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Abstract
Cone-beam computed tomography (CBCT) enables the assessment of regressive mor-
phological changes in teeth, which can be used to predict chronological age (CA) in 
adults. As each tooth region is known to have different correlations with CA, this 
study aimed to segment and quantify the sectional volumes of the tooth crown and 
root from CBCT scans to test their correlations with the chronological age (CA). 
Seventy-five CBCT scans from individuals with age between 20 and 60 years were 
collected retrospectively from an existing database. A total of 192 intact maxillary 
anterior teeth fulfilled the eligibility criteria. The upper tooth volume ratio (UTVR), 
lower tooth volume ratio (LTVR), and sex were used as predictor variables. The UTVR 
and LTVR parameters were both found to be differently correlated to CA and inde-
pendent from each other. Regression models were derived from each tooth, with the 
highest R2 being the maxillary lateral incisor (R2 = 0.67). Additional single predictor 
models using each ratio were capable of reliably predicting the CA. The segmentation 
approach in volumetric adult dental age estimation proved to be beneficial in enhanc-
ing the reliability of the regression model.

K E Y W O R D S
cone-beam computed tomography, dental age estimation, forensic dentistry, root resorption, 
secondary dentin, tooth attrition

Highlights

•	 The relationship between age and segmented dental morphological changes in adults was 
examined.

•	 The ratios of upper and lower tooth volume regions were differently correlated with age.
•	 The maxillary lateral incisor achieved the highest R2 value (R2 = 0.67).
•	 Volumetric ratio parameters showed a nonlinear and linear relationship with age.

1  |  INTRODUC TION

Age estimation has a significant role in human identification [1]. 
In practice, the estimated age can refine the antemortem data and 

reduce the time-consuming comparative reconciliation processes 
[2]. Dental development is a parameter known for its reliability in 
estimating the age of children and adolescents [3, 4]. In adults, how-
ever, dental age estimation does not rely on development. Instead, 
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regressive morphological parameters are used, such as attrition, 
secondary dentin deposition, periodontosis, cementum apposition, 
root resorption, and translucency changes [5–8]. These regressive 
changes—known for their high error rates [9]—were initially explored 
via destructive analysis [5] and later employed (nondestructive) ra-
diographic assessment [10, 11].

With the evolution of advanced imaging tools, such as cone-
beam computed tomography (CBCT), a more realistic noninvasive 
assessment of dental morphology has been made possible, offering 
three-dimensional (3D) visualization and navigation. Current trends 
using CBCT-based methods for dental age estimation of adults 
highlight the advantages of the volumetric quantification of dental 
structure [12–14]. The most common approach quantifies the ratio 
between pulp and tooth volumes (PTV) [15]. In this approach, the 
whole volume of the pulp is calculated and divided by the volume of 
the tooth [16]. Although the PTV method provides a more reliable 
dental age estimation outcome [15], specific age-related changes 
will be ignored when the whole tooth volumetric information is not 
segmented. In other words, the detailed correlation between re-
gressive morphological changes and chronological age (CA) can be 
adequately assessed if the tooth region is analyzed separately [7]. 
For example, the dental crown is mainly affected by attrition, while 
the root is more affected by resorption. Similarly, secondary dentin 
deposition leads to distinct reductions in the pulp volume in differ-
ent tooth regions [17].

Considering the limitations of the PTV approach, which quan-
tifies volumetric information across different tooth regions as an 
aggregate, this study aimed to segment and quantify the volume of 
the crown and root separately and test their correlation with the 
chronological age (CA). The proposed approach was intended to pro-
mote a more comprehensive analysis of the regressive morphologi-
cal changes as a function of age.

2  |  MATERIAL S AND METHODS

This analytical, cross-sectional study was approved by the Ethics 
Committee of Universitas Padjajaran (899/UN6.KEP/EC/2021). 
The study sample was collected retrospectively and consisted of 75 
CBCT scans recorded at the Universitas Padjajaran Dental Hospital, 
Bandung, West Java, Indonesia. All CBCT data were obtained for 
varied diagnostic and therapeutic purposes, and no patient was ex-
posed to radiation for the sole purpose of research.

