
sensors

Article

A Multimodal Approach to the Quantification of
Kinetic Tremor in Parkinson’s Disease

Mateusz Szumilas 1,* , Krzysztof Lewenstein 1, Elżbieta Ślubowska 1, Stanisław Szlufik 2
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Abstract: Parkinson’s disease results in motor impairment that deteriorates patients’ quality of life.
One of the symptoms negatively interfering with daily activities is kinetic tremor which should
be measured to monitor the outcome of therapy. A new instrumented method of quantification of
the kinetic tremor is proposed, based on the analysis of circles drawn on a digitizing tablet by a
patient. The aim of this approach is to obtain a tremor scoring equivalent to that performed by trained
clinicians. Models are trained with the least absolute shrinkage and selection operator (LASSO)
method to predict the tremor scores on the basis of the parameters computed from the patients’
drawings. Signal parametrization is derived from both expert knowledge and the response of an
artificial neural network to the raw data, thus the approach was named multimodal. The fitted
models are eventually combined into model ensembles that provide aggregated scores of the kinetic
tremor captured in the drawings. The method was verified with a set of clinical data acquired from
64 Parkinson’s disease patients. Automated and objective quantification of the kinetic tremor with
the presented approach yielded promising results, as the Pearson’s correlations between the visual
ratings of tremor and the model predictions ranged from 0.839 to 0.890 in the best-performing models.
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1. Introduction

One of the Parkinson’s disease (PD) symptoms related to the motor function is kinetic tremor, i.e.,
tremor occurring during voluntary movement [1]. Even though this tremor is not considered crucial
for diagnosis, which is based on the presence of other motor manifestations including bradykinesia,
rigidity, and rest tremor [2,3], it significantly affects patients’ quality of life [4]. The frequency of the
kinetic tremor is reported to remain within 4–9 Hz, reaching higher than the frequency of the rest
tremor (4 to 6 Hz) and lower than physiological tremor (8 to 12 Hz) [1,4,5]. Additionally, it is a highly
intermittent symptom [5].

In a clinical setting, the condition of a patient suffering from PD is typically determined with
clinical scales, mainly the Unified Parkinson’s Disease Rating Scale (UPDRS) [6,7]. Such assessments
performed by medical personnel are subject to human-dependent variability, which impose a noise-like
component on the scores. Specifically, it reduces applicability of the ratings performed by humans
in case of monitoring the disease progression in its early stages, when changes in motor function are
less evident [7]. Development of the instrumented methods of motor function quantification follows
the need for reduction of subjectivity and improvement of resolution in relation to the existing scales.
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Moreover, reliable monitoring of the disease from its onset is necessary to provide feedback for an
early neuroprotective therapy, if such is introduced.

In this study, the kinetic tremor is recorded with a digitizing tablet during a simple task of
continuously drawing circles along a given path. The quantification is performed by models that utilize
two classes of parameters, specifically: (1) parameters computed directly from the acquired signals,
based on the knowledge of disease symptoms, and (2) parameters computed from the activations of
echo state networks (ESN) (a class of artificial neural networks (ANN)), collected after passing the
acquired trajectories through a set of ESNs.

Teaching predictive models based on both of the aforementioned groups of parameters, being a
multimodal approach, is a novelty in the field of the kinetic tremor diagnostics. The solutions found in
literature are based exclusively on one of two types of parameters mentioned above, commonly with a
disease diagnosis or a disease stage classification as an output [8–14].

As for the quantification of kinetic tremor, two of the cited studies are relevant. Lin et al. [12]
presented a system for assessment of the tremor severity through a digital analysis of spiral drawings by
PD and essential tremor (ET) patients. The quantification was based on signal-derived parameters (no
processing with ANNs was performed), and predictions correlated well with visual ratings provided
by physicians. In the second study, comparably good results were reported by Legrand et al. [8],
where the authors recreated visual ratings of ET patients’ tremors (according to the Bain and Findley
rating scale) from seven independent raters, employing the analysis of spiral drawings in time and
frequency domains.

An interesting example of parametrizing data from a digitizing tablet by features based on
field-specific knowledge can be found in the study by Lopez-de-Ipna et al. [13] that was targeted on
early ET diagnosis. The authors used linear and nonlinear features (the latter being complexity metrics,
namely a Shannon entropy and a fractal dimension) of the drawings of spirals as an input for the
classifiers such as support vector machine, multilayer perceptron neural network (MLP), and k-nearest
neighbors algorithm. The achieved classification accuracies were reported to be the greatest for the
MLP classifiers. It should be noted that this neural network has not been used as a source of signal
parameterization, whereas in our approach it serves as such.

The two following studies showed applicability of ESN architecture for diagnosis of PD. Gallicchio
et al. [11] presented an approach in which time series acquired during drawing of spirals were analyzed
with deep ESNs without the signal preprocessing and feature extraction steps. Another attempt of
employing ESNs to analyze and classify minimally processed signals may be found in a study by Lacy
et al. [10] which addressed the problem of differentiating PD patients and control subjects. These are
examples of ANN usage in which the network activations are closely related to the raw movement
data, which is in line with our approach. However, ESNs served as classifiers here, while the tremor
quantification is of our main interest.

The aim of our study is to look for a synergic effect in a combination of (1) a classical signal
processing and (2) a signal exploration with an artificial neural network, in the task of the quantification
of kinetic tremor. Additionally, only the models that provide continuous tremor scoring are considered,
as any discretization of response may potentially hinder monitoring of the disease progression in its
early stage.

