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One Sentence Summary: We developed a coupled within-host and between-host mathematical 

model to identify viral shedding levels required for transmission of SARS-CoV-2 and influenza, 

and to explain why super-spreading events occur more commonly during SARS-CoV-2 

infection.  
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Abstract 8 

SARS-CoV-2 is difficult to contain because many transmissions occur during the pre-9 

symptomatic phase of infection. Moreover, in contrast to influenza, while most SARS-CoV-2 10 

infected people do not transmit the virus to anybody, a small percentage secondarily infect large 11 

numbers of people. We designed mathematical models of SARS-CoV-2 and influenza which link 12 

observed viral shedding patterns with key epidemiologic features of each virus, including 13 

distributions of the number of secondary cases attributed to each infected person (individual R0) 14 

and the duration between symptom onset in the transmitter and secondarily infected person 15 

(serial interval). We identify that people with SARS-CoV-2 or influenza infections are usually 16 

contagious for fewer than one day congruent with peak viral load several days after infection, 17 

and that transmission is unlikely below a certain viral load. SARS-CoV-2 super-spreader events 18 

with over 10 secondary infections occur when an infected person is briefly shedding at a very 19 

high viral load and has a high concurrent number of exposed contacts. The higher predisposition 20 

of SARS-CoV-2 towards super-spreading events is not due to its 1-2 additional weeks of viral 21 

shedding relative to influenza. Rather, a person infected with SARS-CoV-2 exposes more people 22 

within equivalent physical contact networks than a person infected with influenza, likely due to 23 

aerosolization of virus. Our results support policies that limit crowd size in indoor spaces and 24 

provide viral load benchmarks for infection control and therapeutic interventions intended to 25 

prevent secondary transmission.26 
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Introduction 27 

 28 

The SARS-CoV-2 pandemic is an ongoing tragedy that has caused 700,000 deaths and 29 

massively disrupted the global economy. The pandemic is rapidly expanding in the United States 30 

and is re-emerging focally in many countries that had previous success in limiting its spread.1  31 

 Two features have proven challenging in containing outbreaks. First, most transmissions 32 

occur during the pre-symptomatic phase of infection.2 Underlying this observation is a highly 33 

variable incubation period, defined as time between infection and symptom onset, which often 34 

extends beyond an infected person’s peak viral shedding.3  35 

Second, there is substantial over-dispersion of the basic reproduction number (R0) for an 36 

individual infected with SARS-CoV-2,4 meaning that most infected people do not transmit at all, 37 

while a minority may transmit to dozens of people, with the average, population R0 achieving a 38 

high enough level (>1) to allow exponential growth of cases in the absence of an effective 39 

intervention.5 Approximately 10-20% of infected people account for 80% of SARS-CoV-2 40 

transmissions.4,6 Super-spreader events, in which the duration of contact between a single 41 

transmitter and large number of secondarily infected people is often limited to hours, are well 42 

documented.7,8 This pattern is not evident for influenza which has more homogeneous individual 43 

transmissions numbers.9,10 Differing shedding kinetics between the two viruses might explain 44 

this distinction; SARS-CoV-2 is often present intermittently in the upper airways for many 45 

weeks,11,12 while influenza is rarely shed for more than a week.13 Alternatively, SARS-CoV-2 46 

aerosolization may predispose to wider exposure networks given the presence of an infected 47 

person in a crowded indoor space. 48 
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Viral load is recognized as a strong determinant of transmission risk. For influenza, the 49 

dose of viral exposure is related to the probability of infection in human challenge studies,14 and 50 

early treatment reduces household transmission.15,16 Household shedding of human herpesvirus-6 51 

is closely linked to subsequent infection in newborns,17 and infants shedding high levels of 52 

cytomegalovirus in the oropharynx predictably transmit the virus back to their mothers.18  53 

The epidemiology of viral infections can also be perturbed by biomedical interventions 54 

that lower viral load at mucosal transmission surfaces. Reduction of genital herpes simplex virus-55 

