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Abstract Coordination of diverse individuals often requires sophisticated communications and 
high-order computational abilities. Microbial populations can exhibit diverse individualistic behav-
iors, and yet can engage in collective migratory patterns with a spatially sorted arrangement of 
phenotypes. However, it is unclear how such spatially sorted patterns emerge from diverse indi-
viduals without complex computational abilities. Here, by investigating the single-cell trajectories 
during group migration, we discovered that, despite the constant migrating speed of a group, the 
drift velocities of individual bacteria decrease from the back to the front. With a Langevin-type 
modeling framework, we showed that this decreasing profile of drift velocities implies the spatial 
modulation of individual run-and-tumble random motions, and enables the bacterial population to 
migrate as a pushed wave front. Theoretical analysis and stochastic simulations further predicted 
that the pushed wave front can help a diverse population to stay in a tight group, while diverse indi-
viduals perform the same type of mean reverting processes around centers orderly aligned by their 
chemotactic abilities. This mechanism about the emergence of orderly collective migration from 
diverse individuals is experimentally demonstrated by titration of bacterial chemoreceptor abun-
dance. These results reveal a simple computational principle for emergent ordered behaviors from 
heterogeneous individuals.

Introduction
Collective group migration, as an important class of coordinated behaviors, is ubiquitous in living 
systems, such as navigation, foraging, and range expansion (Krause et al., 2002; Partridge, 1982; 
Sumpter, 2010). In the presence of individual heterogeneity, the migrating group often exhibits 
spatially ordered arrangements of phenotypes (Krause et al., 2002; Parrish and Edelstein-Keshet, 
1999; Partridge, 1982; Sumpter, 2010). In animal group migration, individual behavioral abilities 
(e.g., directional sensitivity) would result in social hierarchy, which further drives the spatial arrange-
ment in a coordinated group (Couzin et al., 2005). At the same time, spatial arrangements can lead 
to different costs and benefits for the individuals participating in the group migration (Krause, 1994; 
Parrish and Edelstein-Keshet, 1999; Partridge, 1982). Participating individuals must follow disci-
plinary rules to organize themselves into coordinated patterns while on the move, which requires 
complex computational abilities to interact with the group and the environment (Couzin and Krause, 
2003; Couzin et al., 2002; Vicsek and Zafeiris, 2012). Therefore, understanding how individuals of 
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different phenotypes determine their location in the group is an essential prerequisite to uncover the 
organization principles of collective populations.

The chemotactic microbe, Escherichia coli, provides a simple model to address the emergence of 
collective decision-making among diverse population, as it can exhibit both individualistic behaviors 
(Dufour et al., 2016; Frankel et al., 2014; Kussell and Leibler, 2005; Waite et al., 2016; Waite 
et al., 2018) and collective migratory patterns (Adler, 1966a; Fu et al., 2018; Keller and Segel, 
1971a, Wolfe and Berg, 1989). Individual cells perform run-and-tumble random motions by spon-
taneously switching the rotating direction of flagella (Berg, 2004; Berg and Brown, 1972). These 
cells can facilitate the chemotaxis pathway to control the switching frequency to bias their motions 
toward their favorable direction along the chemoattractant gradient, where the efficiency to climb 
the gradient is defined as the chemotactic ability (‍χ‍) (Celani and Vergassola, 2010; Dufour et al., 
2014; de Gennes, 2004; Si et al., 2012). In addition, the chemotactic abilities of individual cells 
exhibit substantial phenotypic heterogeneity even for the clonal bacterial population, which diver-
sifies the chemotactic response to identical signals (Spudich and Koshland, 1976; Waite et al., 
2016; Waite et  al., 2018). Despite the stochastic solitary behavior and variations in phenotypic 
ability, the E. coli population can migrate as a coherent group by following a self-generated attrac-
tant gradient, via consumption of the whole population (Adler, 1966a; Saragosti et  al., 2011; 
Wolfe and Berg, 1989). The migratory group form a stable pattern of phenotypes sorted by their 
chemotactic abilities (Figure 1A), which is believed to maintain phenotypic diversity in the group 
(Fu et al., 2018; Waite et al., 2018). Although a previous study showed that behavior modulation 
helps migrating bacteria to maintain a consistent group (Saragosti et al., 2011), how individuals 

eLife digest Organisms living in large groups often have to move together in order to navigate, 
forage for food, and increase their roaming range. Such groups are often made up of distinct individ-
uals that must integrate their different behaviors in order to migrate in the same direction at a similar 
pace. For instance, for the bacteria Escherichia coli to travel as a condensed group, they must coor-
dinate their response to a set of chemical signals called chemoattractants that tell them where to go.

The chemoattractants surrounding the bacteria are unequally distributed so that there is more of 
them at the front than the back of the group. During migration, each bacterium moves towards this 
concentration gradient in a distinct way, spontaneously rotating its direction in a ‘run-and-tumble’ 
motion that guides it towards areas where there are high levels of these chemical signals. In addition 
to this variability, how well individual bacteria are able to swim up the gradient also differs within the 
population. Bacteria that are better at sensing the chemoattractant gradient are placed at the front 
of the group, while those that are worst are shifted towards the back. This spatial arrangement is 
thought to help the bacteria migrate together. But how E. coli organize themselves in to this pattern 
is unclear, especially as they cannot communicate directly with one another and display such diverse, 
randomized behaviors.

To help answer this question, Bai, He et al. discovered a general principle that describes how single 
bacterial cells move within a group. The results showed that E. coli alter their run-and-tumble motion 
depending on where they reside within the population: individuals at the rear drift faster so they can 
catch up with the group, while those leading the group drift slower to draw themselves back. This 
‘reversion behavior’ allows the migrating bacteria to travel at a constant speed around a mean posi-
tion relative to the group.

A cell’s drifting speed is determined by how well it moves towards the chemoattractant and its 
response to the concentration gradient. As a result, the mean position around which the bacte-
rium accelerates or deaccelerates will vary depending on how sensitive it is to the chemoattractant 
gradient. The E. coli therefore spatially arrange themselves so that the more sensitive bacteria are 
located at the front of the group where the gradient is shallower; and cells that are less sensitive are 
located towards the back where the gradient is steeper.

These findings suggest a general principle for how bacteria form ordered patterns whilst migrating 
as a collective group. This behavior could also apply to other populations of distinct individuals, such 
as ants following a trail or flocks of birds migrating in between seasons.

https://doi.org/10.7554/eLife.67316
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Figure 1. Statistics of single-cell behavior during collective group migration. (A) Bacterial population of diverse phenotypes sorted according to their 
chemotactic abilities (increasing from light green to dark green) during collective migration following the self-generated attractant gradient (brown 
color). Meanwhile, individual cells perform run-and-tumble random motions biased toward the migration direction. Scale bar reflects 0.1 mm. (B) 
Bacterial density profile ‍ρ

(
z
)
‍ is stable (black solid line) in the moving coordinate ‍z = x − VGt‍. Where the width, represented by the black dashed-

dotted line, is defined by two times the standard deviation of the bacterial relative position (‍2σ,‍ black dashed line). The instantaneous velocity (‍VI

(
z
)
‍) 

(blue solid line) is uniform and is equal to the average group velocity ‍VG‍ (blue dashed line). This observation was independent of the sampling time 
interval (Appendix 1—figure 2). (C) Sample runs of bacteria aligned by their initial positions (black dots) from the three regions (defined by colored 
regions in B) showed that cells at the back of the group tended to run forward, compared with cells in other regions. b, m, and f stand for the back, 
middle, and front of the migration group, respectively. Scale bar reflects 5 µm. (D) The exponential distributions of forward runs (solid lines) and 
backward runs (dashed lines) suggested the increasing efficiency of runs from the back to the front. (E) The mean run length in different directions 

confirmed the increasing efficiency of runs. (F) The expected drift velocity 
‍
VD

(
z
)

= ⟨lR
(

z
)
·cos θR

(
z
) ⟩

⟨τR
(

z
)

+τT
(

z
)⟩ ‍

 (black solid line) decreased from the back to the front, 

and is linearly fitted by ‍VD

(
z
)
≈ −rz + VD0‍ , with ‍r = 0.05 min−1‍ and ‍VD0 = 0.17 mm · min−1‍ . ‍VD‍ (z) crossing with the average group velocity ‍VG‍ (black 

Figure 1 continued on next page
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with phenotypic variations manage to determine their relative positions in the group remains to be 
determined.

Here, we analyzed single-cell trajectories of bacterial run-and-tumble motions in the chemotactic 
migration group (see Materials and methods). We found that the expected drift velocity of individual 
cells decreased from the back to the front. Such a spatial profile modulates cells to behave as mean 
reverting processes relative to the entire group, that is, cells effectively tend to revert their direction 
of runs toward the mean position of the group. Using an Ornstein-Uhlenbeck (OU)-type model, we 
demonstrated that the mean reversion behavior is a result of a pushed wave, where the driving force 
decreases from the back to the front of the group. Cells of different phenotypes are imposed to the 
same type of driving force, of which the strength is coupled with their chemotactic abilities. As a result, 
the pushed wave front, driven by the spatially structured force, can maintain more diverse individuals 
in the migratory group. By theoretical analysis and stochastic simulations, we also discovered that the 
balanced locations of diverse phenotypes are spatially ordered by their chemotaxis abilities. Further 
simulations and experiments with cells of titrated chemoreceptor abundance demonstrated that this 
spatial modulation of individual behavior enables the ordering of bacteria with diverse chemotaxis 
abilities. Therefore, although the high-order computational abilities are not available to simple organ-
isms, the spatial modulation of stochastic behaviors at the individual level reveals novel decision-
making capabilities at the population level.

Results
The drift velocity of individual cells during group migration exhibits a 
spatially structured profile
To directly investigate the ordering mechanism in a coherent migration group, we quantified the 
stochastic behaviors of bacterial run-and-tumble motions relative to the stable migrating group. To 
achieve this, we employed a microfluidic device that generated a stable propagating band of bacteria, 
as previously reported (Fu et al., 2018; Saragosti et al., 2011). Using aspartate (Asp) as the only 
chemoattractant to drive the migration of E. coli, we tracked a small fraction of fluorescent bacteria 
(JCY1) as representatives of the non-fluorescent wild-type cells (RP437) (see Materials and methods, 
Appendix 1—figure 1, Video 1). Because the group velocity ‍VG =

⟨
∆xi

(
t
)

/∆t
⟩
‍ was constant over 

time, ‍VG ∼ 3.0 µm/s‍ (Appendix 1—figure 2), we were able to map the tracks to a moving coordinate 

‍z = x − VGt‍.
With the shifted tracks, we calculated the key statistics of the single-cell behaviors. We first 

checked that the average instantaneous velocity, ‍VI(z) = ⟨∆xi(z)/∆t⟩‍, was constant along the density 
profile ‍ρ

(
z
)
‍ (Figure 1B). This result confirmed that the group migrates coherently. Then, we identified 

all the run states and tumble states of individual trajectories using a previously described computer 
assistant program (Dufour et  al., 2016; Waite 
et al., 2016), to ensure that the tracks are sepa-
rated into successive tumble-and-run events (see 
Materials and methods). Comparing the sample 
events initiated from the back (b), middle (m), 
and front (f) of the migration group, we observed 
that the runs in the front were longer but distrib-
uted more uniformly in terms of the direction-
ality, whereas the runs in the back were shorter 
but more oriented toward the group migration 
direction (Figure 1C, Appendix 1—figure 3A, B). 

dashed line), implied that bacteria perform mean reversion motions. The ‍VD

(
z
)
‍ profile was cut to present the majority of cells (~90%) (‍±1.65σ‍). (G) The 

time evolution of the average position (‍z‍, solid lines) of cells starting from the back, middle, and front of the migration group (color code was defined 
in B) confirmed the reversion behavior. Shaded area represents the s.e.m. of more than 450 cells (see Materials and methods). Analytically, the OU-type 
model predicted that ‍z = C0e−rt −

(
VD0 − VG

)
/r ‍ (dashed lines), where ‍C0‍ can be fitted by the starting position (see supplementary text). In panels B, 

F, and G, the shaded area represents the s.e.m. of three biological replicates. The spatial bin size was 240 µm .