2. Materials and Methods

2.1. Measurement System

The measurement system consists of a digitizing tablet (Intuos 2, XD-0608-U, Wacom, Vancouver,
WA, USA; resolution: 0.01 mm, sampling: 100 samples/s, accuracy: ±0.25 mm, levels of pressure:
1024, upper cut-off frequency (−3 dB): 13 Hz—derived from the tablet frequency response which was
measured by drawing circles along the diagonal of the active area with frequencies ranging from 1
to 25 Hz, with a motorized, rotating pen holder) connected to a personal computer running custom
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acquisition software [15]. Two-dimensional pen trajectory and pen pressure time series were recorded
during the measurement. The acquired data were analyzed in LabVIEW 2014 (National Instruments,
Austin, TX, USA) and R environment (R Base ver. 3.4.4, Vienna, Austria) [16].

During the examination, a patient traced along the given template of a circle (130 mm in diameter),
centered over the tablet active area. There was no preferred direction of drawing and the drawing
speed was roughly specified as “moderate”. Each examination took approximately 100 s. The patient
performed the task while seated and with their elbow of the examined arm raised from the table and
unsupported. The examination was carried out for both hands.

Exemplary signals acquired from the patient having severe tremor (rated 68 points in UPDRS
part III—motor examination) are presented in Figure 1 along with respective power spectral densities
(estimated with the Welch’s method; parameters: 1024 frequency bins, Hann window of 1000 samples,
80% overlap). A spectral peak related to the patient’s tremor is seen between 4 and 5 Hz for each signal.
The large-amplitude artifacts, present between 25 and 50 s of the pen pressure time series, arise due to
accidentally drawing outside the tablet active area.
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2.2. Data

The measurements were taken from 64 PD patients, of which 30 were females (mean age± standard
deviation (SD): 55.8 ± 10.1) and 34 were males (mean age ± SD: 57.9 ± 10.4). The patients underwent a
surgical procedure (implantation of deep brain stimulation) and/or were treated with pharmacotherapy.
In this study, however, the type of treatment was not considered as a differentiating factor.

The examinations were carried out in the Department of Neurology of the Medical University of
Warsaw (research was under approval of the Bioethics Committee of the Medical University of Warsaw,
all subjects gave written informed consent in accordance with the Declaration of Helsinki). The patients



Sensors 2020, 20, 184 4 of 18

were repeatedly examined by trained clinicians during subsequent appointments, which resulted
in 1100 recorded drawings accompanied by UPDRS ratings. The item 21 from the UPDRS scale
(UPDRS.21) was of special interest for this study, as it is meant for scoring of the kinetic or postural
tremor of hands.

The kinetic tremor in each recording was rated with a proposed scale, named tremor_score.
The tremor_score is based on the visual analysis of a 2D trajectory and a power spectrum of the recorded
drawing. The score is assigned from 0 (“no tremor”) to 10 (“severe tremor”) on an integer, monotonic
scale. To improve consistency of ratings, these should be performed in uninterrupted sessions with
subsets of data as large as possible. The rating person does not accompany patients during their
examinations, nor do they have any additional information about them, such as duration of the disease
or assigned UPDRS scores.

The tremor_score is designed as a modification of the UPDRS.21, with the following differences:
only the kinetic tremor is considered (specifically, scoring of the postural tremor is avoided), the range
of scores is extended and assumed as strictly monotonic (the UPDRS.21 scores range from ‘0’ to ‘4’ and
scores ‘2’ and ‘3’ differ only in the presence of the postural tremor, while both correspond to the kinetic
tremor of “moderate” amplitude; as such, the UPDRS.21 scores are weakly monotonic in relation to the
kinetic tremor), and, finally, the rating person has insight in the power spectrum of the signal in order
to support scoring of small-intensity tremors.

We note that the tremor_score differs from the widely adopted scale of tremor severity by Bain and
Findley [17] in that it: (1) encompasses visual analysis of the signal power spectrum and (2) enables
the rating person to subset the recording and to plot the original trajectory only partially. We consider
the latter especially important, as in the case of circle-drawing task, the circles drawn by a patient in
subsequent repetitions overlay and intersect, which can obscure manifestations of tremor.

2.3. Spectrum-Based Tremor Quantification

Occurrence of a tremor component in a signal manifests itself in a form of prominent peaks in its
power spectrum. A method of quantification of such a tremor manifestation is proposed, yielding a
single parameter tQ, being a ratio of a tremor-related signal power and an averaged background signal
power. The tQ parameter is obtained from the traced trajectory (stored in the form of time series of
Cartesian coordinates {x(t), y(t)}) in the following steps:

1. The acquired time series {x(t), y(t)} are high-pass filtered with 0.5 Hz cut-off frequency and
transformed with short-time Fourier transform (STFT) configured as follows: Hann window of
512 samples, 5-sample step (0.05 s), 256 frequency bins.

2. Combined spectrogram STFTc( f , t) is computed as a sum of squared STFTs of x(t) and y(t)
according to Equation (1):

STFTc( f , t) =
∣∣∣STFTx( f , t)

∣∣∣2 + ∣∣∣STFTy( f , t)
∣∣∣2 . (1)

3. The STFTc( f , t) spectrogram is divided into 2-s-long segments with 0.05 s step. For each segment
of the spectrogram, a relevant power spectral density (PSD) denoted by Si( f ) is computed.