2 shedding with antiviral treatments decreases probability of transmission.19 Suppressive 56 

antiretroviral therapy (ART) for HIV virtually eliminates the possibility of partner-to-partner 57 

sexual transmission and has limited community transmission dramatically.20,21 58 

These concepts are relevant for SARS-CoV-2 infection and require urgent attention as the 59 

pandemic continues to wreak havoc. Early therapies that lower peak viral load may reduce the 60 

severity of COVID-19 but may also decrease the probability of transmission and of super-61 

spreader events.22 Similarly, the effectiveness of policies such as limiting mass gatherings, and 62 

enforcing mask use can be directly evaluated by their ability to reduce exposure viral load and 63 

transmission risk.23 Here we developed a transmission simulation framework to capture the 64 

contribution of viral load to observed epidemiologic transmission metrics for influenza and 65 

SARS-CoV-2 and used this approach to explain why SARS-CoV-2 is predisposed to super-66 

spreading events.  67 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2020. .https://doi.org/10.1101/2020.08.07.20169920doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.07.20169920
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 68 

 69 

Overall approach. We designed a series of steps to estimate the viral load required for SARS-70 

CoV-2 and influenza transmission, as well as conditions required to explain the observed over- 71 

dispersion of secondary infections (individual R0) and frequent super-spreader events associated 72 

with SARS-CoV-2 but not influenza. This process included within-host modeling of viral loads, 73 

simulations of exposures and possible transmissions based on various transmission dose response 74 

curves, testing of various parameter sets against epidemiologic data and exploratory analyses 75 

with the best fitting model (Fig S1).  76 

 77 

Within-host mathematical model of SARS CoV-2 shedding. First, we used our previously 78 

developed within-host mathematical model (equations in the Methods),24 to generate plausible 79 

viral load patterns in the upper airway of an infected person or transmitter who could potentially 80 

transmit the virus to others (Fig 1, Fig S2a). Briefly, the model captures observed upper airway 81 

viral kinetics from 25 people from four different countries.25-28 Key observed features include an 82 

early viral peak followed by a decelerating viral clearance phase, which in turn leads to a 83 

temporary plateau at a lower viral load, ultimately followed by rapid viral elimination. Our 84 

model captures these patterns by including a density dependent term for early infected cell 85 

elimination and a nonspecific acquired immune term for late infected cell elimination. 86 

 One limitation of our model is that only half of study participants provided longitudinal 87 

viral load data from the very early days of infection when COVID-19 is often pre-symptomatic. 88 

Therefore, the model's output is most reliable for later time points. In particular, we have somewhat 89 

limited information on viral expansion rate and duration of peak shedding. To impute possible 90 
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variability, we generated a set of heterogeneous shedding curves in which the viral upslope, the 91 

downslope of viral load after peak and the viral load during plateau phase were varied (Fig S2b). 92 

Overall, the model generated several distinct patterns of infection: rapid elimination after the initial 93 

peak, a prolonged plateau phase with a low viral load, and a prolonged plateau phase with higher 94 

viral load. We simulated the transmission model with and without imputed heterogeneity.  95 

 96 

 97 

 98 
 99 
Fig 1. SARS-CoV-2 and influenza transmission model schematic. In the above cartoon, the 100 
transmitter has 2 exposure events at discrete timepoints resulting in 7 total exposure contacts and 101 
3 secondary infections. Transmission is more likely at the first exposure event due to higher 102 
exposure viral load. To model this process, the timing of exposure events and number of exposed 103 
contacts is governed by a random draw from a gamma distribution which allows for heterogeneity 104 
in number of exposed contacts per day (Fig S3). Viral load is sampled at the precise time of each 105 
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exposure event. Probability of transmission is identified based on the product of two dose curves 106 
(Fig S2C, D) which capture contagiousness (probability of viral passage to an exposure contact’s 107 
airway) and infectiousness (probability of transmission given viral presence in the airway). 108 
Incubation period (Fig S4) of the transmitter and secondarily infected person is an input into each 109 
simulation and is depicted graphically. Individual R0 is an output of each simulation and is defined 110 
as the number of secondary infections generated by an infected individual. Serial interval is an 111 
output of each simulated transmission and is depicted graphically. 112 
 113 