Figure 1 continued

Video 1. Bacterial tracking in the migration group. 
Each dot represents a bacterium captured under 
microscope. Lines represent typical tracks. The colors 
of tracks from light green to dark green represent the 
mean positions of the tracks from the back to the front 
of the migrating group.

https://elifesciences.org/articles/67316/figures#video1

https://doi.org/10.7554/eLife.67316
https://elifesciences.org/articles/67316/figures#video1
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Quantitatively, the statistics of run length (and duration) displayed exponential distributions with the 
means for the direction of group migration longer than those for the opposite direction (Figure 1D, 
Appendix 1—figure 3C). The angular distribution of the run length confirmed the difference in direc-
tionality between cells in different spatial locations (Figure 1E, Appendix 1—figure 3D). We also 
confirmed that cells in the back showed greater directional persistence toward the migration direc-
tion (Appendix 1—figure 4A–C), as (Saragosti et al., 2011) reported previously. All these results 
suggested that the bacteria in the back run more effectively toward the direction of group migration 
than those in the front.

To quantify the spatial extent of the drift efficiency, we defined the expected drift velocity 

‍VD ≡ ⟨lR·cos θR ⟩
⟨τR+τT⟩ ‍

 , by the projection of the average run length along the migration direction over the 
average duration of runs and tumbles (Dufour et al., 2014). This quantity reflects the effective run 
speed of run-and-tumble events that start running on a given location relative to the group. The drift 
velocity was found to decrease from the back to the front, crossing the group velocity ‍VG‍ in the middle 
of the group (Figure 1F). This particular trend of ‍VD

(
z
)
‍ suggests a mean reverting behavior of bacteria 

in the group: the cells at the back drift faster than the group (‍VD > VG‍), enabling the cells to catch up 
with the group; at the same time, the cells in the front drift slower than the group (‍VD < VG‍), causing 
them to slow down and fall back (Figure 1G). Such mean reverting process also results in sub-diffusion 
of individuals relative to the group (Appendix 1—figure 3F), for which the mean square displacement 
(MSD) is constrained over time (Appendix 1—figure 3G). The slope of the spatial extent of ‍VD

(
z
)
‍, 

‍−r = −0.05 min−1‍ , quantifies the speed at which individuals revert to its center.
We noted that the spatial profile of the expected drift velocity ‍VD

(
z
)
‍ was different from the instan-

taneous velocity ‍VI

(
z
)
‍ . This is because the instantaneous velocity ‍VI

(
z
)
‍ defines the average speed of 

cells in a given time interval ‍dt‍, which reflects the positional shift of a group of cells at a given position. 
However, the expected drift velocity ‍VD

(
z
)
‍ defines the average speed of run-and-tumble events that 

start tumbling at a given position. Since the run duration is explicitly modulated by the gradient of 
chemoattractant ‍g

(
z
)
‍ and is dependent on the chemotactic ability ‍χ‍ , ‍VD

(
z
)

= χg
(
z
)
‍ represents the 

drift velocity driven by the external stimuli (Celani and Vergassola, 2010; de Gennes, 2004; Dufour 
et al., 2014; Si et al., 2012).

The decreasing drift velocity implies a pushed wave front of group 
migration
To understand how the spatially structured profile of the drift velocity ‍VD‍ impacts on the group migra-
tion, we first adopted a Langevin-type model that describes bacterial motions as an active Brownian 
particle driven by the expected drift velocity ‍VD‍ and a random force: ‍dx = VDdt + ϵdW ‍ (Berg, 2004). 
In this model, the run-and-tumble random motions are considered as a Gaussian random force 
‍ϵdW ‍, while the cell motions are imposed to a deterministic force ‍VD‍ (Rosen, 1973; Rosen, 1974). The 
strength of Gaussian noise can be estimated by the effective diffusion coefficient ‍ϵ =

√
2D‍ , while the 

drift velocity is determined by the product of the perceived gradient ‍g
(
z
)
‍ and the chemotactic ability 

‍χ‍, ‍VD = χg
(
z
)
‍ . Such a stochastic description of bacterial motions has been proven equivalent to the 

classic Keller-Segel (KS) model that described the population dynamics of bacterial chemotactic group 
migration (Keller and Segel, 1971a, Rosen, 1973). In the moving coordinate, ‍z = x − VGt‍ , this 
Langevin-type model specifies that ‍dz = VD

(
z
)

dt − VGdt + ϵdW ‍. Thereby, the cell motions relative to 
the migrating group are modulated by two effective forces: one generated by ‍VD

(
z
)
‍, which pushes the 

cells to catch up with the wave; and another generated by ‍−VG‍ , which drags the cells to fall behind 
the wave. These two ‘forces’ constrain the random motions of individuals in an effective potential well 

‍U
(
z
)
‍ (Figure 2A).

To estimate the spatial profile of the effective driven force ‍VD

(
z
)
‍, we analyzed the KS model with 

moving ansatz (supplementary text). Assuming the density profile ‍ρ
(
z
)
‍ directly measured from exper-

iments (Figure 1B), we can deduce the chemoattractant concentration profile ‍S
(
z
)
‍ (Appendix 1—

figure 4D), as well as the perceived gradient ‍g
(
z
)
‍ (Figure 2B). Since the perceived gradient ‍g

(
z
)
‍ is 

almost linear in the main part of the wave profile, we approximated it by ‍g
(
z
)
≈ g0 + g1z‍ (Figure 2B, 

dashed line), which allows us to transform the stochastic model to an OU-type equation:

	﻿‍ dz = χg1zdt +
(
χg0 − VG

)
dt + ϵdW ‍� (1)

https://doi.org/10.7554/eLife.67316
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Figure 2. Ordered location of phenotypes of active particles in a moving gradient as a result of a pushed wave. (A) Illustration of the Langevin-type 
model where the migrating bacteria are modeled by active particles under a deterministic decreasing driving force and a stochastic force. These forces 
allow the particles to form collective migration. On the moving coordinate of the migration group, active particles are bounded in a potential well 
generated by the driving force and the motion relative to the moving group (‍−VG‍). (B) The perceived gradient ‍g

(
z
)
‍ (blue line) is deduced from ‍S

(
z
)
‍, 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.67316
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By this simplified model, we obtained a clear picture how individual behaviors are regulated relative 
to the group: cells are imposed to a driving force linearly dependent on their relative positions in the 
group, ‍F

(
z
)

= χg1z +
(
χg0 − VG

)
‍ . This suggests that the random motions of bacteria are constrained 

in a parabolic moving potential well, ‍U
(
z
)

= 1
2χ

��g1

�� z2 +
(
χg0 − VG

)
z + U0‍ (Figure 2A), where ‍U0‍ is set 

by ‍U
(
∞

)
= 0‍. The position that minimizes ‍U

(
z
)
‍ is also the balanced position, 

‍
z0 = − g0

g1
− VG

χ
∣∣g1

∣∣‍
 , where 

the driving force is null ‍F
(
z0
)

= 0‍. Behind the balanced position, cells experience a pushed force to 
catch up the group. Cells would start to fall back once they exceed the balanced position, where the 
driving force becomes negative. Therefore, the decreasing profile of the driving force enable cells to 
perform mean reverting behaviors around the balanced position. In addition, the expected rate that 
cells tend to revert back to the balanced position is defined by the slope of the spatially dependent 
driving force, ‍r = χ

∣∣g1

∣∣
‍ (Figure 2B).

Given the knowledge of individual behaviors, we studied the spatial distribution of population on 
the group migration. The OU model (Equation 1) which describes the single-cell stochastic motions 
has an equivalent form, known as the Fokker-Planck equation (Equation S19) which describes the 
spatial-temporal dynamics of cell density distribution. This population model provides a traveling 
wave solution with the mean position around ‍z0‍ and standard deviation 

‍
σ = ϵ√

2 χ
��g1

��
‍
 .

From the solution, we noted that the effective driving force, as well as the drift velocity, has a nega-
tive slope (‍g1 < 0‍). The decreasing profile of the drift velocity suggests that the leading front of the 
group migrates as a pushed wave front (Gandhi et al., 2016; van Saarloos, 2003). As a key feature of 
the pushed wave, the leading front of the group drops parabolically, which is much faster than that of 
diffusion front. This further leads to a tight density profile of group migration for a single phenotype 
population.

The pushed wave front results ordered pattern of phenotypes
To address whether this pushed wave front still holds in presence of phenotypic diversity, we further 
examined the above analysis with cells of diverse chemotactic abilities ‍χi‍ imposed to the same 
moving perceived gradient ‍g

(
z
)
‍ (Figure 2B). Given a monotonically decreasing profile of perceived 

gradient ‍g
(
z
)
‍ , the driving force that each phenotypic individual experiences exhibits the same 

spatial dependency with the slopes depend on the intrinsic phenotypic properties of each pheno-
type ‍ri = χi

∣∣g1

∣∣
‍ . This monotonic dependency means that the balanced positions ‍z0‍ of the diverse 

phenotypes are orderly arranged. By the stochastic Langevin-type model with phenotypic diversity 
in chemotactic ability, we first confirmed that each phenotypic population migrates at a constant 
speed ‍VG‍ , following the moving gradient ‍g

(
z
)
‍ (see supplementary text). The density profiles of cells 

with different ‍χi‍ follow the same shape but are spatially orderly aligned (Figure 2C). Under the same 
moving gradient ‍g

(
z
)
‍, the driving force ‍χig

(
z
)
‍ is phenotype-dependent, so that the bottom position 

of the potential well, 
‍
z0,i = − g0

g1
− VG

χi
∣∣g1

∣∣‍
, is also spatially arranged according to ‍χi‍ (Figure  2D). As 

predicted by the OU model, the balanced positions ‍z0,i‍ of different phenotypes increase with their 

chemotactic abilities ‍χi‍ (Figure 2E, black line), while the standard deviation (‍σi‍) of the density profiles 
decreases with ‍χi‍ (Figure 2E, blue line). We also confirmed the ordered structure of phenotypes by 
a particle-based model of the Langevin-type dynamics coupled with chemoattractant consumption 

which is further calculated from the experimentally measured density profile (Appendix 1—figure 4D). This gradient profile was then transformed to 
a moving gradient ‍g

(
x, t

)
= g

(
z
)

+ VGt‍, and applied in the simulations of different active particles following Langevin dynamics. A linear fit of ‍g
(
z
)
‍ 

around ‍z = 0‍ is plotted (dashed blue line) and is applied to the Ornstein-Uhlenbeck (OU)-type model. (C) Particles migrate collectively with a moving 
gradient, while they are located in ordered locations according to their phenotype ‍χi‍ (green lines). Colors from light to dark represent increasing ‍χ‍. 
(D) The effective potential wells generated by the effective force (‍χg

(
z
)
‍) are spatially ordered. Circles present the minimum of the potential wells. (E) 

The peak positions (cross) and the mean positions (circles) increase with ‍χ‍. These were predicted by the OU-type model (Equation S15) (black line). 
The width of the density profile is defined by two times the standard deviation of all cells (‍2σ‍), which decreases with ‍χ‍, which was consistent with the 
prediction of Equation S18 (blue line). (F–H) Group migration of mixed phenotypes under decreasing, invariant, and increasing gradient. Simulations 
were performed in one dimension (1D) with the chemotaxis ability of the group following a Gaussian distribution with a mean of 0.11 mm2 min−1 and a 
variation of 0.02 mm2 min−1 (Appendix 1—figure 5C). The force field used in the simulation followed the linearized force field, as in Equation 1, while 

‍g1 > 0‍ in F, ‍g1 = 0‍ in G, and ‍g1 < 0‍ in H. All force fields were set as moving with velocity ‍VG‍ . The dashed line in G represents a group with a single 
phenotype of ‍χ = 0.11 mm2min−1‍. Insert plots represent the wave front in the moving coordinate after 10 min of simulation. The width of the moving 
group, defined by the standard deviation of all particles, converges under decreasing gradient (F) while it diverges in cases of G and H.