4. We have observed that a common feature of the obtained Si( f ) is the presence of a relatively large
spectral component with the power density reciprocally related to the frequency. It can be written
in the form SRi( f ) ∝

∣∣∣ f ∣∣∣−α, where α takes values greater than 0. SRi( f ) may be attributed to the
spectral leakage from a large amplitude and low frequency signal of circle tracing, an artefact of
the filtering from step 1. This component should be removed because it hinders the detection
of tremor-related peaks. To remove SRi( f ) from Si( f ), a function of the form SNi( f ) = bi

∣∣∣ f ∣∣∣−αi is
fitted to the spectrum in the range 2–26 Hz (fitting is performed in logarithmic coordinates, using
the method of least absolute residuals, as this method shows insensitivity to large outliers [18],
here being the spectral peaks). The Si( f ) is divided by the fitted function SNi( f ), yielding the
residual spectral density STi( f ).
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5. STi( f ) is divided into 26 frequency bins that range from 2 to 15 Hz, each having the width of
0.5 Hz. For every bin, the signal variance (power) is computed, denoted by σ2

i,k for k-th bin.
The mean frequency of the bin with the greatest signal variance is denoted by ftQ,i.

6. Variances related to the i-th data segment are sorted in ascending order, thus forming a 26-element
set Wi, where k-th variance is denoted by Wi,k. The corresponding parameter tQi is then computed
according to Equation (2). Variances Wi,25 and Wi,24 are not averaged in the denominator of the
equation. It is assumed that these may be related to Wi,26 by conveying the power of signal
harmonics, hence they should not be considered for background power estimation:

tQi =
Wi,26

1
23

∑ j=23
j=1 Wi, j

. (2)

2.4. Power Spectral Density and Signal Entropy

In addition to the computation of the tQ parameter, the power of the signal in the band above
3 Hz is computed. Hence, a parameter named PSDc_var_3Hz is obtained based on the total PSD, being
a sum of partial PSDs of x(t) and y(t). The PSD is computed with the Welch’s method (1024 frequency
bins, Hann window of 1000 samples, 80% overlap).

As the analyzed signals represent activity of a complex system, we decided to include a measure
of their complexity in the parameters set. We refer to the sample entropy (SampEn) [19], defined as the
negative natural logarithm of the conditional probability that two distinct sequences of m samples
that are similar (i.e., the distance between them is smaller than the threshold r, where the distance is
measured with the Chebyshev metric) will remain similar after extending them with the next samples
(i.e., to the length m+1). To analyze the signal in different time scales, a multiscale entropy (MSEn)
method can be applied [20], in which the computation of the SampEn is preceded by averaging and
decimation of the original signal {x1,..., xi,..., xN}. The samples of the resulting coarse-grained signal
y(τ) are calculated, according to the equation [20]:

y(τ)j =
1
τ

∑i= jτ

i=( j−1)τ+1
xi, 1 ≤ j ≤ N/τ, (3)

where: τ is decimation (scale) coefficient, xi is i-th sample of the original signal, and N is the length of
the original signal.

The MSEn is calculated for the drawing velocity component (denoted by Vt) that is transverse to
the reference circle. Long-term trends are removed from the signal during preprocessing when the
signal is high-pass filtered over 0.05 Hz (a finite impulse response (FIR) filter with a Hann window of
2000 samples).

The set of 19 parameters derived from the time series was extended with log-transformations of the
parameters that had the most skewed distributions in randomly sampled data subsets. The skewness
was computed from 100 randomly sampled subsets, each consisting of 60% of the complete dataset,
and the parameters which average skewness minus one standard deviation was greater than 3 were
transformed with base 10 logarithm (4 parameters met this condition). The resulting 23 parameters are
summarized in Table 1.
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Table 1. Parameters computed from the time series.

Parameter Description

PSDc_var_3Hz
PSDc_var_3Hz_log

Total power of the signal in the band above 3 Hz and its
log10 transformation

f_tQ_mod Mode of ftQ,i values

abs_f_tQ_dist_5Hz Absolute difference of f_tQ_mod and 5 Hz, i.e.,
|f_tQ_mod-5|

avg_tQ_max
avg_tQ_max_log

Average of tQ in the segments representing 10 s of
measurement with the highest tQ values (i.e., 200

segments with highest tQ in the case of 0.05 s segment
step) and its log10 transformation

sd_tQ_max
sd_tQ_max_log

Standard deviation of tQ in the segments as used in
avg_tQ_max computation and its log10 transformation

cv_tQ_max Coefficient of variation: sd_tQ_max/avg_tQ_max

avg_alpha Average of α of Si( f ) component

sd_alpha Standard deviation of α of Si( f ) component

cv_alpha Coefficient of variation: sd_alpha/avg_alpha

avg_abs_Vt.LP.1
Average of the absolute transverse velocity component of

drawing motion (Vt), low-pass filtered with 1 Hz
cut-off frequency

sd_abs_Vt.LP.1
sd_abs_Vt.LP.1_log

Standard deviation of the absolute transverse velocity
component of drawing motion (Vt), low-pass filtered

with 1 Hz cut-off frequency and its log10 transformation

cv_abs_Vt.LP.1 Coefficient of variation: sd_abs_Vt.LP.1/avg_abs_Vt.LP.1

avg_press Average pen pressure

sd_press Standard deviation of the pen pressure

cv_press Coefficient of variation: sd_press/avg_press

Vt.HP.C5_MSEn_2_5 Multiscale entropy (m = 2, τ = 5) of the high-pass filtered
Vt (0.05 Hz cut-off frequency)

Vt.HP.C5_MSEn_2_10 Multiscale entropy (m = 2, τ = 10) of the high-pass
filtered Vt (0.05 Hz cut-off frequency)

Vt.HP.C5_MSEn_2_25 Multiscale entropy (m = 2, τ = 25) of the high-pass
filtered Vt (0.05 Hz cut-off frequency)

Vt.HP.C5_MSEn_2_50 Multiscale entropy (m = 2, τ = 50) of the high-pass
filtered Vt (0.05 Hz cut-off frequency)

2.5. Echo State Network Architecture

An echo state network is a type of recurrent neural network (RNN), in a classical approach
characterized by a randomly generated hidden layer with untrained connections, where only the
output weights are subject to supervised training [21,22]. Such a hidden layer is called reservoir [23],
and it is able to memorize the time series fed to the network. The reservoir should satisfy the echo
state property, i.e., the state of the reservoir should be uniquely defined by the fading history of the
input signal. Echo state property is ensured by the proper adjustment of the network hyperparameters,
which are parameters governing the distribution of connection weights.