 114 

Transmission dose response curves. We defined an exposure event in very specific biologic terms 115 

as a discrete event consisting of sufficient contact in time and space between a transmitter and one 116 

or more uninfected persons (exposure contacts) to allow for the possibility of a successful 117 

transmission. We next designed hundreds of dose response curves which separately predict 118 

contagiousness (CD curves) and infectiousness (ID curves) at a certain viral dose given an 119 

exposure contact. Contagiousness is defined as the viral load dependent probability of passage of 120 

virus-laden droplets or airborne particles from the airways of a potential transmitter to the airway 121 

of an exposure contact. Infectiousness is defined as the viral load dependent probability of 122 

transmission given direct airway exposure to virus in an exposure contact. Transmission risk is the 123 

product of these two mechanistic probabilities derived from the ID and CD curves and results is a 124 

transmission dose (TD) response curve. Each CD or ID curve is defined by its ID50 (l) or viral 125 

load at which contagion or infection probability is 50% (Fig S2c), as well as its slope (a) (Fig 126 

S2d).29 The TD50 is defined as viral load at which there is 50% transmission probability. We 127 

assumed equivalent curves for contagiousness and infectiousness for model fitting purposes. We 128 

also considered a simpler model with only a single TD curve (for infectiousness) and obtained 129 

qualitatively similar results (Supplement and Methods). Our model is inclusive of the hypothesis 130 

that viral load is not a key determinant of transmission when a<<1 (Fig S2d). 131 

 132 
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Exposure contact rate simulations. We introduced heterogeneity of exposure contact rates among 133 

possible transmitters by randomly selecting from a gamma distribution defined by mean number 134 

of exposure contacts per day (q) and a scaling factor (𝜌) that controls daily variability (Fig S3).  135 

 136 

Transmission simulations. For each defined exposure contact, viral load in the transmitter was 137 

sampled and transmission risk was then identified based on the product of the CD and ID curves, 138 

or the TD curve (Fig S2e, f; Fig 1). Based on these probabilities, we stochastically modeled 139 

whether a transmission occurred for each exposure contact. This process was repeated when there 140 

were multiple possible exposure events within a given discretized time interval and the total 141 

number of exposures and transmissions within that interval was calculated.  142 

For each successful transmission, we assumed that it takes 𝜏 days for the first infected cell 143 

to produce virus. To inform simulated values of serial interval (SI or time between symptom onset 144 

in the secondarily infected and transmitter), we randomly selected the incubation period (IP), for 145 

both the transmitter and the newly infected person, from a gamma distribution based on existing 146 

data (Fig S4a).3,30 Incubation period was defined as time from infection to the time of the onset of 147 

symptoms, where the mean incubation for SARS-CoV-2 is 5.2 days compared to 2 days for 148 

influenza.3,9,30 149 

 150 

Model fitting. In order to identify the parameter set that best recapitulated the observed data, we 151 

then simulated several hundred thousands of parameter sets with ~250 possible TD curves 152 

defined by ID50 and CD50 (l) and slope (a), along with ~180 combinations of the mean 153 

exposed contact rate per day (𝜃) and associated variance parameter (𝜌), and values of 𝜏 ∈154 

[0.5, 1, 2, 3] days. We aimed to identify the parameter set that best recapitulated the following 155 
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features of the observed epidemiologic and individual-level data for SARS-CoV-2: mean R0 156 

across individuals (R0 ∈ [1.4, 2.5]),3,4,6,31,32 mean serial interval across individuals (SI ∈157 

[4.0, 4.5]),3,31,33  cumulative distribution functions of individual R0,4,6,34-36 and cumulative 158 

distribution functions of serial intervals derived from SARS-CoV-2 transmission pair studies that 159 

were conducted early during the pandemic,31 prior to any confounding influence of social 160 

distancing measures. Here, we define individual R0 as the total number of secondary 161 

transmissions from the transmitter in a fully susceptible population (Methods). Given that viral 162 