Figure 2 continued

https://doi.org/10.7554/eLife.67316
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(Appendix 1—figure 5). Therefore, under the spatially decreasing driving force, cells with phenotypic 
diversity perform the same type of mean reverting processes with spatially ordered mean positions.

The spatial order of phenotypes does not directly promise a compact group migration with pheno-
typic diversity. By close examination of the density profile, we found that each phenotypic subpopu-
lation propagates as a pushed wave front. We further calculated the total density profile of the entire 
migratory group with Gaussian distribution of chemotactic abilities under a decreasing linear gradient. 
Simulation reveals a pushed wave front for the combination of these subpopulations with different 
chemotactic abilities (Figure 2F, insert). In addition, we checked that the width of the entire group 
maintains in a converged width over long time, suggesting that the pushed wave profile enables the 
migratory population with diversity to keep in a tight shape (Figure 2F).

We examined the migration profiles under other forms of perceived gradient ‍g
(
z
)
‍ : a constant 

perceived gradient and a spatially increasing perceived gradient. In the first case, individual bacteria 
of identical phenotype follow the diffusion process relative to the group, where the standard devi-
ation of the population increasing with time by ‍σ = 2

√
Dt‍ (Figure  2G, dashed line). Each pheno-

type subpopulation is expected to have a constant drift velocity over space. However, as the drift 
velocity would vary by the chemotactic ability, each subpopulation migrates in different group speeds, 
suggesting a compact group migration of diverse population cannot be maintained in a constant 
perceived gradient (Figure 2G). In the latter case, when imposed to a spatially increasing driving force 
(a pulled wave, by definition), individual cells display super-diffusion processes. The density profile 
easily diverges in this case (Figure 2H). Therefore, we concluded that the pushed wave front, driven 
by a decreasing shape of driving force, enables a spatially ordered and compact pattern of pheno-
types while on the move.

Spatially ordered individual behaviors predicted by agent-based 
simulation
Although the simplified OU-type model (Equation1) represents a key aspect of the ordering mech-
anism of phenotypes, it does not detail the signaling processes of bacterial chemotaxis, such as 
receptor amplification, adaptation, and motor responses (Sumpter, 2010), and it cannot predict 
bacterial run-and-tumble behavior. To consolidate the proposed mechanism underlying the emer-
gence of spatial orders from the individual random motions, we further performed agent-based simu-
lations integrated with the chemotactic pathway, multi-flagella competition, and boundary effect in 
three dimensions (3D) (Dufour et al., 2014; Jiang et al., 2010; Sneddon et al., 2012). In the agent-
based model, the attractant dynamics governed by diffusion and bacterial consumption is described 
by a reaction-diffusion equation (Equation S2) as previous multiscale models (Erban and Othmer, 
2005; Xue and Othmer, 2009). We constructed a population with multiple phenotypes defined by 
different chemotactic abilities ‍χi‍ , where ‍χi‍ was varied by changing the receptor gain ‍N ‍ (for details, 
see supplementary text). Since the receptor gain ‍N ‍ only affects the amplification factor by which a cell 
responds to the gradient, the variation in bacterial motility ‍ϵ‍ is unchanged. As a result, a dense band of 
migrating cells that follow a self-generated moving chemoattractant gradient via consumption were 
recaptured as experiments (Appendix 1—figure 6A). The phenotypes were spatially ordered as ‍χ‍ 
varies (Appendix 1—figure 6B), and the velocity profile of each phenotype decreases from the back 
to front (Appendix 1—figure 6C) as predicted by the OU-type model.

To better analyze the simulations, we simplified the simulation with a non-consumable attractant 
profile ‍S

(
z
)
‍ moving with constant speed ‍VG‍ (Appendix 1—figure 4D). Using this simplified model, we 

first checked that the mean positions of the density profiles of cells with different receptor gains ‍N ‍, as 
well as their peaks, were orderly aligned with respect to chemotactic ability ‍χi‍ .

As an important advantage of the agent-based simulations, the model allowed us to analyze 
single-cell behavior during the ordered group migrations. For each phenotype ‍‍, the expected 
drift velocity ‍VD,i

(
z
)
‍ decreased along the density profile (Figure 3A). Consistent with the ordered 

structure of the density profiles, the intersection between ‍VD,i
(
z
)
‍ and ‍VG‍ exhibited the same order of 

chemotactic ability ‍χi‍ (Appendix 1—figure 7). As the reversion rate 
‍
ri =

∣∣∣ dVD,i
(

z
)

dz

∣∣∣
‍
 showed a positive 

correlation to ‍χi‍ , cells with lower receptor gain ‍N ‍ (resulting in a smaller ‍χ‍) experienced a weaker 
reverting force toward the center (Figure 3A insert). Thus, the effective moving potential, ‍Ui

(
z
)
‍ , 

which constrains the cells around the mean positions sorted by their chemotactic abilities, becomes 
flat for cells with lower chemotaxis ability ‍χ‍ (Figure  3B; Long, 2019). As a result, cells of each 
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phenotype perform sub-diffusion, whereby the MSD along the migration coordinate relative to the 
group was bound at a level negatively correlated to ‍χ‍ (Figure 3C). The width of the density distri-
bution, as an effect of the reversion force, decreased with the reversion rate, as an approximate 
linear function. Using this agent-based model, we further obtained similar results for populations 
of different ‍χi‍ through adaptation time ‍τ ‍, or basal CheY protein level ‍Yp0‍ , which determined the 
basic tumble bias ‍TB0‍ (Dufour et al., 2014; Jiang et al., 2010; Sneddon et al., 2012; Appendix 1—
figure 8).

Figure 3. Agent-based simulations recapture the ordered behavior of individuals. (A) The expected drift velocity ‍VD

(
z
)
‍ of simulated bacteria decreased 

from the back to the front of the migration group, where the chemotactic ability ‍χ‍ ranged from 0.2 to 0.35 mm2min-1 , which was consistent with the 
experimental results shown in Figure 1F. The intersections between the ‍VD‍ curves with the preset group velocity ‍VG‍ (black dashed line) shifted toward 
the back of the migration group as ‍χ‍ decreased (circles). The different colors of the lines and circles correspond to different chemotactic abilities ‍χ‍, as 
shown in the legend. The same color coding also applies to (B–D). (B) The reversion rate ‍ri = |dVD,i

(
z
)

/dz|‍ increased with chemotactic ability. (C) The 

effective potential well calculated by ‍Ui

(
z
)

=
´ +∞

z Vd,i
(
z
)

dz‍. Positions of the potential minimum ‍zmin‍ are marked as circles. As illustrated, for a lower 
chemotaxis ability ‍χ‍, the potential well is shallower and ‍zmin‍ shifts toward the back of the migration group. (D) The width of the density profile (measured 
by ‍2σ‍, see Figure 1B) decreases with the reversion rate ‍ri‍ as well as the chemotaxis ability ‍χi‍ . The mean square displacement (MSD) of bacteria 
(insert, solid lines) is bound to ‍2σ2

i ‍ (insert, dashed lines) (see supplementary text). In panel (A, C), curves were cut to present the majority of cells (90%) 
(‍zmin ± 1.65σi‍). More details on the results of this simulation are presented in Appendix 1—figure 7.

https://doi.org/10.7554/eLife.67316
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Experiments with titrated phenotypes confirm ordered behavior 
modulation
To verify the model predictions on the individual behaviors of different phenotypes, we experimen-
tally measured the trajectories of cells with different chemotactic abilities during the group migration. 
Specifically, we altered the chemotaxis abilities of cells by titrating the expression level of Tar, which is 
under the control of a small molecule inducer aTc (Sourjik and Berg, 2004; Zheng et al., 2016) (see 

Figure 4. Spatial ordered structure emerged from the behavioral modulation of cells with different chemoreceptors. (A) Genetic circuit of the Tar-
titratable strain. In the experiments, the expression level of Tar (a chemoattractant receptor protein) was titrated by the concentration of external inducer 
(aTc). The chemotactic ability ‍χ‍ of bacteria was then determined by the expression level of Tar (Adler, 1969). (B) The expected drift velocity ‍VD,i

(
z
)
‍ 

of the Tar-titratable strain JCY20 (colored solid line) was spatially modulated and decreased from the back to the front of the migration group and 
intersected with a group migration velocity ‍VG ≈ 0.15 mm/min‍ (black dashed line). The linear fit of ‍VD,i

(
z
)
‍ (colored dashed lines) intersected with ‍VG‍ at 

positions (circles) determined by the corresponding Tar expression level. Colors from dark to light green corresponded to inducer (aTc) concentrations 
of ‍
[
1, 3, 6, 20

]
ng/mL‍. The black shaded area of ‍VG‍ represents the s.d. of four experiments, while the colored shaded area of the ‍VD‍ curves presents 

the s.e.m. of the counted runs. (C) In the experiment, the positions of the ‍VD,i
(
z
)
− VG‍  intersections (circles, illustrated in B), together with the peaks 

(stars, illustrated in the insert figure), and the average positions (diamond) of the bacterial density profiles, all shifted toward the front of the migration 
group for strains with higher Tar expression levels, which had higher chemotactic abilities and migrated faster on agar plates (x-axis, see Materials and 
methods; Appendix 1—figure 9). The related density profiles (PDF) were shown in the insert plot and the color coding of lines/symbols in both panels 
C and D was the same as that in B. (D) The width of density profiles (‍2σ‍) of Tar-titrated bacteria decreased with the reversion rate ‍r ‍.

https://doi.org/10.7554/eLife.67316


 Research article﻿﻿﻿﻿﻿ Microbiology and Infectious Disease | Physics of Living Systems

Bai, He, et al. eLife 2021;10:e67316. DOI: https://​doi.​org/​10.​7554/​eLife.​67316 � 11 of 37

Materials and methods and Figure 4A). The variations in the expression of Tar would lead to different 
receptor gains in response to the Asp gradient (Adler, 1966b; Adler, 1969; Sumpter, 2010), but the 
tumble bias and growth rate would not change. Using the migration speed of the bacterial range 
expansion to quantify the chemotaxis ability of the titrated strains, we found that the chemotaxis 
ability increases with aTc concentration (see Materials and methods and Appendix 1—figure 9).

The Tar-titrated cells labeled with yellow fluorescent protein (YFP; strain JCY20) were added to 
the wild-type population at a ratio of 1 in 400. Within the wild-type population, 1 in 50 cells was 
labeled with red fluorescent protein (RFP) (strain JCY2). As the Tar-titrated strain constituted a small 
portion of the pre-mixed population, we considered that the density profile of the population would 
be invariant to different levels of induction of Tar. The premixed population could generate collective 
group migration, similar to the wild-type population (Appendix 1—figure 9). The trajectories of the 
YFP-labeled cells were tracked to represent the behavior of cells with different chemotactic abilities, 
while the profile of wild-type cells with RFP was also measured to characterize the density distribution 
of the entire migratory population.