In this work, we assume the following update equation of the ESN with N neurons in the
reservoir [22]:

x(t) = (1− α) x(t− 1) + αtanh(Win[1; u(t)] + W x(t− 1)), (4)
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where: x(t) ∈ RN is a vector of reservoir activations at the time step t, u(t) ∈ RM×T is an M-dimensional
input signal of length T, Win(t) ∈ RN×M+1 and W(t) ∈ RN×N are the input and reservoir weight
matrices, respectively, [•; •] is the vertical concatenation operator, α ∈ (0, 1] is the leaking rate
and tan h(•) is the element-wise hyperbolic tangent function.

The ESN output is defined as:
y(t) = Wout[1; x(t)], (5)

where: y(t) ∈ RMy is the My-dimensional network output and Wout ∈ RMy×N+1 is the output
weight matrix.

A schematic illustration of the ESN architecture is presented in Figure 2.
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the reservoir indicate connections to all neurons. Solid lines denote fixed weights, whereas dashed
lines denote weights computed during training using linear regression. Names of vectors and matrices
are situated next to corresponding network components.

The reservoir matrix W and input weights Win are initialized randomly from uniform distributions
over [−0.5; 0.5] and [−0.5ω; 0.5ω], respectively, where ω is an input scaling parameter. The matrix W is
typically generated sparse, with sparsity (i.e., proportion of non-zero elements in matrix) denoted by
sW.

An important hyperparameter of the network is a spectral radius ρ(W) of the reservoir, i.e.,
the maximum absolute eigenvalue of W. When network is configured with leaky integration in nodes
(α ≤ 1), the effective spectral radius has to be calculated according to the equation [24]:

ρ
(
W̃

)
= ρ(αW + (1− αI)) , (6)

where I ∈ RN×N is an identity matrix. In most cases, setting ρ
(
W̃

)
< 1 is sufficient to ensure the echo

state property. The spectral radius of matrix is adjusted in two steps: first, the matrix is element-wise
divided by its current spectral radius, and, second, it is element-wise multiplied by the value of the
desired spectral radius.

The ESN shows increased processing capability in the state between ordered and chaotic dynamics,
that is at the edge of chaos [25,26]. The stability of dynamical system may be estimated by its largest
Lyapunov exponent, i.e., a measure of divergence (in the state space) of the system trajectories with
infinitesimally small initial separation, as defined in Equation (7) [25]:

λmax = lim
k→∞

1
k

ln
(
γk

γ0

)
, (7)

where: γ0 is the initial distance between the two considered trajectories and γk is the distance at time k.
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The value of λmax < 0 is characteristic for stable systems, while λmax > 0 indicates that the system
shows chaotic behaviour. The phase transition occurs at the aforementioned edge of chaos for λmax ≈ 0.
As the largest Lyapunov exponent is defined asymptotically, it has to be estimated (we denote the
estimated exponent by λ̂). In this work, we use method described in [25], where it was adopted from
the more generic approach found in [27].

Moreover, we propose and implement a complementary method of adjusting λ̂ of a network
according to the iterative procedure presented in Algorithm 1, founded on the assumption of monotonic
relation between ρ

(
W̃

)
and λ̂. The algorithm does not ensure that λ̂ is set with assumed tolerance ∆λ0,

as the closest reached solution is returned. If the result of the adjustment procedure is not acceptable,
one should reinitialize W matrix and rerun the procedure.

Algorithm 1. Lyapunov exponent adjustment procedure

1: procedure Adjust_Lyapunov_Exponent (W̃, ∆ρ, λ0, ∆λ0, Nλ)
2: for i: = 1 to Nλ step by 1 do
3: λ̂[i]: = Estimate_Lyapunov_Exponent (W̃);
4: W̃[i]: = W̃;
5: ∆λ[i] : = Absolute_Value (λ̂[i] − λ0);
6: //stop if: estimated value is within the tolerance range
7: //or does not change between iterations
8: if (∆λ[i] ≤ ∆λ0) OR (∆λ[i] == ∆λ[i− 1]) then
9: break for i loop;
10: end if
11: if (Sign (∆λ[i])! = Sign (∆λ[i− 1])) then
12: ∆ρ : = ∆ρ/2;
13: end if
14: ρtmp := Compute_Spectral_Radius (W̃);
15: //adjust W̃ spectral radius to ρtmp ± ∆ρ
16: if (Sign (∆λ[i]) > 0) then
17: W̃ := Set_Spectral_Radius (W̃, ρtmp − ∆ρ);
18: else
19: W̃ := Set_Spectral_Radius (W̃, ρtmp + ∆ρ);
20: end if
21: end for i
22: i_out: = Index_of_Minimum_Value (∆λ[]);
23: return { W̃[i_out], λ̂[i_out]};

end procedure

The recurrent structure of the ESN enables memorization of input sequences. The measure of
network short-term memory is called memory capacity (MC) and is estimated through teaching the
ESN to recover its past inputs. The MC is calculated according to [25], with uniformly random time
series from the interval [−1; 1] used as an input.

2.6. ESN Input Preprocessing

Acquired trajectories {x(t), y(t)} were preprocessed before being used as an ESN input u(t),
according to the following procedure:

1. Components x(t) and y(t) were bandpass filtered (FIR filter with 1–12 Hz passband, Hann window
of 1000 samples) and decimated with factor 2.