The inclusion criteria consisted of fully erupted, mature (closed 
apex), and sound anterior maxillary teeth with a visible cementoe-
namel junction (CEJ). Maxillary canines (C), lateral incisors (Li), and 
central incisors (Ci) on the right side were observed. Left side teeth 
were observed only if the contralateral maxillary right could not ful-
fill the inclusion criteria. Only one tooth type per region in a CBCT 
scan was sampled (i.e., if left Ci was measured, right Ci was not used). 
The exclusion criteria consisted of teeth with restorations, caries, 
significant wear, resorption, impaction, and presence of traumatic 
lesions, cysts, tumors, two or more root canals, pulp calcification, 

and any internal or external interventions affecting tooth formation 
or structure. To specify the extent of “significant wear,” we used 
Lovejoy stages of attrition for maxillary tooth “Phase G” through 
dentine exposure observation in the CBCT scans [18].

An a-priori sample size calculation using G*Power linear multiple 
regression function, with an effect size of 0.3, the alpha error proba-
bility of 0.05, power of 0.95, and 3 predictors resulted in a minimum 
sample of 62 teeth per regression model [19]. The selected subjects 
were divided into eight age groups from 20 to 59.99 years (Table 1). 
Subsequently, 192 intact teeth which fulfilled the study criteria were 
selected. CBCT scans were acquired using Instrumentarium Dental 
OP300 (Instrumentarium Dental, Tuusula, Finland). The energy pro-
tocol for image acquisition had exposure parameters of 85 kV, tube 
current of 3–8 mA, and exposure time of 1.7–8.7 s.

CBCT scans in DICOM (Digital Imaging and Communication in 
Medicine) format were then imported into ITK-SNAP 3.8 (ITK-SNAP, 
UPenn & UNC) for segmentation. Primary settings in ITK-SNAP 
were set with 3D brush options turned on, “all labels opacity” was 
set to 20, and the “initialize with current segmentation” option (in the 
active contour menu) switched on.

The morphology-based segmentation method was accom-
plished by segmenting the volumetric tooth region into four 
groups: upper hard tissue volume (UHTV), lower hard tissue vol-
ume (LHTV), upper root chamber volume (URCV), and lower root 
chamber volume (LRCV) (Figure 1) using built-in Region of Interest 
(ROI) inside the Active Contour Segmentation Function menu. The 
volumetric measurement results were given by ITK-SNAP in cubic 
millimeters (mm3). The separation between UHTV and LHTV, 
URCV and LRCV was defined by placing the ROI limits in the high-
est (or most apical) portion of the cementoenamel junction (CEJ) 
seen in the sagittal view.

The segmentation was done in a pair of measured regions, 
namely, URCV-UHTV and LRCV-LHTV (Figure  2). The ROI place-
ment in the LRCV-LHTV pair needs to overlap the previous mea-
sured parameters pair (URCV-UHTV) to ensure the continuation of 
the segmentation.

TA B L E  1  Sample distribution based on sex, age group, and tooth 
position

Group Age (years)

M F

Ci Li C Ci Li C

1 20–24.99 4 4 4 4 4 4

2 25–24.99 4 4 4 4 4 4

3 30–34.99 4 4 4 4 4 4

4 35–35.99 4 4 4 4 4 4

5 40–44.99 4 4 4 4 4 4

6 45–49.99 4 4 4 4 4 4

7 50–54.99 4 4 4 4 4 4

8 55–59.99 4 4 4 4 4 4

Abbreviations: Ci, maxillary central incisor; Li, maxillary lateral incisor; 
C, maxillary canine.
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After the desired measured parameters were selected inside the 
region of interest (ROI), segmentation was performed by setting the 
threshold in presegmentation mode. It is important to note that ITK-
SNAP begins the segmentation of one slice after the ROI; therefore, 

the ROI needs to be placed one slice outside the desired area 
(Figure  3). The UHTV and LHTV segmentation threshold was set 
to minimum in the lower and upper thresholds set by the observer. 
Furthermore, URCV and LRCV segmentation threshold was set to 
maximum for the upper and lower threshold set by the observer. 
After a bubble was added inside the ROI, contour evolution was ex-
ecuted. Note that bubbles placed outside the ROI field of view will 
cause a leakage outside the ROI (Figure 3). The finalization of the 
segmentation can be performed by deleting the 3D label leakage 
outside the desired measured parameter or by adding labels manu-
ally using a 3D brush if the semi-automated 3D segmentation does 
not cover a measured parameter region. The “continuous update” fea-
ture in the 3D model window may also be used to increase the seg-
mentation accuracy further. The measured parameters were then 
calculated as a ratio as the upper tissue volume ratio 

(

UTVR =
URCV

UHTV

)

 
and the lower tissue volume ratio 

(

LTVR =
LRCV

LHTV

)

 to be used in the 
final regression modeling.