By comparing the statistics of cells with different Tar expression levels, we found that the expected 
drift velocity ‍VD,i

(
z
)
‍ followed the same decreasing pattern from back to front (Figure 4B). More impor-

tantly, as the Tar expression level (chemotactic ability) increased, the slope of the decreasing pattern 
increased, which was consistent with the model prediction shown in Figure 3A. The intersections 
between ‍VD,i

(
z
)
‍ and ‍VG‍ , as well as the peak positions and mean positions of each Tar-titrated density 

profile (Figure 4C), shifted toward the front as the chemotactic ability increased (as measured by 
the migration rate on agar plates; Cremer et al., 2019; Liu et al., 2019). The ‍VD‍ cross point was 
always behind the peak position and the mean position (Figure 4C), suggesting that cells were leaking 
behind. Moreover, the width of each Tar-titrated density profile (defined by ‍2σi‍) decreased as the 
reversion rate ‍ri‍ increased (Figure 4D), consistent with the model results in Figure 3C. Thus, as the 
OU-type model predicts, the width of the density profile is controlled by the reversion rate deter-
mined by the chemotactic ability ‍χi‍ .

Discussion
In summary, coordinated behaviors with ordered spatial arrangements of phenotypes are abundant 
in a wide range of biological and human-engineered systems, and are believed to involve elabo-
rate control mechanisms. For animal migrations, it is challenging to characterize simultaneously the 
computational strategy and behavior at the individual level so as to avoid averaging out phenotypic 
diversity, and the emergent behavior at the population level (Couzin et  al., 2005; Couzin et  al., 
2002; Vicsek and Zafeiris, 2012). For bacterial chemotactic migration, cells with different pheno-
types are spatially aligned based on their chemotactic abilities. This observation was explained as a 
self-consistent result with the decreasing profile of attractant predicted by KS model (Fu et al., 2018). 
In this study, we demonstrated that the collective consumption of attractant by bacterial group gener-
ates a spatial structure of individual drift velocity along the migrating group profile. Such a spatial 
profile of drift velocity results a pushed wave front on population level, and maintains diverse pheno-
types in a compact migration group. Moreover, this pushed wave front enables spatial modulation of 
individuals to perform mean reverting random motions around centers sequentially aligned by their 
chemotactic abilities, thereby giving rise to a spatially ordered pattern. Therefore, we demonstrated 
that the population order could emerge among diverse individuals that following the same rule of 
behavioral modulation.

This strategy of self-organization does not require sophisticated communications (Curatolo et al., 
2020; Karig et al., 2018; Liu et al., 2011; Payne et al., 2013) nor other hydrodynamic interactions 
(Chen et  al., 2017; Drescher et  al., 2011; Zhang et  al., 2010) among individuals. Our observa-
tion of the decreasing drift velocity can imply the effective perceived gradient that cells experience. 
We believe that this spatial profile is mainly contributed by the consumption of the chemoattrac-
tant. By using a Tar-only strain (UU1624) (Gosink et al., 2006), we demonstrated that the mutant 
could also generate a stable group migration in our experimental condition similar to the wild-type 
strain (Appendix 1—figure 9G). This further suggests that the secretion of self-attractants is unlikely 
a necessary condition of collective group migration (Cremer et al., 2019; Fu et al., 2018; Keller 
and Segel, 1971a), although there are doubts about the existence of self-attractants in high density 
(Budrene and Berg, 1995).

https://doi.org/10.7554/eLife.67316
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The spatially dependent drift velocity provides a structured driving force of a migration group, 
resulting a pushed wave front. Pushed and pulled waves are determined by the spatial distribution 
of the spreading velocity of a propagation front (van Saarloos, 2003; Figure 2F–H). The properties 
of pushed and pulled waves have been discussed in growth-driven range expansion (Birzu et al., 
2018; Erm and Phillips, 2020; Gandhi et al., 2016), where the wave type is determined by density-
dependent growth rates. A prominent example of pulled wave is known as the Fisher wave (Fisher, 
1937), where the population expansion is driven by constant diffusion and logistic growth of individ-
uals. However, in such biological systems, the spatial dependence of front speeds is hardly quantified 
in experiments. Here, by direct measurement of drift velocity on single-cell level, we identified the 
chemotactic migration group of bacteria as a pushed wave. This chemotaxis system would provide a 
unique multi-scale model to study further details of pushed wave.

The spatially decreasing profile of driving force does not only cause an ordered pattern of pheno-
types, but also results a pushed wave front that enables a negative feedback control on the propa-
gating speed. This further allows a compact density profile for heterogenous population to migrate at 
the collective level. The advantageous to keep diversity in the pushed wave front was also reported 
in the growth-driven range expansion system (Birzu et al., 2018). Our study revealed that, other than 
spatial regulation of fitness, the direct modulation of individual drift velocity in space could also main-
tain diversity in range expansion.

Detailed analysis of the spatial structured driving force could also provide the limits of phenotype 
that is allowed in the group. In the migratory group, the same rule of behavioral modulation applied 
to cells with different phenotypes, such that the random motions of cells were bound by moving 
potential wells whose basins were sequentially aligned. However, it is noteworthy that cells could skip 
the potential wells from the back because the ‘driving force’ decreased again at the far back of the 
group (Long, 2019). This results in leakage of cells in the migratory group (Holz and Chen, 1978; 
Novickcohen and Segel, 1984; Scribner et al., 1974). Phenotypes with weaker chemotactic abilities 
were located at the back of the group, where the effective potential well was shallower (Figure 3C), 
allowing for more chances to skip. Thus, such collective migration selects bacteria with higher chemo-
tactic abilities (Liu et al., 2021; Liu et al., 2019).

The simple computational principle of behavioral modulation to allocate different phenotypes in 
the collective group is likely not limited to sensing the self-generated signal by consumption of attrac-
tant. A prominent example of trail-following migration (Couzin and Krause, 2003; Helbing et al., 
1997) and a typical class of collective behavior is represented by a modified Langevin-type model, 
where individuals tracing the accumulated signal secreted by all participants (Equation S20) can repro-
duce similar spatial-temporal dynamics of behavioral modulation, as well as ordered arrangements 
of phenotypes in the migratory group (Appendix 1—figure 10). Thus, this mechanism of matching 
individual abilities by the signal strength might provide an explanation of how other higher organisms 
organize ordered structures during group migration.

Materials and methods
Strains
The wild-type strain E. coli (RP437) and its mutants were used in this study, where all plasmids were 
kindly provided by Dr Chenli Liu. Specifically, the Tar-titratable strain was constructed by recombi-
neering according to previous research (Zheng et al., 2016). Specifically, the DNA cassette of the 
Ptet-tetR-tar feedback loop was amplified and inserted into the chromosomal attB site by recom-
bineering with the aid of plasmid pSim5. The tar gene at the native locus was seamlessly replaced 
with the aph gene by using the same recombineering protocol. To color-code the strains, we use 
plasmids with chloramphenicol-resistant gene carrying yfp under constitutive promoter (for JCY1 
strain) and pLambda-driven mRFP1 plasmids maintained by kanamycin (for JCY2). To color-code Tar-
titratable strain (JCY20), a plasmid carrying yfp chloramphenicol-resistant gene was transformed into 
constructed Tar-titratable strain. The tar-only strain (UU1624) was modified from RP734 and was kindly 
provided by Prof. Johan Sandy Parkinson.

Media and growth conditions
For bacterial culture, the M9 supplemented medium was used. The preparation of the M9 supple-
mented medium follows the recipe in previous study (Fu et al., 2018): 1×M9 salts, supplemented with 
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0.4% (v/v) glycerol, 0.1% (w/v) casamino acids, 1.0 mM  magnesium sulfate, and 0.05% (w/v) polyvin-
ylpyrrolidone-40. 1×M9 salts were prepared to be 5×M9 salts stock solution: 33.9 g/L  Na2HPO4, 15 
g/L  KH2PO4, 2.5 g/L  NaCl, 5.0 g/L  NH4Cl.

For migration experiments in the micro-channel, the M9 motility buffer was used. The recipe 
was:  1×M9 salts, supplemented with 0.4% (v/v) glycerol, 1.0 mM magnesium sulfate, and 0.05% 
(w/v) polyvinylpyrrolidone-40, 0.1 mM  EDTA, 0.01 mM methionine, and supplemented with 200 µM  
aspartic acid.

For the migration rate measurements, the M9 amino acid medium with 0.2% (w/v) agar was used 
to prepare swim plate (Liu et al., 2019). The recipe was: 1 × M9 salts, supplemented with 0.4% (v/v) 
glycerol, 1× amino acid, 200 µM aspartic acid, 1.0 mM magnesium sulfate, and 0.05% (w/v) polyvi-
nylpyrrolidone-40. 1× amino acid were prepared to be 5× amino acid stock solution: 4 mM alanine, 
26 mM arginine (HCl), 0.5 mM cysteine (HCl·H2O), 3.3 mM glutamic acid (K salt), 3 mM glutamine, 4 
mM glycine, 1 mM histidine (HCl·H2O), 2 mM isoleucine, 4 mM leucine,  lysine, 1 mM methionine, 2 
mM phenylalanine, 2 mM proline,  threonine, 0.5 mM tryptophane, 1 mM tyrosine, 3 mM valine. All 
experiments were carried out at 30 °C. Plasmids were maintained by 50 µg/mL kanamycin or 25 µg/
mL chloramphenicol.

Sample preparation
The bacteria from frozen stock were streaked onto the standard Luria-Bertani agar plate with 2 % 
(w/v) agar and cultured at 37 °C overnight. Three to five separate colonies were picked and inoculated 
in 2 mL M9 supplemented medium for overnight culture with corresponding antibiotics to main-
tain plasmids. The overnight culture was diluted by 1:100 into 2 mL M9 supplemented medium the 
next morning. For Tar titration strains, related aTc were added in this step. When the culture OD600 
reaches 0.2–0.25, it was then diluted into pre-warmed 15 mL M9 supplemented medium so that the 
final OD600 was about 0.05 (Liu et al., 2019; Zheng et al., 2020; Zheng et al., 2016).

Bacteria were washed with the M9 motility buffer and were re-suspended in fresh M9 motility 
buffer to concentrate cell density at OD600 about 1.0. Then, the wild-type strain and fluorescent strain 
were mixed with ratio of 400:1 before loaded in the microfluidic chamber (Fu et al., 2018; Saragosti 
et al., 2011). For Tar titration experiments, the wild-type strain (RP437) was mixed with two fluores-
cent strains (JCY2 and JCY20) by 400:8:1.

Microfabrication
The microfluidic devices were fabricated with the same protocol and the same design as previous 
research (Bai et al., 2018; Fu et al., 2018), except that the capillary channel was designed longer than 
that of previous ones. The size of the main channel was 20 mm×0.6 mm× 0.02 mm and only one gate 
at the end of the channel was kept (Appendix 1—figure 1A).

Band formation
Fluorescent cells were mixed with non-fluorescent cells by 1:400 for cell tracking in the dense band. 
Sample of mixed cells with density OD600 ≈1.0 was gently loaded into the microfluidic device and 
then the device was spun for 15 min at 3000 rpm  in a 30 °C environmental room so that almost 
100,000-150,000 cells were placed to the end of the channel. After spinning, the microfluidic device 
was placed on an inverted microscope (Nikon Ti-E) equipped with a custom environmental chamber 
set to 50% humidity and 30 °C.