2. Principal component analysis (PCA) was performed on the filtered data and the first component
PC1 was retained for further computations.

3. To normalize the data, the PC1 component was divided by its interquartile range (IQR).
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2.7. Parameters Based on the ESN Activation

States of the ESN for i-th processed trajectory are combined as columns, yielding an activation
matrix Si ∈ RN×T. Each activation matrix is summarized by a vector of parameters, for Si defined
as follows:

di =
{
xrms

i , xsd
i , wi@+1

out , wi@−MC/2
out

}
, (8)

where:

xrms
i =

√√√√
1
T

T∑
j=0

Si[:, j]2 (9)

is the vector of time-averaged activations of neurons (operator [:, j] denotes extraction of the j-th
column of a matrix) and

xsd
i =

√√√√√
1

T − 1

T∑
j=0

Si[:, j] −
1
T

T∑
k=0

Si[:, k]


2

(10)

is the vector of standard deviations of activations of neurons.
Vectors wi@+1

out ε RN and wi@−MC/2
out ε RN are the output weights of ESN trained for prediction

(one step ahead, thus superscript “i@ + 1”) and reconstruction of delayed signal (MC/2 steps back,
thus superscript “i@ −MC/2”), respectively. In both cases, the output layer is trained using linear
regression and the bias component is removed from the obtained vectors of weights. To embed the
information about the original signal amplitude in the weights, these are calculated for the task of
prediction/reconstruction of the unnormalized signal, that is, the component PC1 is not divided by its
IQR when used as a target during training (see Section 2.6).

2.8. Score Prediction Model

The parameters computed from the complete dataset are merged into matrices which are used
to train and test models of the tremor_score and UPDRS.21 scales. Three matrices of parameters
are considered: DTS—a matrix of 23 parameters retrieved from time series, DESN—a matrix of 4N
parameters based on ESN structure and activation, DESN+TS—a row-wise combination of DTS, and
DESN matrices. Each matrix is split into two submatrices for training and testing of the models,
which consist of 60% and 40% of the original matrix, respectively. The split is performed by stratified
random sampling to keep proportion of scores from the complete dataset. For each scale, the following
models are considered:

MTS : ŷTS = g( fTS(DTS)), (11)

MESN : ŷESN = g( fESN(DESN)) , (12)

MESN+TS : ̂yESN+TS = g( fESN+TS(DESN+TS)), (13)

g(y) =


ymax + 0.5tanh(y− ymax), i f y > ymax

ymin + 0.5tanh(y− ymin), i f y < ymin

y, otherwise

(14)

where: f...(•) is a linear function of parameters, fitted to predict the score of interest from the parameters
matrix D..., ŷ... is a prediction of the score, g(•) is a limiting function as defined in (14), {ymax, ymin} are
the maximum and minimum values of the modelled scales, that is, {10, 0} and {4, 0} for the tremor_score
and UPDRS.21, respectively.

The f...(•) functions are fitted using the least absolute shrinkage and selection operator (LASSO)
method [28]. The LASSO method performs variable selection and regularization, which is considered
especially important in the case of high-dimensional training sets that include ESN-derived parameters.
The LASSO output depends on a regularization parameter λLASSO chosen with 10-time, 5-fold
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cross-validation. Two values of cross-validated λLASSO are considered, that is, λMIN and λ1SE.
The parameter λMIN corresponds to the models with the minimal mean squared error (MSE) of
prediction. The parameter λ1SE corresponds to the models with the minimal number of non-zero
coefficients and prediction MSE not greater than the minimal MSE computed during cross-validation,
increased by its standard error [29].

Due to the random initialization of the ESNs, the models that are based on their activations
(MESN and MESN+TS) show increased variability of prediction quality when compared with the models
that use only parameters computed from the time series (MTS). To reduce the effect of initialization
randomness on the prediction, an ensemble of models is established [30,31]. The ensemble is formed by
combining ESN-based predictors (with hyperparameters as presented in Table 2), and the aggregated
output is computed as an average of the ensemble models’ predictions. In total, the ensemble consists
of 216 individual models. To analyze the variability of the aggregated ensemble response, the models
were recomputed 50 times, i.e., 50 independent and randomly initialized ensembles were formed.

Table 2. Parameters of echo state networks (ESNs) used in models combined in an ensemble.

Parameter Description Values

NREP
Repetitions of ESNs with

common hyperparameters 4

N Number of ESN neurons {50, 100, 200}

λ̂
Adjusted Lyapunov exponent of

the reservoir
{−0.2, −0.05} adjusted with

±0.001 tolerance

α Leaking rate {0.6, 0.9, 1}

ω Input scaling {0.1, 1, 10}

sW Reservoir sparsity 0.1

The diagram summarizing the process of training and testing models is presented in Figure 3.
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Figure 3. The diagram of the process of training and testing ensembles of models. The ensembles are
formed and tested 50-fold. In each fold: (1) the ESNs used for computation of parameters are randomly
reinitialized, and (2) the signal-based parameters are reused during model fitting while the ESN-based
parameters are computed separately for each of the configurations considered.
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3. Results

The Pearson’s correlation coefficients between the signal-based parameters and the target scales are
computed for the complete dataset and shown in Table 3. If correlations having absolute value greater
than 0.1 are considered, then these are consistently higher for the tremor_score than for the UPDRS.21
scale. The log-transformed parameters PSDc_var_3Hz_log, avg_tQ_max_log and sd_tQ_max_log show
higher absolute correlations than the respective source parameters, thus confirming the relevance of
performing such a transformation. The highest absolute correlations are observed for avg_tQ_max_log
(r = 0.73 for tremor_score and r = 0.52 for UPDRS.21), which supports the idea of computing tQ as a
measure of tremor. The lowest absolute correlations are present for the parameters derived from the
low-pass filtered Vt. On the contrary, MSEn (τ ∈ {25, 50}) computed for the Vt has one of the highest
absolute correlations for both target scales.