Intraclass correlation coefficient (ICC) for the intra- and inter-
observer agreement was calculated using 20 randomly selected 
teeth with a 1-week interval between observations 1 and 2. The 
correlation between ratio parameters and CA was quantified using 
a correlation matrix and visualized using the Locally Weighted 
Scatterplot Smoothing (LOWESS) line. Furthermore, multiple linear 
regression models were created for each tooth, with CA as a de-
pendent variable, ratio parameters as a predictor, and gender as a 
covariate. Additionally, a single predictor linear model was tested in 
each significant ratio parameter to CA. The model's reliability was 
measured using R2, root mean squared error (RMSE), and mean av-
erage error (MAE) value.

Further performance evaluation was accomplished through 
Variance Inflation Factor (VIF) and Variable Importance Measures 
(VIM) to detect multicollinearity in the model [20] and predictive 
power of the independent variables [21], respectively. The statisti-
cal analyses were performed using R (R Foundation for Statistical 
Computing Version 4.0.5) with irr for ICC evaluation and caret for 
regression modeling [22, 23]. Regression model tuning parameters in 
caret were set using the training method “repeated cross-validation” 
and 5-fold cross-validation with two repetitions [24].

3  |  RESULTS

The mean age of the sample was 40.34 ± 11.84 years. The overall 
inter-and intra-observer agreement in the measured parameters was 
reported in Table 2. Each tooth segmentation was accomplished in 
approximately 10 min.

F I G U R E  1  Tooth region in the segmentation-based volumetric 
method. The image shows the upper hard tissue volume (UHTV) 
in green, upper root chamber volume (URCV) in red, lower root 
chamber volume (LRCV) in blue, and lower hard tissue volume 
(LHTV) in yellow. The cementoenamel junction defined the 
separation between the measured parameters. [Color figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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F I G U R E  2  Segmentation sequence 
used to calculate measured parameters 
volume. The segmentation starts from 
the upper root chamber volume (A, red) 
and upper hard tissue volume (B, Green). 
The section of volumetric segmentation 
was not overlapping (C, Axial View). The 
volumetric segmentation continued to 
the lower root chamber volume (D, Blue) 
and lower hard tissue volume (E, Yellow). 
The cross-sectional view of the fully 
segmented tooth represents secondary 
dentine and root resorption is presented 
in F. [Color figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  3  The placement of Region 
of Interest (ROI) (red box, A,B) and 
contour bubbles (green circle, C) in the 
ITK-SNAP sagittal section affects the final 
volumetric measurement accuracy. Note 
in A (red arrow) that the placement of the 
ROI in one slice outside the measured 
parameter will result in a correctly 
segmented region (C). In B (red arrow), the 
ROI is placed in the same position as the 
desired measured parameter, resulting 
in inaccuracy in segmentation with 
partially segmented crown hard tissue 
(E, red arrow). The bubble was placed 
outside the ROI (C, blue arrow), resulting 
in a volumetric label leak outside the 
measured parameter  
(F, blue arrow). [Color figure can be 
viewed at wileyonlinelibrary.com]

(A)

(B)

(C)

(D)

(E)

(F)

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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The overall trend between ratio parameters and CA are dis-
played in Figure 4. The trend between UTVR and LTVR to CA indi-
cated by the LOWESS line gives a different downtrend movement 
along with the increased CA.

The overall r-values were significant (p < 0.001) between all the 
ratio parameters to CA (Table 3). The r-value varies between −0.59 
and −0.69, with the highest r-value achieved by LTVR-C and the low-
est r-value by UTVR-C and LTVR-Ci.

The regression models displayed a varied performance between 
each tooth, with all parameters being significant (p < 0.05), except 
sex was only found to be significant in the C model after a polyno-
mial variable was introduced to the model (Table 4). In the multiple 
regression model, Li model gives the best R2 value of 0.67, and the 
Ci model shows the lowest R2 value of 0.59. No multicollinearity was 
detected in the multiple linear models given by the low VIF value 
(<5) [25]. VIM evaluation gives the highest value to LTVR in every 
multiple linear models.

Considering that all predictors were significant, a linear regres-
sion model can be derived from each measured parameter (Table 4). 
In the single predictor linear model, the highest R2 value was given 
by LTVR-Li (R2  =  0.56), and the lowest R2 value was provided by 
UTVR-C (R2 = 0.38). As observed in the multiple regression in the C 
model, a second-degree polynomial regression line can be derived 
for LTVR-C, resulting in an R2 value of 0.62.