Imaging
The microscope and its automated stage were controlled by a custom MATLAB script via the μMan-
ager interface (Edelstein et al., 2014; Fu et al., 2018). About 30 min after the sample loading, a 4×  
objective (Nikon CFI Plan Fluor DL4X F, NA 0.13, WD 16.4 mm , PhL) was placed in the wave front 
for imaging. The fluorescent bacteria, seen as randomly picked samples of the migrating group, were 
captured continuously with frame rate of 9 fps in 10 min until they leave the view. Typical tracks are 
longer than 300 s. Time-lapsed images were acquired by a ZYLA 4.2MP Plus CL10 camera (2048 × 
2048 arrays of 6.5 µm×6.5 µm pixels) at 9 frames/s (fps) . An LED illuminator (0034R-X-Cite 110LED) 
and an EYFP block (Chroma 49003; Ex: ET500/X 20, Em: ET535/30 m) compose the lightening system.

https://doi.org/10.7554/eLife.67316
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For the Tar titration experiments, the channel was first scanned with 10 × objective (CFI Plan Fluor 
DL 10 × A, NA 0.30, WD 15.2 mm, PH-1) enlighten by an LED illuminator (0034R-X-Cite 110LED) 
through the RFP block (Chroma 49005, Ex: ET545/X 30, Em: ET620/60 m) and EYFP block channels 
for seven neighbored views around the migration group. These images were further combined to two 
large pictures of the RFP strains and YFP strains. The channel was scanned twice, respectively before 
and after the 10 min tracking of fluorescent Tar-titrated cells.

Track extraction and state assignment
The acquired movie was first analyzed with the U-track software package to identify bacteria and to 
get their trajectories (Jaqaman et al., 2008). Then the tracks were labeled by run state and tumble 
state by a custom MATLAB package (Waite et al., 2016) using a previously described clustering algo-
rithm (Dufour et al., 2016).

Track analysis
The group velocity ‍VG‍ was calculated by averaging the frame-to-frame velocity (‍dt ≈ 0.11s‍) over 
all tracks and all time. The cell number for the first frame over a spatial bin of ‍∆x = 60µm‍ and a 

channel section a=12,000 µm2 were calculated to get the density profile ‍ρ
(
x, t = 0

)
=

∑
i
(

x,t
)

a·dx ‍ . The 
peak position of the first frame (‍xpeak

(
t = 0

)
‍) was then determined by the maximum of ‍ρ

(
x, t = 0

)
‍. The 

position of each bacterium (‍xi

(
t
)
‍) was transformed to moving coordinate position ‍zi‍ by the group 

velocity ‍VG‍ and origin of the axis on the density peak by ‍zi = xi

(
t
)
− VGt − xpeak

(
t = 0

)
‍ . Given the 

relative position of each cell, we recalculated the density profile in moving coordinate ‍ρ
(
z
)

=
∑

i
(

z
)

a·dx ‍ 
. The width of the density profile was defined by two times the standard deviation of relative posi-

tions ‍2σ = 2
√

1
n−1

∑n
i=1

(
zi − ⟨z⟩

)2
‍ . The spatial distribution of the instantaneous velocities ‍

⟨
VI

(
z
)⟩

‍ was 
calculated by averaging the velocity in spatial bin of ‍∆z = 240µm‍.

A tumble-run event is the minimal element of bacterial behavior. The typical spatial scale of a 
tumble-run event is about 20 μm, which is much smaller than the spatial bin size chosen in this study 
(240 µm). The spatial distributions of run time ‍

⟨
τR

(
z
)⟩

‍, tumble time ‍
⟨
τT

(
z
)⟩

‍, and run length ‍
⟨
lR

(
z
)⟩

‍ 
were calculated by averaging the related values of all the events with tumbling position (‍zT ‍) located in 
each spatial bin (‍z‍). As the displacement of tumble is small, the tumbling position is approximately the 
starting position of runs. For each tumble-run event, we have the vector linking starting position and 
end position of the run. The running angle ‍θR‍ is then defined by the angle between run direction and 
the group migration direction. One can easily deduce all the other quantities with the formulations in 
Table 1.

Table 1. Summary of quantities.

Quantities Definition Formulations

‍VG‍ Group velocity
‍
VG =

⟨
dx
dt

⟩
‍

‍z‍ Moving coordinate ‍z = x − VGt‍

‍VI

(
z
)
‍ Instantaneous velocity

‍
VI

(
z
)

=
⟨

dx
(

z
)

dt

⟩
‍

‍VD

(
z
)
‍ Expected drift velocity

‍
VD

(
z
)

= ⟨LR
(

z
)
·cos θR

(
z
) ⟩

⟨τR
(

z
)

+τT
(

z
)⟩ ‍

‍ρ
(
z
)
‍ Cell density

‍ρ
(
z
)

=
∑

i
(

z
)

a·∆z ‍

‍S
(
z
)
‍ Chemoattractant concentration

‍−VG
dS
dz = Ds

∂2S
∂z2 − kρ‍

‍g
(
z
)
‍

Perceived gradient

‍g
(
z
)

=
dln

(
1+S

(
z
)

/Koff
1+S

(
z
)

/Kon

)

dz ‍
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Growth rate and migration rate measurement
Growth rates of Tar-titrated strains were calculated from exponential fitting (‍R2 > 0.99‍) over measured 
curves of cell density (OD600) with respect to time. A 250 mL flask with 20 mL M9 supplement medium 
were used. All measurements were performed in a vibrator of rotation rate of 150 rpm at 30 °C. 
OD600 was measured by a spectrophotometer reader every 25 min. Each strain has been measured 
for at least three times.

The semi-solid agar plate was illuminated from bottom by a circular white LED array with a light box 
as described previously (Liu et al., 2011; Liu et al., 2019; Wolfe and Berg, 1989) and was imaged at 
each 2  hr by a camera located on the top. As bacteria swimming in the plate forms ‘Adler ring’, we 
used the first maximal cell density from the edge to define the moving edge of bacterial chemotaxis. 
The migration rate was then calculated from a linear fit over the data of edge positions in respect to 
time (‍R2 > 0.99‍).

Models and simulations
Details of the theoretical models and numerical simulations were presented in the appendix notes. In 
which, the Langevin equation was deduced and solved numerically with a particle-based simulation; 
the approximated OU-type equation and its traveling wave solution were deduced; an agent-based 
simulation of bacterial with chemotaxis pathway was performed following previous works (Dufour 
et al., 2014; Jiang et al., 2010; Sneddon et al., 2012).
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Appendix 1
Theory and numerical simulations
Summary
In this note, we first deduced the Langevin-type equation from the classic KS model that describes 
bacteria group migration in a capillary. The Langevin-type equation describes the dynamics of 
single-cell particle motion as active particles (Section 1). Together with the chemoattractant 
consumption equation, we investigated the Langevin-type equation through particle-based 
simulations for a group of particles of single phenotype or multi-phenotypes (Section 2). Then, 
we transformed the equations into moving coordinate, so that the stable density profiles as 
well as the chemoattractant profiles were observed (Section 3). In this moving coordinate, the 
chemoattractant consumption can be decoupled from particle dynamics, which allows us to 
simulate particle motions over a non-consumable field of chemoattractant on the move (Section 4). 
Furthermore, the Langevin dynamics describes that the particle motion was simplified to an OU-
type process, of which the particle dynamics can be solved analytically (Section 5). To gain more 
insights of the chemotactic response, we described an agent-based model which integrated the 
bacterial chemotaxis pathway in Section 6. And specifically, we deduced the chemotactic ability ‍χ‍ 
from the pathway parameters (Section 7). The agent-based simulations were performed under a 
moving gradient, from which ordered structures of phenotypes were recaptured (Section 8). The 
model was further extended to system with signal secretion and shows similar results (Section 9).

1. The Langevin equation with chemoattractant consumption
The bacterial chemotactic migration in a capillary was first modeled by Keller and Segel in 1971 
(Keller and Segel, 1971a). In this model, the bacterial cell division was neglected as the nutrition 
in the capillary was poor. In 1D, the dynamics of cell density ‍ρ

(
x, t

)
‍ is a combination of diffusion 

and chemotaxis:

	﻿‍
∂ρ

(
x,t
)

∂t = D∂2ρ
(

x,t
)

∂x2 + χ ∂
∂x

(
ρ
(
x, t

)
g
(
x, t

))
‍� (S1)

where ‍D‍ and ‍χ‍ respectively represent the diffusion coefficient and chemotactic ability of 
bacteria, and ‍g

(
x, t

)
‍ represents the perceived gradient of chemoattractant.

The dynamics of the chemoattractant ‍S
(
x, t

)
‍ follows a reaction-diffusion-type equation with a 

diffusion coefficient ‍Ds‍ and consumption with a constant rate ‍k‍:

	﻿‍
∂S

(
x,t
)

∂t = Ds
∂2S

(
x,t
)

∂x2 − kρ
(
x, t

)
‍� (S2)

From the chemoattractant profile ‍S
(
x, t

)
‍, we can get ‍g

(
x, t

)
‍ by:

	﻿‍ g
(
x, t

)
=

∂ln
(

1+S
(

x,t
)

/Koff
1+S

(
x,t
)

/Kon

)

∂x ‍�
(S3)

with ‍Kon, Koff ‍ were dissociation constants for active and inactive conformation of the receptor, 
respectively.

Following Rosen, 1973, one can deduce the Fokker-Planck equation associated to the KS 
model that describes the probability ‍P = P

(
x, y; t

)
‍ to observe of a cell which initiates from position 

‍y‍ at position ‍x‍ and time ‍t‍. The related equation writes:

	﻿‍
∂P
∂t = D∂2P

∂x2 + χ
∂
(

Pg
(

x,t
))

∂x ‍� (S4)

Equation S4 is equivalent to the Langevin dynamics as:

	﻿‍ dxi = χg
(
xi, t

)
dt + ϵdW ‍� (S5)

where ‍xi‍ represents the position of the i-th bacteria and ‍g
(
xi, t

)
‍ is the perceived gradient of each 

bacteria at time ‍t‍. ‍dW ‍ is a Wiener process that describes a random walk with noise level ‍ϵ =
√

2D‍ .
As previously proofed, the expected drift velocity equals the production of chemotactic ability 

‍χ‍ and the perceived gradient ‍g‍, ‍VD = χg‍ (Waite et al., 2016). So that, the Langevin-type Equation 
S5 can be reformed to:

https://doi.org/10.7554/eLife.67316
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	﻿‍ dxi = VD,idt + ϵdW ‍� (S6)

The initial condition of the chemoattractant was ‍S
(
x, 0

)
= S0 = 200 µM‍. In the stochastic model, 

the density profile ‍ρ
(
x, t

)
‍ was calculated by the sum of cell number (‍

∑
i
(
x, t

)
‍) in certain location 

‍
[
x, x + ∆x

]
‍ and time ‍t‍ over volume ‍a ·∆x‍, where ‍a‍ is the capillary section area and ‍dx‍ is the spatial 

bin size:

	﻿‍ ρ
(
x, t

)
=

∑
i
(

x,t
)

a·∆x ‍� (S7)

2. Particle-based simulation with consumption
The Langevin-type model in the absolute coordinate ‍x‍ (Equation S5) was simulated with a 
customized code using MATLAB. In each case, 100,000 particles were simulated in a 1D space 
where ‍x ∈

[
0, 20

]
mm‍. The absorption boundaries were applied for ‍x = 0 mm‍ and ‍x = 20 mm‍, 

so that particles stay at the boundary until they leave them actively (‍x
(
x > 0 mm

)
= 0‍ and 

‍x
(
x > 20 mm

)
= 20 mm‍). Initially all particles were placed at ‍x = 0 mm‍ and their positions were 

calculated according to Equation S7 at each time step of ‍∆t = 0.05s‍ for 60 min. The random noise 
follows a Gaussian distribution generated by MATLAB function ‘randn.m’ with amplitude multiplied 
by ‍

√
2ϵ
√
∆t‍ .

Unlike the particles that change their position continuously, the spatial profile of cell density 

‍ρ
(
x, t

)
‍ was first calculated on a space mesh of grid ‍∆x = 10 µm‍, and then linearly interpolated to 

a finer mesh of grid ‍∆x = 0.1 µm‍. The chemoattractant ‍S
(
x, t

)
‍ and perceived gradient ‍g

(
x, t

)
‍ were 

deduced accordingly. At each time point, following Equation S7, cells located on grid ‍
[
x, x + ∆x

]
‍ 

were summed and were divided over ‍a∆x‍ to get the density profile. In order to avoid fast 
consumption near ‍S = 0‍, a saturation effect of consumption rate was added to Equation S3 using 

‍S/
(
S + Ks

)
‍.