Table 3. Pearson’s correlation coefficients between the signal-based parameters and the target scales.

Parameter
tremor_score UPDRS.21

Pearson’s r 95% CI Pearson’s r 95% CI

PSDc_var_3Hz 0.59 [0.55, 0.62] 0.22 [0.16, 0.27]
PSDc_var_3Hz_log 0.72 [0.69, 0.75] 0.43 [0.38, 0.48]

f_tQ_mod −0.37 [−0.42, −0.32] −0.31 [−0.36, −0.26]
abs_f_tQ_dist_5Hz −0.44 [−0.49, −0.39] −0.39 [−0.44, −0.34]

avg_tQ_max 0.67 [0.64, 0.71] 0.36 [0.30, 0.41]
avg_tQ_max_log 0.73 [0.71, 0.76] 0.52 [0.47, 0.56]

sd_tQ_max 0.60 [0.56, 0.64] 0.29 [0.24, 0.34]
sd_tQ_max_log 0.68 [0.65, 0.71] 0.47 [0.42, 0.51]

cv_tQ_max 0.18 [0.12, 0.23] 0.08 [0.02, 0.14]
avg_alpha 0.15 [0.09, 0.21] 0.04 † [−0.02, 0.10]
sd_alpha 0.27 [0.21, 0.32] 0.11 [0.05, 0.17]
cv_alpha −0.32 [−0.37, −0.27] −0.13 [−0.19, −0.07]

avg_abs_Vt.LP.1 −0.10 [−0.16, −0.04] −0.08 [−0.14, −0.02]
sd_abs_Vt.LP.1 −0.02† [−0.08, 0.04] −0.04 † [−0.10, 0.02]

sd_abs_Vt.LP.1_log 0.01† [−0.05, 0.07] 0.01 † [−0.05, 0.07]
cv_abs_Vt.LP.1 0.20 [0.14, 0.26] 0.12 [0.06, 0.18]

avg_press −0.10 [−0.16, −0.04] −0.05 † [−0.11, 0.01]
sd_press 0.32 [0.27, 0.37] 0.16 [0.10, 0.22]
cv_press 0.26 [0.21, 0.32] 0.12 [0.06, 0.18]

Vt.HP.C5_MSEn_2_5 0.19 [0.13, 0.25] 0.25 [0.19, 0.30]
Vt.HP.C5_MSEn_2_10 −0.09 [−0.14, −0.03] 0.02† [−0.04, 0.08]
Vt.HP.C5_MSEn_2_25 −0.62 [−0.65, −0.58] −0.42 [−0.47, −0.37]
Vt.HP.C5_MSEn_2_50 −0.69 [−0.72, −0.66] −0.43 [−0.47, −0.38]

CI—confidence interval; †—the 95% CI of correlation coefficient includes 0.

As a metric of prediction quality of the studied models, the correlations between their responses and
the target scores are computed. Since the proposed models provide continuous outputs, the prediction
quality is measured with Pearson’s r correlation coefficient. The results for individual models are
shown in Figure 4.
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The highest median of Pearson’s r is achieved by MESN+TS models for the tremor_score and MTS
models for the UPDRS.21, in each case with λMIN regularization parameter. The MESN models show
greater variability of prediction quality when compared with MESN+TS models and MTS models.
Especially, the MTS models show no (UPDRS.21) or a very limited number (tremor_score) of outliers,
while numerous MESN models have significantly lowered prediction quality (we define outliers as
models with Pearson’s r less than the lower quartile of the r distribution minus 1.5 times its interquartile
range (IQR) or greater than the upper quartile plus 1.5 IQR).

The analysis of individual models provides information about general patterns of inclusion of the
parameters from matrices DTS and DESN, with the latter partitioned in subsets of parameters xrms, xsd,
wi@+1

out and wi@−MC/2
out . The results are presented in Figure 5.

In the case of tremor_score, the λ1SE-regularized models show approximately equal contributions
of DESN parameters’ subsets, while in the λMIN-regularized models, the percentage of wi@+1

out and
wi@−MC/2

out parameters is higher than xrms and xsd. Similar contributions of parameters may be observed
in the case of models of the UPDRS.21 scale, which differ in having greater percentage of xrms and xsd

parameters at the expense of decreased percentage of wi@+1
out and wi@−MC/2

out parameters.
For both scales and with both types of regularization, models of MESN+TS type are dominated by

DTS parameters, as their median count is greater than the respective median counts from the remaining
groups of parameters. Inclusion of DTS parameters does not lead to a consistent change in the number
of MESN+TS model parameters when compared with MESN models. However, it reduces the spread of
the parameter count (quantified by IQR), which is shown in Figure 6.



Sensors 2020, 20, 184 13 of 18
Sensors 2019, 19, x FOR PEER REVIEW 13 of 18 

 

 
Figure 5. Inclusion of parameters from DTS and DESN sets in individual 𝑀  and 𝑀  models 
(as a percentage of model parameters). Results are grouped according to the model type and λLASSO 
regularization parameter. 

In the case of tremor_score, the λ1SE-regularized models show approximately equal contributions 
of DESN parameters’ subsets, while in the λMIN-regularized models, the percentage of 𝑤 @  and 𝑤 @ /  parameters is higher than 𝑥 𝒓𝒎𝒔  and 𝑥 𝒔𝒅 . Similar contributions of parameters may be 
observed in the case of models of the UPDRS.21 scale, which differ in having greater percentage of 𝑥 𝒓𝒎𝒔  and 𝑥 𝒔𝒅  parameters at the expense of decreased percentage of 𝑤 @  and 𝑤 @ /  
parameters. 