RNA is composed mostly of non-infectious material, we further checked the closeness of the 163 

solved ID curve with the observed relationship between viral RNA and probability of positive 164 

viral culture from a longitudinal cohort of infected people.37  165 

 166 

Influenza modeling. Next, we performed equivalent analyses for influenza to explain the lower 167 

frequency of observed super-spreader events with this infection. Influenza viral kinetics were 168 

modelled using a previously data-validated model.38 Incubation periods for influenza are lower 169 

and less variable than for SARS-CoV-2 and were randomly selected for each simulation of the 170 

model using a gamma distribution (Fig S4b).39 We again fit the model to: mean R0 across 171 

individuals (R0 ∈ [1.1, 1.5]),40-42 mean serial interval (SI ∈ [2.9, 4.3]),9 cumulative distribution 172 

functions of individual R0 corresponding to the 2008-2009 influenza A H1N1 pandemic with 173 

mean R0=1.26 and dispersion parameter=2.36 in the negative binomial distribution, and 174 

cumulative distribution functions of serial intervals.9,10,40 175 

 176 

Model-predicted individual R0 and serial intervals for SARS-CoV-2 infection.  A single model 177 

parameter set ([𝛼, 𝜆, 𝜏, 𝜃, 𝜌] = [0.8, 107, 0.5, 4, 40]) most closely reproduced empirically 178 
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observed individual R0 and serial interval histograms (Fig 2a, c) and cumulative distribution 179 

functions (Fig 2b, d). We re-ran the model to fit to a higher population R0 of 2.8 and arrived at a 180 

similar set of parameter values but with a higher daily rate of exposure contacts ([𝛼, 𝜆, 𝜏, 𝜃, 𝜌] = 181 

[0.8, 107.5, 0.5, 20, 30]). Despite assuming that each infected person sheds at a high viral load for 182 

a period of time (Fig 1, Fig S2b), the model captured the fact that ~75% of 10,000 simulated 183 

transmitters do not infect any other people and that each increase in the number of possible 184 

transmissions is associated with a decreasing probability (Fig. 2a).  185 

 186 

 187 
 188 
Fig 2. SARS-CoV-2 transmission model fit. A. Simulated and actual frequency histograms of 189 
individual R0 values, B. Simulated and actual cumulative distribution of individual R0 values. C. 190 
Simulated and actual frequency histograms of individual serial intervals, D. Simulated and actual 191 
cumulative distribution of individual serial intervals. E. Frequency distribution of simulated 192 
generation times. 193 
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 194 

 SARS-CoV-2 viral load was recently measured with viral RNA levels and mapped to 195 

concurrent probability of positive viral culture in a Dutch cohort.37 Our model output 196 

demonstrated a nearly equivalent infectious dose response curve if we multiplied modeled viral 197 

RNA levels by 25 (Fig S5): this adjustment was likely necessary because viral loads in the Dutch 198 

study participants were notably higher than those in German, Singaporean, Korean and French 199 

participants used in our intra-host model fitting.25-28,37 200 

The model also generated super-spreader events with 10,000 simulated transmissions 201 

(Fig. 2b). If super-spreaders are defined as those who produce at least 5 secondary infections, we 202 

estimate that ~10% of all infected people and ~35% of all transmitters are super-spreaders. If 203 

super-spreaders are defined as those who produce at least 10 secondary infections, we estimate 204 

that ~6% of all infected people and ~25% of all transmitters are super-spreaders. If super-205 

spreaders are defined as those who produce at least 20 secondary infections, we estimate that 206 

~2.5% of all infected people and ~10% of all transmitters are super-spreaders. If super-spreaders 207 

are defined as those producing ≥5, ≥10, or ≥20 secondary infections, the contribution to all 208 

secondary infections is estimated at ~85%, ~70%, or ~44%, respectively (Table 1). 209 