	﻿‍
∂S

(
x,t
)

∂t = Ds
∂2S

(
x,t
)

∂x2 − kρ
(
x, t

) S
(

x,t
)

S
(

x,t
)

+Ks ‍�
(S8)

where ‍Ks = 0.1 µM‍, of which the value was small and does not affect the linear relation in most 
range of ‍S > Ks‍ .

Then the chemoattractant profile ‍S
(
x, t

)
‍ was calculated from ‍ρ

(
x, t

)
‍ according to Equation S8, 

using a fourth-order Runge-Kutta method from an initial condition of ‍S
(
x, 0

)
= S0‍ . The perceived 

gradient ‍g
(
x, t

)
‍ was further calculated from ‍S

(
x, t

)
‍ on Equation S3. Having the discrete ‍g

(
x, t

)
‍ over 

grid of ‍∆x = 0.1 µm‍, the perceived gradient of each particle ‍g
(
xi

)
‍ was assigned by detecting the 

particle position over the spatial mesh grid.
Following the above instructions, density profile and peak positions with bacteria of 

‍χ = 0.11 mm2min−1
‍ and ‍D = χ/22‍ were plotted in Appendix 1—figure 5A. The group migration 

reached steady state after 20 min simulation. The peak velocity was then defined by linear fitting of 
peak positions for ‍t ∈

[
20, 60

]
min‍, which was found to be ‍Vp = 3.03 µm/s‍.

To simulate a bacterial group of multiple phenotypes, we constructed 100,000 cells with 
their chemotactic ability ‍χ‍ follows a Gaussian distribution with the average chemotactic ability 

‍⟨χ⟩ = 0.11 mm2min−1
‍ and s.d. of 0.03 mm2min-1 (Appendix 1—figure 5B) while the diffusion 

coefficient ‍D‍ was fixed to ‍⟨χ⟩ /22‍ for all cells. The consumption rate of each bacterium was also 
set constant of ‍4.6 · 10−9 µM/cell/s‍. The group of multi-phenotypes migrates slower than single 
phenotype with peak velocity ‍Vp = 2.90 µm/s‍ (Appendix 1—figure 5A). The bacterial positions 
after 20 min simulation were further transformed to the moving coordinate ‍zi = xi − Vpt‍. They were 
subgrouped according to their chemotactic ability ‍χ‍ to six subgroups. And the corresponding 
average density profiles of each subgroups were plotted in Appendix 1—figure 5D with colors 
defined in Appendix 1—figure 5C. The density profile of subgroups was found ordered according 
to their average chemotactic ability ‍χ‍. The time-shifted profiles, ‍S

(
z
)
‍ and ‍g

(
z
)
‍, were shown in 

Appendix 1—figure 5E,F.
The simulations of bacteria with consumption confirmed that coherent group migration and 

ordered spatial structures can emerge from a system of active particles modulated by gradient of 
consumable chemoattractant.

https://doi.org/10.7554/eLife.67316
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3. Traveling wave solution
As the density profile was found stable during the experimental time scale (30 min), we are allowed 
to use a moving coordinate ‍z = x − VGt‍ in searching for a traveling wave solution. Equation S2, 
Equation S5, Equation S7 become:

	﻿‍ dzi + VGdt = χg
(
zi

)
dt + ϵdW ‍� (S9)

	﻿‍ −VG
dS
(

z
)

dz = Ds
d2S

(
z
)

dz2 − kρ
(
z
)
‍� (S10)

	﻿‍ ρ
(
z
)

=
∑

i
(

z
)

a·∆z ‍� (S11)

Given a stable density profile measured experimentally, we can integrate Equation S10 to get a 
stable profile of chemoattractant ‍S

(
z
)
‍. As the chemoattractant was unconsumed at ‍z = ∞‍ and it is 

completely consumed as the wave passes ‍z = −∞‍, the boundary condition of ‍S
(
z
)
‍ can be written 

as ‍S
(
∞

)
= S0‍ and ‍S

(
−∞

)
= 0‍. We get:

	﻿‍
S
(
z
)

= S0 −
k

Ds
e−

VG
Ds

z
ˆ ∞

z

M
(
z
)

e
VG
Ds

zdz
‍� (S12)

where ‍M
(
z
)

=
´∞

z ρ
(
z
)

dz‍ is the accumulated number of cells up to position ‍z‍. We then used 
the experimentally measured cell density profile together with the group speed ‍VG‍ to calculate 
the moving attractant profile ‍S

(
z
)
‍ (Appendix 1—figure 5A). The perceived gradient ‍g

(
z
)
‍ in the 

moving coordinate was then calculated by:

	﻿‍
g
(
z
)

= dln
(

1+S
(

z
)

/Koff

1+S
(

z
)

/Kon

)
/dz

‍� (S13)

In a stable migration group, the ‍g
(
z
)
‍ deceases from back to front over the density profile. 

Suppose the gradient does not steepen toward the back, then cells with lower chemotactic 
abilities will fall behind and see shallower gradient, drifting even slower and causing the wave to 
spread out. Since the gradient is formed by local consumption, the front of the wave will have less 
cells and become shallower, while the back of the wave will accumulate more cells and become 
steeper. This will automatically readjust the gradient steepness until the back becomes steep 
enough to allow cells will lower chemotactic abilities to catch up, stabilizing the gradient and the 
traveling wave.

4. Particle-based model with preset moving gradient
The chemoattractant profile ‍S

(
z
)
‍ can be deduced by an experimentally measured stable density 

profile ‍ρ
(
z
)
‍ in the moving coordinate. With the experimental mesh grid ‍∆x = 240µm‍, we plot 

the average ‍S
(
z
)
‍ over three biological replicates in Appendix 1—figure 4D (circles). In order to 

apply this profile into the particle-based simulation, we first expanded the space range of ‍S
(
z
)
‍ 

to ‍x ∈
[
−4800, 4800

]
µm‍ by setting ‍S

(
z < −2400µm

)
= 0‍ and ‍S

(
z > 2400µm

)
= S0‍ . Next, we 

used a cubic spline data interpolation to construct a profile of ‍S
(
z
)
‍ with much finer spatial mesh 

grid ‍∆x = 0.001µm‍ (Appendix 1—figure 4D, line). Therefore, a ‍g
(
z
)
‍ profile on finer meshes was 

calculated accordingly (Figure 2A). The ‍g
(
z
)
‍ profile was then translated to an absolute coordinate 

by ‍g
(
x, t

)
= g

(
z
)

+ VGt‍, with ‍VG = 3.0 µm/s‍.
Using the preset moving gradient ‍g

(
x, t

)
‍ , we can simulate the particle motions without 

calculation of ‍ρ
(
x, t

)
‍ and ‍S

(
x, t

)
‍ . We used the same method as described in Section 2 to simulate 

particle motions, and at each time point ‍t‍, we assigned ‍g
(
xi

)
‍ by indexing bacterial position on 

‍g
(
x, t

)
‍ , with spatial precision of ‍∆x = 0.001 µm‍.

For bacteria of four different ‍χ‍ ranging from 0.15 to 0.3 mm2min-1 , we simulated 10,000 
particles for each phenotype with the same noise level ‍ϵ = 15 mm · min−0.5‍ . During simulation of 60 
min, bacteria of all phenotypes move as a group with peak positions linearly increasing with time. 
The fitted slope of all peaks equals the preset velocity of the moving gradient ‍VG‍ . In the moving 
coordinate ‍z‍, the density profiles of all phenotypes were ordered (Figure 2A), and they were 

https://doi.org/10.7554/eLife.67316
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clearly ordered by ‍χ‍. The peak positions and mean positions of the density profile increase with ‍χ‍ 
(Figure 2C), while the width (defined by ‍σ‍) decreases with ‍χ‍ (Figure 2D).

5. The type model
The perceived gradient ‍g

(
z
)
‍ deduced from experimental data shows linear decreasing trend 

in the major range of density profile ‍−0.4 mm < z < 0.4 mm‍. It can be then linearly fitted by 

‍g
(
z
)
≈ g1z + g0‍ with ‍g1 ≈ −2.1 mm−2

‍ and ‍g0 ≈ 1.2 mm−1
‍ . Subscribe this linear approximation in 

Equation S7, we get:

	﻿‍ dzi = χg1zidt +
(
χg0 − VG

)
dt + ϵdW ‍� (S14)

Now, we compare Equation S10 to the standard OU model given by ‍dx = −λxdt + ϵdW ‍. 
Equation S9 can be taken as an OU-type process with ‍−χg1‍ as the reversion rate ‍λ‍ and the mean 
position deviated from origin to ‍z0‍:

	﻿‍ z0 = χg0−VG
χg1 ‍� (S15)

where the mean position ‍z0‍ is the steady-state position of its ensemble average ‍⟨z⟩‍:

	﻿‍ d ⟨z⟩ = χg1 ⟨z⟩ dt +
(
χg0 − VG

)
dt‍� (S16)

The original OU model describes an active particle motion under a linear force field around 
‍x = 0‍. Since Equation S10 can be taken as a generalized OU model, we can thus consider 
our bacteria in the migration group as an active particle under an effective force field of 

‍χg1z +
(
χg0 − VG

)
‍ . Integrating this force field over ‍z‍, we get an effective potential well ‍U

(
z
)
‍ :

	﻿‍
U
(
z
)

=
ˆ (

χ
��g1

�� z +
(
χg0 − VG

))
dz = 1

2
χ
��g1

�� z2 +
(
χg0 − VG

)
z + U0

‍�
(S17)

The ‍U0‍ is an integral constant controlled by boundary condition, which was set by ‍U
(
∞

)
= 0‍ 

in this article. The effective potential well ‍U
(
z
)
‍ generated by ‍U

(
z
)

=
´ (

χg
(
z
)
− VG

)
dz‍ from the 

particle-based simulation and Equation S17 are compared in Figure 2B.
Using a variable substitution of ‍

∼x = z −
(
χg0 − VG

)
/g1‍ , and applying the general solution of the 

standard OU model of ‍
∼x
(
t
)

= ∼x 0e−λt +
´ t

0 ϵdW · e−λ
(

t−t
′)

dt
′

‍ (Cherstvy et al., 2018), we get the 

mean square displacement: 
‍
MSD ≡

⟨(
z
(
t
)
− z0

)2
⟩

= ⟨z0⟩2 (1 − e−χg1t)2 + ϵ2

2χg1

(
1 − e−2χg1t

)
‍
 . The 

standard distribution ‍σ‍ of the density distribution is the limit of MSD:

	﻿‍ σ = ⟨z0⟩2 + ϵ2

2χg1 ‍� (S18)

The trend of both mean positions (Figure 2C) and width (Figure 2D) was successfully predicted 
by analytical solutions of the OU-type model Equation S15 and Equation S18.