For both scales and with both types of regularization, models of 𝑀  type are dominated 
by DTS parameters, as their median count is greater than the respective median counts from the 
remaining groups of parameters. Inclusion of DTS parameters does not lead to a consistent change in 
the number of 𝑀  model parameters when compared with 𝑀  models. However, it reduces 
the spread of the parameter count (quantified by IQR), which is shown in Figure 6. 

Figure 5. Inclusion of parameters from DTS and DESN sets in individual MESN and MESN+TS models
(as a percentage of model parameters). Results are grouped according to the model type and λLASSO

regularization parameter.Sensors 2019, 19, x FOR PEER REVIEW 14 of 18 

 

 
Figure 6. Total parameter counts of individual models, grouped according to the model type and 
λLASSO regularization parameter. 

The results for model ensembles and individual models are shown in Figure 7 and Table 4. The 
highest correlations of predictions and target scores are observed in the case of individual 𝑀  
models. The maximum Pearson’s r of 𝑀  models is equal to 0.638 (UPDRS.21, λMIN and λ1SE), 
0.897 (tremor_score, λMIN) and 0.891 (tremor_score, λ1SE). Adoption of the ensemble approach leads to 
reduction of the maximum prediction quality in the case of best 𝑀  ensembles as compared 
with the best individual 𝑀  models (maximum values: r = 0.626 for UPDRS.21 (λMIN and λ1SE), 
r = 0.890 for tremor_score (λMIN) and r = 0.884 for tremor_score (λ1SE)). Nevertheless, it does essentially 
improve outcome in the worst-case scenario, as the 𝑀  ensembles outperform models of other 
types with respect to the minimum prediction quality (minimum values: r = 0.530 for UPDRS.21 
(λMIN), r = 0.527 for UPDRS.21 (λ1SE), r = 0.839 for tremor_score (λMIN) and r = 0.827 for tremor_score 
(λ1SE)). 

 
Figure 7. Prediction quality of different types of models, as achieved with the test set. The median 
correlation for each model type is marked by a dot, the whiskers extend between the minimum and 
maximum values of correlation. 

Table 4. Summary of Pearson’s correlations of model predictions and target values. 

Scale Model type λLASSO Maximum Median Minimum Max.–Min. 

Figure 6. Total parameter counts of individual models, grouped according to the model type and
λLASSO regularization parameter.

The results for model ensembles and individual models are shown in Figure 7 and Table 4.
The highest correlations of predictions and target scores are observed in the case of individual MESN+TS
models. The maximum Pearson’s r of MESN+TS models is equal to 0.638 (UPDRS.21, λMIN and λ1SE),
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0.897 (tremor_score, λMIN) and 0.891 (tremor_score, λ1SE). Adoption of the ensemble approach leads to
reduction of the maximum prediction quality in the case of best MESN+TS ensembles as compared with
the best individual MESN+TS models (maximum values: r = 0.626 for UPDRS.21 (λMIN and λ1SE), r =

0.890 for tremor_score (λMIN) and r = 0.884 for tremor_score (λ1SE)). Nevertheless, it does essentially
improve outcome in the worst-case scenario, as the MESN+TS ensembles outperform models of other
types with respect to the minimum prediction quality (minimum values: r = 0.530 for UPDRS.21 (λMIN),
r = 0.527 for UPDRS.21 (λ1SE), r = 0.839 for tremor_score (λMIN) and r = 0.827 for tremor_score (λ1SE)).
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Table 4. Summary of Pearson’s correlations of model predictions and target values.

Scale Model type λLASSO Maximum Median Minimum Max.–Min.

tremor_score

MESN
λ1SE 0.853 0.795 0.366 0.487

λMIN 0.854 0.794 0.388 0.466

MESN+TS
λ1SE 0.891 0.859 0.739 0.152

λMIN 0.897 0.865 0.737 0.160

MTS
λ1SE 0.879 0.851 0.797 0.082

λMIN 0.886 0.861 0.810 0.076

MESN
ensemble

λ1SE 0.848 0.826 0.782 0.066

λMIN 0.851 0.830 0.786 0.065

MESN+TS
ensemble

λ1SE 0.884 0.865 0.827 0.057

λMIN 0.890 0.874 0.839 0.051

UPDRS.21

MESN
λ1SE 0.629 0.528 0.125 0.504

λMIN 0.637 0.526 0.144 0.493

MESN+TS
λ1SE 0.638 0.571 0.487 0.151

λMIN 0.638 0.570 0.469 0.169

MTS
λ1SE 0.610 0.566 0.514 0.096

λMIN 0.628 0.574 0.522 0.106

MESN
ensemble

λ1SE 0.610 0.551 0.505 0.105

λMIN 0.614 0.558 0.508 0.106

MESN+TS
ensemble

λ1SE 0.626 0.578 0.527 0.099

λMIN 0.626 0.581 0.530 0.096
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4. Discussion

Automated quantification of the kinetic tremor with the presented multimodal approach provides
best results in the case of predictive models based on the tremor_score scale. These models achieve
maximum correlation between the predictions and original scores equal to 0.897 in the test set. Results
of the UPDRS.21 modelling are inferior, as the highest Pearson’s r for this scale is equal to 0.639.

Such a difference between outcomes for the two analysed scales originates from differences
in their design. Whereas the tremor_score is dedicated solely for the quantification of kinetic
tremor, the UPDRS.21 scale combines additional information about the postural tremor. During
the circle-drawing task, the postural tremor may be recorded only if it propagates through the patient’s
body from different body segments. However, possibility of the postural tremor emergence during the
examination is minimized, as the patient is seated and all of their not supported body parts, excluding
a head, are involved in the drawing action. Therefore, while the presence of postural tremor during
the UPDRS.21 examination changes the assigned score, it does not manifest itself in the recorded data
and consequently increases the prediction error. Moreover, even observation of kinetic tremor during
the aforementioned examination does not imply that a tremor with the same characteristics will be
present in the course of circle-drawing task, as the kinetic tremor is an intermittent symptom.