4  |  DISCUSSION

Regressive morphological dental changes in adults are guided by 
time. Therefore, quantifying this process accurately could allow 
forensic odontologists to estimate dental age [26]. The accurate 
quantification can be achieved by observing volumetric features in 
CBCT [27, 28]. More recently, the practice of dental age estimation 
in adults using CBCT scans has become more common and dem-
onstrates satisfactory results when compared to more traditional 
2D methods [15, 29]. CBCT scans also eliminate image acquisition 
limitations that affect 2D imaging (ie mesiodistal or buccolingual 
visualization in radiographs). Dahal et al [30] endorses this finding 
by explaining that different periapical viewing angles can result in 
different R2 values.

Our current approach to segment tooth regions aims to under-
stand how each regressive morphological change differs from one 
another—namely, attrition, root resorption, and, most importantly, 
secondary dentine formation. This study suggests that segmenta-
tion may prove beneficial for age estimation in adults. In this re-
search, the ratio related to the root region (LTVR) was more closely 
correlated to CA. Previous studies have explored the value of pulp 
chamber reduction alongside CA. Oi et al [31] found that the func-
tional cusp has more secondary dentin than other tooth sites due 
to the heavier mastication activity. Nudel et al [32] stated that the 
secondary dentine formation begins in the crown region in older 
age. These findings support our current result that the UTVR had 
a reduced predictive performance since the secondary dentine TA
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F I G U R E  4  Relationship between chronological age (years) and ratio measurement in anterior maxillary tooth depicted by locally weighted 
scatterplot smoothing line. UTVR, upper tooth volume ratio; LTVR, lower tooth volume ratio; C, maxillary canine; Li, maxillary lateral incisor; 
Ci, maxillary central incisor. [Color figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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formation varied differently due to multiple external factors. These 
factors might have affected the secondary dentine formation in the 
crown region rather than the root region.

The LOWESS line in Figure  4 depicts a different relationship 
between UTVR and LTVR. It must be noted that the usage of the 
LOWESS line itself can be applied to visualize the trend of the re-
lationship between age-related parameters and CA—whether it is 
linear or nonlinear. A LOWESS line function uses data cluster weight 
to draw the correlation line; therefore, the movement of the line can 
accurately allow the visualization of the relationship between each 
parameter without including observer bias [33]. More importantly, 
the timing of the decline or sideways movement from the parameter 
can also be observed, contributing to the (non)linear model selection. 
Additionally, the relationship between each parameter and CA is dif-
ferent from one another. The nonlinear relationship was observed 
in LTVR-C, UTVR-Li, and LTVR-Ci, while UTVR-Ci, LTVR-Li, and 
UTVR-Ci had a linear relationship to CA. This distinction between 

each parameter is in-line with the findings of Johanson et al [7], in 
which each tooth part has a different r-value to CA. However, con-
trary to their findings, our root ratio parameter gives an overall bet-
ter result in the regression model. This observation can be explained 
by the utilization of ratios in our study parameters, combining the 
root resorption parameter and secondary dentine build-up in the 
pulp chamber. By using ratios, the measurement's reliability can be 
improved [34]. For example, when a tooth is tilted, the ROI will cal-
culate more volume in the measured parameter pairs (ie UHTV and 
URCV) as the ROI boundary will always be in the highest area of 
the CEJ seen in the sagittal view. However, a more optimized out-
come could emerge from a fully controlled scenario—where tooth 
angulation was uniform. However, this scenario does not reflect cur-
rent practice. We assessed the eventual bias of tooth angulation by 
measuring the correlation between sagittal tooth angles using Fiji 
ImageJ software (National Institutes of Health, Maryland, USA). This 
procedure had a quality-control purpose of guaranteeing that tooth 
angulation (tilting) would not affect our outcomes. No significant 
correlation between dental angulation and volumetric information 
was detected, accordingly [35]. We recommend that future studies 
examine the effect of tooth angulation on ratio parameters in each 
of the study cohorts.