Moreover, the OU-type model Equation S14 has an equivalent Fokker-Planck equation that 
describes the probability density function of particles on ‍z‍, ‍P

(
z, t

)
‍:

	﻿‍
∂P

(
z,t
)

∂t = ∂
∂z

((
χg1z +

(
χg0 − VG

))
P
(
z, t

))
+ D∂2P

(
z,t
)

∂z2 ‍� (S19)

At ‍t → ∞‍, the probability density function reaches the steady stat ‍P
(
z
)
‍, where the density 

profile follows ‍0 = d
dz
((
χg1zi +

(
χg0 − VG

))
P
(
z
))

+ D d2P
(

z
)

dz2 ‍ . Solving this equation with boundary 

conditions of ‍P
(
z = ±∞

)
= 0‍ and ‍

∂P
(

z=±∞
)

∂z = 0‍ , we get the steady stat density profile 

‍P
(
z
)

= e−
1
D
( 1

2 χg1z2+
(
χg0−VG

)
z+C0

)
‍ with ‍C0‍ is the integral constant that allows ‍

´∞
−∞ P

(
z
)

dz = 1‍. The 
exponent of this density profile is position-dependent that drops in parabolic form as ‍z → ∞‍. 
Compare to the front of Fisher wave, where the exponent of the density profile decreases linearly 
with ‍z‍ (‍P

(
z
)

= e−Cz
‍), we know that the density profile of a chemotaxis migration wave is more 

compact than a Fisher wave.

https://doi.org/10.7554/eLife.67316
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6. Agent-based simulation with chemotaxis pathway
In order to simulate more details of bacterial group migration in a capillary, we use a previously 
established chemotactic pathway integrated agent-based simulation. This model integrated 
bacterial chemotactic signaling pathway to determine the switch rate of motors, the conformation 
changes of flagella, as well as the competition of multiple flagella.

We first simulated 80,000 cells evenly distributed in four phenotypes of different receptor gain 
‍N ‍ with consumption of chemoattractant. The cells were simulated as described in a previous 
paper (Saragosti et al., 2011), while the chemoattractant field S was calculated at each time step 
(‍∆t = 0.01 s‍) according to Equation S8. In a 3D channel of 0.2 mm×0.01 mm× 10 mm, space was 
discretized to grid of 2.5 µm×2.5 µm× 2.5 µm . The evolution of the attractant during each time 
step was calculated by the sum of the consumption of every cell in the neighbor grids weighted by 
their effective diffusion distance. The consumption rate was fitted for reasonable migration speed. 
Detailed methods were described in a previous paper (Xue and Othmer, 2009). The perceived 
attractant of each cell was then linearly interpolated from the closest grids of the attractant field.

Simulation starts by setting all cells in one end of the channel (‍x = 0‍), randomized in y and z 
directions and setting uniform chemoattractant concentration ‍S0 = 200µM‍ within the channel. 
Flip boundary condition was used for all three directions. After 20 min simulation, the bacterial 
population from stable migration groups (Appendix 1—figure 6A) tracks with cellular run-
tumble stat was recorded from 30 to 32 min with time step of 0.1 s. Using the group velocity ‍VG‍ 
of this period as the speed of moving coordinate ‍z = x − VGt‍, density distribution of subgroups of 
different receptor gain ‍N ‍ was plotted to show spatial ordering of subgroups (Appendix 1—figure 
6B). The tracks were analyzed with exactly the same method as the experimental tracks (see 
Materials and methods). The expected drift velocity ‍VD

(
z
)
‍ of all subgroups decreases from back to 

front and was also spatially ordered (Appendix 1—figure 6C).
The particle-based simulations (Section 4) have already shown that the chemoattractant 

consumption can be decoupled from bacterial motions. To simplify the analysis, we used the same 
non-consumable moving gradient ‍g

(
x, t

)
‍ described in Figure 2A. Using the preset gradient, we 

simulated 100,000 bacteria of four evenly distribution phenotypes of different receptor gain ‍N ‍ or 
adaptation time ‍τ ‍ or basal CheY-p level ‍Yp0‍ . The simulation was performed in 3D with reflection 
boundary on ‍x = 0 mm & x = 20 mm‍ and with free boundaries in the other two directions (‍y, z‍). 
Initially all cells were placed on ‍x = 2 mm, y = z = 0 mm‍. In each time point with step ‍∆t = 0.01s‍, 
the internal states of every bacterium were updated according to their perceived gradient indexed 
by ‍g

(
xi

)
‍ with spatial precision ‍∆x = 0.001 µm‍. And then the bacterial moving stat (run or tumble) 

was updated accordingly, which results in movement to the next time point. Most parameters 
used in the simulation follow previous paper (Saragosti et al., 2011), while the changed 
parameters were the upper limit of chemoattractant sensing ‍Kon = 1000 µM‍ (Fu et al., 2018); the 
lower limit of chemoattractant sensing ‍Koff = 1 µM‍ (Si et al., 2012); the diffusion coefficient of 
chemoattractant ‍Ds = 1000 µm2/s‍ (Fu et al., 2018); the run speed of bacteria ‍v0 = 30 µm/s‍ (Keller 
and Segel, 1971b); the adaptation time ‍τM = 1s‍ (Waite et al., 2016); the motor number was set 
5 as in Sneddon et al., 2012; while the basic CheY-P level ‍Yp0‍ = ‍2.77 µM‍, which corresponds to 
‍TB0 ≈ 0.27‍. After 40 min of simulation, bacterial tracks were recorded with 10 fps for 20 min.

7. Estimation of ‍χ‍ from chemotaxis pathway
In order to compare the agent-based simulation results to the analytical OU-type model, we need 
to estimate the chemotactic ability ‍χ‍ from the parameters of chemotaxis pathway. Considering 
an simple case where perceived gradient of chemoattractant ‍g‍ is a fixed value, the averaged drift 
velocity of a group of bacteria ‍VD‍ can be estimated by the parameters of bacterial chemotaxis 

pathway (Dufour et al., 2014): ‍VD ≈ τ
′
R0

1+τR0/τM

(
1−TB0

)
v2

0Ng
d ‍ . In this equation, ‍τR0‍ is the run time 

in homogenous environment, ‍τ
′
R0 = dτR0/df ‍ with ‍f ‍ is the free energy of the receptor, ‍τM‍ is the 

adaptation time, ‍d‍ is the dimension (e.g. d is 3 in this case), ‍TB0‍ is the tumble bias in homogenous 
environment, and ‍N ‍ is the receptor gain.

On the other hand, given the expression of ‍VD‍ , comparing the two expressions of expected 
drift velocity in fixed gradient, we can deduce:

	﻿‍ χ ≈ τ
′
R0

1+τR0/τM

(
1−TB0

)
v2

0N
d ‍� (S20)

https://doi.org/10.7554/eLife.67316
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Using the expression Equation S20, we can deduce the required receptor gain ‍N ‍ from ‍χ‍, which 
is the case shown in the main text in Figure 3.

8. Agent-based simulation for different parameters
To investigate the bacterial behavior in moving gradient, we have simulated bacteria with ‍χ‍ 
ranging from 0.15 to 0.30 corresponding to receptor gain ‍N ‍ ranging from 14.5 to 25.4. Related 
results were shown in Figure 3 and discussed in the main text.

Receptor gain is not the only parameter that affects the chemotactic ability. We have also varied 
the adaptation time ‍τM‍ and basal CheY-p level ‍Yp0‍ to investigate the effect of these parameters on 
bacterial behaviors with a moving chemoattractant profile of larger slope of perceived gradient, 

‍g1 = −2.5 mm−2
‍ . For both cases, the density profile ‍ρ

(
z
)
‍ spatially ordered according to the variant 

parameter, and the expected velocities for call parameters ‍Vd

(
z
)
‍ decrease from back to front. 

These results show that bacteria perform mean reversion flow for all these parameters and were 
spatially ordered according to phenotypes.

For the case of basic CheY-p level ‍Yp0‍ ranging from 2.70 µM to 2.85 µM, the basic tumble bias 
‍TB0‍ varies from 0.07–0.19, and the chemotactic ability ‍χ‍ decreases with ‍Yp0‍ from 0.16 to 0.25 
mm2min-1 . The mean positions of subgroups increase with ‍χ‍ so that it decreases with ‍Yp0‍ . Unlike 
the receptor gain ‍N ‍, the basic tumble bias also increases the diffusion coefficient ‍D‍. Analogized 
to the OU-type model, varying ‍Yp0‍ changes the reversion rate ‍χg‍ and the noise level ‍ϵ =

√
2D‍ at 

the same time. Thus, the reversion rate decreases with ‍Yp0‍ and the width of the density profile ‍σ‍ 
increases with the reversion rate ‍r‍ (Appendix 1—figure 8A–D).

For the case of adaptation time ‍τM‍ ranging from 1 to 10 s, mean positions and width of the 
density profile show non-monotonic dependence on ‍τM‍ . This phenomenon shows that adaptation 
time has a trade-off effect on bacterial chemotaxis. As Frankel et al., 2014 have discussed, the 
increasing adaptation time enforces chemotactic ability, while it weakens the sensitivity of bacteria 
to the chemoattractant gradient changes. Such dual effect was also reflected on the reversion rate 
defined by the slope of ‍VD‍ (Appendix 1—figure 8E–H).

9. Modified Langevin-type model for accumulated signals
As discussed in the main text, the reversion flow of individuals in the migrating group relies on a 
decreasing driving force from back to front. In the case of bacterial chemotaxis, such decreasing 
force comes from the gradient of perceived signal of chemoattractant, which is consumed by all 
the agents. Such mechanism can be generalized to the systems of trail-following migration (e.g. 
ants), where the signal is secreted by agents instead of being consumed. In this case, the signal 
concentration ‍Ss

(
x, t

)
‍ decreases from back to front, because more agents have passed the back 

than front, thus have secreted more signal on the back. Such dynamics can be modeled by similar 
Langevin equations and signal accumulations as discussed in Section 1:

	﻿‍ dxi = χiSdt + ϵdW ‍�

	﻿‍
∂Ss
∂t = Ds∂

2Ss
∂x2 + γρ− βSs‍�

	﻿‍ ρ
(
x, t

)
=

∑
i
(

x,t
)

a·∆x ‍� (S21)

where ‍γ = 3 ∗ 10−13 µM · s−1 · cell−1
‍ is the secretion rate of the signal ‍Ss‍ and ‍β = 0.001 s−1

‍ is the 
decay rate of it. Other terms and parameters are identical to equations in Section 1.

Then, we solve Equation S21 numerically by applying 106 particles with normally distributed 
response ability ‍χi‍ of mean value of 1 and s.d. of 0.3 (Appendix 1—figure 10C). Results show that 
a coherent migrating group is formed spontaneously with constant migration speed ∼6.7 µm/s 
(Appendix 1—figure 10B). In the moving coordinate, the ‘effective global force’ ‍Ss

(
z
)
‍ decreases 

from the back to front as predicted. The particles with different response ability ‍χi‍ are ordered 
arranged (Appendix 1—figure 10D), while particles with larger χ locate more in the front.

https://doi.org/10.7554/eLife.67316
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Appendix 1—table 1. Strains and plasmids used in this study.

Strains Description Source

RP437 Wild-type strain for chemotaxis Fu et al., 2018

JCY1 RP437+ a Cmr plasmid with YFP This study

JCY2 RP437+ a Kanr plasmid with mRFP1 This study

JCY20
Construction based on RP437, tar<> loxp, bla:Ptet-tetR-tar at attB site,+ a Cmr 
plasmid with YFP This study

UU1624 Δaer-1 Δtsr-7028 Δtap-3654 Δtrg-100 Gosink et al., 
2006

Appendix 1—table 2. Summary of parameters in agent-based simulation.

