thereof, across groups) are underway for the larger ‘‘Main
Study’’ of ABC-CT but are beyond the scope of the data
presented here.

Developing biomarkers for ASD and other
neurodevelopmental disorders remains a high priority in
the field, given the potential benefits, biomarkers offer for
clinical trials, diagnostics, and monitoring (Krueger et al., 2017).
While future studies will continue to assess which measurements
(in EEG and otherwise) offer the most promise as potential
biomarkers of various types, our findings of high short-term
test-retest reliability of the EEG power spectral density are a
crucial step towards ensuring that potential biomarkers meet
necessary criteria for validation.
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