Parameters computed directly from the time series have a significant impact on the quality of
prediction. The MTS models, which are based exclusively on the DTS parameter set, show the lowest
variance of prediction quality from all three types of individual models. Comparable variances are
achieved with ensemble models, however at the expense of considerable growth of the parameter set.
The rationale of this result is that the data-derived parameters are chosen with some field-specific
knowledge about the quantified phenomenon, while the network-derived parameters are related to
this phenomenon only indirectly, and as such have to be introduced to the model in greater numbers
to compensate for their potentially weak predictive power.

We compare our results related to the tremor_score models to the results found in recent studies
aimed at evaluation of the kinetic tremor with a digitizing tablet, where (1) a type of visual rating score
(VRS) of spiral drawings was used as a reference and (2) proposed models had a linear output suitable
for evaluation of its correlation with VRS.

We refer to two studies, the first being the work by Lin et al. [12], where the authors reported
Pearson’s correlations between the VRS and the investigated signal-derived parameters to be as high as
0.973. The models of VRS were trained and validated with digitized spiral drawings from ET and PD
patients. Specifically, the training and test datasets consisted of approximately 140 and 30 recordings,
respectively. In the second work, Legrand et al. [8] computed four time- and frequency-domain
parameters using 92 spiral drawings acquired from 13 ET patients (the spirals were drawn with the
dominant hand). The complete dataset was used for validation, as no model training was necessary.
The resulting Pearson’s correlations of parameters and VRS were between 0.79 and 0.87. Nevertheless,
the authors note that from the proposed parameters that only the one showing r = 0.82 is suitable for
analysis of drawings other than spirals.

As the best tremor_score model ensembles proposed in our study were characterized by the
Pearson’s r between 0.839 and 0.890, we state that our approach provides performance similar to these
found in the referenced works. However, direct comparison of results is not appropriate, as there are
some notable differences in the referenced methods, namely: (1) combining the data from ET and PD
patients, (2) employing a spiral-drawing task and (3) being tested on significantly smaller datasets.

There is a limited number of works regarding modelling of the UPDRS.21 score based on the
PD patients’ digitized drawings. In the most relevant study, Saunders-Pullman et al. [32] selected
spiral-related parameters showed Spearman’s correlations between 0.40 and 0.24 with the combined
UPDRS.21 score (a sum of scores of both arms). In addition, 100% of the dataset (74 PD patients,
10 spirals collected for each hand) was used to fit linear models and compute correlations. As in the
case of tremor_score, we refrain from performing strict comparison of the aforementioned results with
our findings, as the former were achieved for a spiral-drawing task and the Spearman’s rather than
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Pearson’s correlations were computed as a performance metric. However, we hypothesize that these
linear models may be outperformed by the best of the UPDRS.21 model ensembles from our work, for
which we have computed Pearson’s r ranging from 0.530–0.626.

It is an open research question whether our approach would provide results of a similar quality
if the data from ET patients were to be quantified. We recognize this generalizability issue as very
important in the context of targeting the kinetic tremor, as this symptom is widespread in ET. Combining
data from PD and ET patients would allow for better comparison with, e.g., work by Lin et al. [12].
However, one should be aware that, during the model fitting, such a combination may result in
discarding parameters that are specific for only one of the diseases, yielding models that are more
general, albeit with inferior prediction quality when tested solely in PD or ET populations.

Future research should include testing of the repeatability of the scores obtained with the proposed
models. It would be beneficial to analyze how the predictions change when the models are trained with
ratings from different raters. Moreover, before our method can be applied in its target environment
in the form of clinically-usable models, it is necessary to prepare a refined dataset for their training.
The main difficulty in establishing such a dataset is to ensure balanced inclusion of the samples
representing tremors of different intensities, as in the PD patients the most severe tremors are less
frequent than those of moderate severity.

Some of the possible applications of our method are in the following two areas of PD management:
(1) tremor scoring when a patient is far from a medical facility and (2) providing additional feedback
for a clinician who performs adjustments of deep brain stimulation (DBS) parameters. Tremor scoring
in the absence of a trained clinician can be a useful tool supporting medical personnel in the case
of teleconsultations. It also enables PD patients to supplement their self-reports with objective
ratings of the kinetic tremor, e.g., allowing patients to record it exactly when it appears to be most
prominent. As for the second possibility, increasing repeatability of the tremor assessment during the
DBS programming is a factor supporting automation of this time-consuming process. The tremors
of PD respond quickly to the changes in stimulation settings [33]; therefore, their ratings provide
information relevant for tuning the DBS parameters.

5. Conclusions

The method presented in this study is based on a widely adopted idea of analysing kinetic tremor
recorded with a digitizing tablet during tasks involving drawing or writing. Our main contribution
is showing that the kinetic tremor can be effectively quantified with a method, which benefits from
merging two modes of data parametrization: first, the parametrization derived from the expert
knowledge, and, second, the parametrization that refers to the structure of a trained echo state network
and its activation in response to the data. The verification performed with clinical data showed that the
models using both types of the aforementioned parametrizations outperform the ones based only on a
single class of the parameters. Moreover, we combined such individual models in model ensembles.
The Pearson’s correlations between the visual ratings of tremor and the model predictions in the
best-performing model ensembles ranged from 0.839 to 0.890. The individual models from these
ensembles showed more varied correlations between 0.737 and 0.897.
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