Symbol Definition Value Source

‍χ‍ Chemotaxis ability Defined in context This study

‍k‍ Consumption rate of chemoattractant
Fitted parameter for migration 
speed This study

‍Kon‍
Upper limit of chemoattractant 
sensing 1 mM Fu et al., 2018

‍Koff ‍
Lower limit of chemoattractant 
sensing 1 µM Si et al., 2012

‍Ds‍
Diffusion coefficient of 
chemoattractant 1000 µm2/s Fu et al., 2018

‍v0‍ Run speed of bacteria 30 µm/s Keller and Segel, 1971b

‍τM ‍ Adaptation time 1 s Waite et al., 2016

‍N ‍ Receptor gain Deduced from chemotactic ability SI notes in Section 7

‍M ‍ Motor number 5 Sneddon et al., 2012

‍Yp0‍ Basic CheY-P level 2.77 µM Correspond to‍TB0 ≈ 0.27‍

https://doi.org/10.7554/eLife.67316
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Appendix 1—figure 1 continued on next page
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Appendix 1—figure 1. Experiment protocol, sample tracks, and fluorescent labeled cells. (A) The 
microfluidic chip used in this study is consisted of a long channel (20 mm×0.6 mm×0.02 mm) and a 
large chamber (3 mm× 3 mm). Prepared bacteria are first loaded in the chip through inlets with M9 
motility buffer (see Materials and methods). Next, the chip is spun at 3000 rpm for 15 min so that the 
bacteria are concentrated to one end of the channel. Bacteria consume aspartate (Asp) as the single 
chemoattractant to form a moving gradient that attracts the group migration. Finally, the bacterial 

https://doi.org/10.7554/eLife.67316
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Appendix 1—figure 1 continued
motions are tracked under microscope of 4×  objective by frame rate of 9 fps. (B) Cells expressing 
fluorescent protein (strain JCY2) are premixed into strain RP437 by 1:400 and counted each frame. Cell 
counts in nine successive frames (‍1s‍) were plotted within bin size of ‍∆x = 100µm‍. Colors from light to 
dark red represent time from 1 to 10 min. (C) Sample tracks of bacteria (colored lines) and bacterial 
signal (black dots) on the last captured frame. (D) Fluorescent labeled cells (strain JCY1 and JCY2) 
and the wild-type strain (RP437) were tracked separately on growth medium. All three strains show the 
same distribution of tumble bias (left), mean speed (middle), and mean run speed (right) of each track. 
All these quantities are average of more than 9000 tracks, weighted by their trajectory time. Each 
curve show data of one experiment.

Appendix 1—figure 2. Determination of coherent migration group. (A) Positions of first n-th cell 
(counted from the front, from blue to red ‍n =

[
1.24 2.48 3.72 4.96 6.2 7.44 8.68 9.92 1.16

]
× 104

‍) increase 
linearly with time, of which the slope gives the traveling speeds. (B) The traveling speeds of the first 
n-th cells are close to the group velocity ‍VG‍ (black dashed line), representing a coherent migration 
group. (C). The instantaneous group velocity ‍VG

(
t
)
‍ was constant over time. ‍VG

(
t
)
‍ was averaged for all 

tracks over 30 s (blue dots). Black dashed line represents the average group velocity for all tracks on 
all times ‍VG‍ . (D). The constant instantaneous velocity ‍VI

(
z
)

=
⟨
∆x

(
z
)

/∆t
⟩
‍ for sampling time ‍∆t = 1 s‍ 

(blue solid line) and ‍∆t = 10 s‍ (red solid line), where shaded area was s.e.m. of three replicates. Both 
curves equal to the group velocity ‍VG‍ , indicating the migration group is coherent. Data in (A–C) was 
extracted from one experiment.

https://doi.org/10.7554/eLife.67316
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Appendix 1—figure 3. Modulation of bacterial behaviors. (A) Distribution of forward run duration 
(solid line) and backward run duration (dash line) in three regions defined in Figure 1D and 
Appendix 1—figure 3E. (B) Mean run duration in different directions of bacteria in three regions. 
s.e.m. of four replicates is smaller than thickness of lines. Angular bin size is 15°. (C) Spatial structure of 
adapted tumbled bias (blue) and run speed (red). (D) The mean run length in different directions, with 
the angular bin size of 15°, also shows that cells in the back were better skewed to run forward. (E) The 

run length bias 
‍
Bl

(
z
)

= ⟨lR
(

z
)
·cos θR

(
z
) ⟩

⟨lR
(

z
)⟩ ‍

 (black solid line) and the run time bias 
‍
Bτ

(
z
)

= ⟨τR
(

z
)
·cos θR

(
z
)⟩

⟨τR
(

z
)⟩ ‍

 

(blue solid line) both decreased from the back to the front of the migration group. In panels C–E, 
shaded area represents s.e.m. of three biological replicates. The spatial bin size is 240 µm. (F) 
Representative examples of single-cell trajectories (three colors represent three different tracks) 
showed the reversion behavior of bacteria around their mean positions. (G) The mean reversion 
behavior results in limited diffusion of bacteria in the moving frame. So that the mean square 
displacement (MSD) in the direction of migration (black curve) was lower than the pure diffusion of 
bacteria measured on free liquid with M9 motility buffer (blue curve). The shaded area on black curve 
represents the s.e.m. of more than 2900 tracks, while the shaded area on blue curve represents the 
s.e.m. of more than 1900 tracks.

https://doi.org/10.7554/eLife.67316
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Appendix 1—figure 4. Behavior analysis and deduction of the chemoattractant profile. (A) All cell 
tracks are divided into three sectors: forward (‍

∣∣θ∣∣ ≤ 45◦‍) (green line), sideward (‍45◦ <
∣∣θ∣∣ < 135◦‍) 

(blue line), backward (‍|θ| ≥ 135◦‍) (red line). The run durations in all three sectors increase form back 
to front. (B) Spatial distribution of reorientation angle. (C) Reorientation angles defined in Saragosti 
et al., 2011 are plotted over the direction of previous runs. Such angles are biased to the back, 
indicating that bacteria running down the gradient reorient more in the next tumble. Shaded area 
shows s.e.m. of 14,892 tracks. The s.e.m. in panel C is smaller than the thickness of the curve. (D) The 
chemoattractant profile ‍S

(
z
)
‍ used for the simulation is interpolated by ‍∆z = 0.001 mm‍ (blue line) from 

the experimental ‍S
(
z
)
‍ (black circles). While the experimental chemoattractant is deduced from the 

averaged density profile ‍ρ
(
z
)
‍ (Figure 1B).

https://doi.org/10.7554/eLife.67316
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Appendix 1—figure 5. Particle-based simulation with chemoattractants consumption. (A) Simulated 
density profiles of active particles of single phenotype of ‍χ = 0.11 mm2/min‍ . ‍VG = 3.0 µm/s‍ over time. 
The peak positions increase linearly with time (insert plot). (B) Simulated density profiles of active 
particles of heterogenous phenotypes distributed in (C). The peak positions follow a stable speed of 

‍VG = 2.9 µm/s‍ (insert plot). (D) Time-shifted density profiles of different phenotypes exhibit spatially 
ordered in moving coordinate. Cells in the gray area drop the group during migration. Time-shifted 
chemoattractant profile increases from back to front (E) while the perceived gradient decreases with 
a quasi-linear region around 0. (F) Shaded area in D, E, F represents s.d. of 40 profiles recorded at 
stable region (from 21 to 60 min) with time step of 1 min.

Appendix 1—figure 6. Agent-based simulations with consumption of chemoattractant. (A) Simulated 
density profiles of bacteria integrated with chemotactic pathway show stable migration after 20 min 
simulation. Tracks were obtained in from 30 to 32 min, and were calibrated into a moving coordinate 
through group migration speed. (B) Four subgroups of different receptor gain N were orderly 
distributed. (C) The expected drift velocity ‍VD

(
z
)
‍ is decreasing and is spatially ordered.

https://doi.org/10.7554/eLife.67316
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Appendix 1—figure 7. Agent-based simulations of cells with different receptor gains. (A) Bacteria 
of different chemotatic ability (‍χ‍) form ordered structure in a moving chemoattractant field as in 
Appendix 1—figure 4D with fixed velocity ‍VG = 3.0 µm/s‍. (B) The average positions of each phenotype 
(diamonds), the peak positions (crosses), and the cross positions between their ‍VD‍ curves and the 
group velocity ‍VG‍ (circles) increase with ‍χ‍. These positions follow the same trend as predicted by 
Ornstein-Uhlenbeck (OU) model (black line). (C, D) Run duration bias ‍Bτ‍ and run length bias ‍Bl‍ of 
different subgroups decrease from back to front. Both curves were also spatially ordered by ‍χ‍ (color 
from light to dark green).

https://doi.org/10.7554/eLife.67316
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Appendix 1—figure 8 continued on next page

Appendix 1—figure 8. Agent-based simulations of cells with different CheY-P levels and adaptation 
times. Simulations results for CheY-P concentration ‍Yp0‍ ranging from 2.70 to 2.85 µM (A–D) and for 
adaptation time ‍τM‍ ranging from 1 to 10 s (E,H) are presented. In both cases the cell density ‍ρ

(
z
)
‍ (A, E) 

and the expected drift velocity ‍VD

(
z
)
‍ (B, F) are spatially ordered according to the varying parameter. 

The mean position (crossed) together with the cross position between ‍VD

(
z
)
‍ and ‍VG‍ (circles) increase 

with ‍Yp0‍ (C) while they show non-monotonic trend to ‍τM‍ (G). The width of the density profile (defined 

https://doi.org/10.7554/eLife.67316
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Appendix 1—figure 8 continued

by s.d. of all cells) and the reversion rate decrease with ‍Yp0‍ (D). And they showed a non-monotonic 
dependence on ‍τM‍ . The receptor gain ‍N ‍ is set to 24 in both cases, while ‍Yp0‍ is set to 2.77 µM for 
the ‍τM‍ varying case and ‍τM‍ is 1 s for the ‍Yp0‍ varying case. Simulations are performed under a steeper 
moving chemoattractant gradient of ‍g1 = −2.5 mm−2

‍ .

https://doi.org/10.7554/eLife.67316
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Appendix 1—figure 9. Migration rates, growth rates, motilities and coherent migration of the Tar-
titratable strain. (A) Tar-titratable strain (JCY20) allows us to change its chemotaxis ability (measured 
by its migration rate on agar plate) by adding inducer ([aTc]) of different concentrations. (B) This strain 
has constant growth rates measured in liquid batch culture. (C–D) Motility statistics were extracted 
from bacterial tracks in free liquid. The growth rate, tumble bias, and mean run speed were found 
constant with all tested aTc concentrations. Error bar represents s.d. of three biological replicates. (E) 
The density profile of the wild-type (WT) strain with red fluorescent protein (RFP) (strain JCY2) (red 
lines) and Tar-titratable strain with yellow fluorescent protein (YFP) (strain JCY20) (yellow lines) are 
plotted over space at time before (dashed lines) and after tracking (solid lines). Because the density 
profiles of both strains before and after tracking are considered to be identical, the migration group 
is stable during the tracking period (10 min ). The fluorescent strains (JCY2 and JCY20) are mixed with 
WT non-fluorescent strain (RP437) by ratio of 8:1:400. (F) During the 10 min tracking period, only the 
Tar-titratable strain (JCY20) is recorded. For each half a minute, we plotted the density profiles and 
find their peak positions (yellow circles). Such peak positions increase linearly with time (fitted by the 
black line). Data were extracted from one experiment. (G) The density profile of the Tar-only strain with 
YFP (strain UU1624 from Prof. Parkinson) are plotted over space at time before (dashed lines) and after 
10 min (solid lines).

https://doi.org/10.7554/eLife.67316
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Appendix 1—figure 10. Particle based simulation of the signal secretion model. (A) Simulated 
density profiles of heterogenous phenotypes distributed in C show (B) stable group migration with its 
peak positions following a constant speed of ‍Vp = 6.69 µm/s‍. (C) The phenotypic diversity was set by a 
Gaussian distribution on ‍χ‍, with mean value of 1 and s.d. of 0.3. (D) Time-shifted density profiles of 
different phenotypes exhibit spatially ordered in moving coordinate. Color code follows C, while cells 
in the gray area drop from the group. (E) Time-shifted signal profile ‍Ss‍ , which plays the role of ‘global 
driving force’, decreases from back to front.

https://doi.org/10.7554/eLife.67316
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