In this research, sex did not play a significant part except for 
the C model. The inclusion of sex in the regression model in the 
previous studies was diverse. For example, the same approach 
using upper canine pulp volume by De Angelis et al [3] found that 
sex was not significant, but Kazmi et al [36] found the opposite. It 
is important to note that our inclusion of sex in the C model was 
only significant after a nonlinear variable was used in the LTVR-C 
parameter. Zilberman et al [37] found that in children (4–16 years 
old) that secondary dentin formation was greater in males, while 
our C model suggests that males have a slower progression of 
secondary dentin formation as indicated by the negative predic-
tion parameter (−3.961 years old for males). Although LTVR-Ci de-
picts a similar nonlinear movement to LTVR-C (Figure 4), adding 

TA B L E  3  Correlation matrix between ratio parameters in each 
tooth

Tooth CA UTVR LTVR

C CA – −0.59 −0.69

UTVR −0.59 – 0.43

LTVR −0.69 0.43 –

Li CA – −0.65 −0.63

UTVR −0.65 – 0.5

LTVR −0.63 0.5 –

Ci CA – −0.68 −0.59

UTVR −0.68 – 0.46

LTVR −0.59 0.46 –

Note: All correlation value is significant (p < 0.001).
Abbreviations: C, maxillary canine; Li, maxillary lateral incisor; Ci, 
maxillary central incisor; CA, chronological age; UTVR, upper tooth 
volume ratio; LTVR, lower tooth volume ratio.

TA B L E  4  Regression models for the observed teeth and ratio parameters

Tooth Predictors Model

Performance

R2 RMSE MAE

C UTVR-C, LTVR-C, & Sex 77.393−348.379 UTVR-C−565.709 
LTVR-C + 2140.073 (LTVR-C)2−3.961 s

0.66 6.88 5.45

UTVR-C 56.77−583.095 UTVR-C 0.38 9.3 7.5

LTVR-C 68.923−628.93 LTVR-C + 2217.17 (LTVR-C)2 0.62 7.5 5.83

Li UTVR-Li & LTVR-Li 63.09−301.38 UTVR-Li−204.65 LTVR-Li 0.67 6.67 5.3

UTVR-Li 57.31−475.26 UTVR-Li 0.44 8.6 7

LTVR-Li 55.95−271.38 LTVR-Li 0.56 7.76 6.27

Ci UTVR-Ci & LTVR-Ci 64.21−368.32 UTVR-Ci−214.41 LTVR-Ci 0.59 7.6 6.19

UTVR-Ci 59.48−568.93 UTVR-Ci 0.5 8.5 6.9

LTVR-Ci 58.4−337.25 LTVR-Ci 0.46 8.5 7.19

Abbreviations: C, maxillary canine; Li, maxillary lateral incisor; Ci, maxillary central incisor; UTVR, upper tooth volume ratio; LTVR, lower tooth 
volume ratio; s, sex (M = 1; F = 0); R2, coefficient of determination; RMSE, root mean squared error; MAE, mean average error.
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the quadratic or cubic LTVR-Ci variable did not improve the Ci 
model. The choice of using the normalization method (ie logarith-
mic transformation) [38] or the non-linear model when confronted 
with non-linear data needs to be considered when observing the 
secondary dentine formation concerning CA in adults.

An in-depth model evaluation was accomplished using VIF and 
VIM. VIF evaluates the multicollinearity in the model, a phenomenon 
that happens when two or more parameters in a regression model are 
highly correlated [39]. Reference VIF threshold values for multicol-
linearity are 10 [25]—or even 5 (with a more conservative approach) 
[40]. Nevertheless, our VIF value is smaller than both thresholds, 
indicating that UTVR and LTVR were independent of each other. 
Furthermore, the VIM value can quantitatively evaluate which pa-
rameter gives more predictive power in a multiple regression model, 
which is collectively found to be LTVR. Therefore, both evaluation 
methods need to be considered when building a regression model. 
Additionally, as each parameter is significantly correlated to CA, a 
single predictor regression model can be derived (Table 4). This addi-
tional model can be used if a tooth is fractured with the CEJ visible 
in the CBCT scan, for instance.

In conclusion, regressive morphological changes in the crown 
and root region were differently correlated to CA with linear and 
non-linear variations. The segmentation approach in volumetric den-
tal age estimation of adults proved to be beneficial in enhancing the 
reliability of the regression model. The segmentation of the tooth 
may offer a plethora of routine forensic applications, especially if 
teeth are found fractured or fragmented. Future research might 
consider independent evaluation of regressive dental morphological 
changes visible in radiographic imaging, such as enamel segmenta-
tion [41]. Furthermore, country-specific samples can be addressed 
as testing datasets to enable the external validation of the current 
approach.
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