The model also recapitulated the high variance of the serial interval observed within 210 

SARS-CoV-2 transmission pairs, including negative values observed in the data (Fig 2c, d). We 211 

next projected generation time, defined as the period between when an individual becomes 212 

infected and when they transmit the virus, for all transmission pairs and identified that the mean 213 

serial interval (4.4 days) provides an accurate approximation of mean generation time. However, 214 

the variance of generation time was considerably lower and by definition does not include 215 
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negative values. A majority of generation times fell between 4 and 7 days, compared to -5 to 12 216 

days for the serial interval (Fig 2e).  217 

 218 

Super-
spreader 
definitions 

SARS-CoV-2 Influenza 

All 
infected 
people 

All 
transmitters 

Contribution 
of super-
spreaders to 
transmissions 

All 
infected 
people 

All 
transmitters 

Contribution 
of super-
spreaders to 
transmissions 

Individual 
R0≥5 ~10% ~35% ~85% ~2% ~3% ~10% 

Individual 
R0≥10 ~6% ~25% ~70% ~0% ~0% ~0% 

Individual 
R0≥20 ~2.5% ~10% ~44% ~0% ~0% ~0% 

 219 
Table 1: Prevalence of super-spreaders among transmitters, and contribution of super-220 
spreading events to all SARS-CoV-2 and influenza transmissions. Estimates are from 10,000 221 
simulations. 222 
 223 

 224 

Viral load thresholds for SARS-CoV-2 transmission. The optimized ID curve has an ID50 of 225 

107 viral RNA copies and a moderately steep slope (Fig 3a). The TD50 for SARS-CoV-2 was 226 

slightly higher at 107.5 viral RNA copies (Fig 3a). To assess the impact of these parameters on 227 

transmission, we performed simulations with 10,000 transmitters and concluded that 228 

transmission is very unlikely (~0.00005%) given an exposure to an infected person with an upper 229 

airway viral load of <104 SARS-CoV-2 RNA copies, and unlikely (~0.002%) given an exposure 230 

to an infected person with a viral load of <105 SARS-CoV-2 RNA copies. On the other hand, 231 

transmission is much more likely (39%) given an exposure to an infected person who is shedding 232 

>107 SARS-CoV-2 RNA copies, and 75% given an exposure to an infected person with a viral 233 
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load of >108 SARS-CoV-2 RNA copies. We obtain similar results (not shown) when we solve 234 

our model using the assumption of homogeneous viral load trajectories as in Fig S2a. 235 

 236 

 237 
 238 
Fig 3. SARS-CoV-2 transmission probability as a function of shedding. A. Optimal 239 
infectious dose (ID) response curve (infection risk = Pt) and transmission dose (TD) response 240 
curve (transmission risk = Pt * Pt) curves for SARS-CoV-2. Transmission probability is a product 241 
of two probabilities, contagiousness and infectiousness (Fig 1). B-D. Three simulated viral 242 
shedding curves. Heat maps represent risk of transmission at each shedding timepoint given an 243 
exposed contact with an uninfected person at that time. 244 
 245 

 246 

Narrow duration of high infectivity during SARS-CoV-2 infection. We next plotted the 247 

probability of infection given an exposure to a transmitter. Under multiple shedding scenarios, 248 

the window of high probability transmission is limited to time points around peak viral load, and 249 

some heterogeneity in regard to peak infectivity is noted between people (Fig 3b-d).  In general, 250 

infected persons are likely to be most infectious (i.e., above TD50) for a ~0.5-1.0-day period 251 
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between days 2 and 6 after infection. We therefore conclude that the observed wide variance in 252 

serial interval (Fig 2c) results primarily from the possibility of highly discrepant incubation 253 

periods between the transmitter and infected person, rather than wide variability in shedding 254 

patterns across transmitters. 255 

 256 

 257 
 258 
Fig 4. Conditional requirements for SARS-CoV-2 superspreading events. A. Heatmap 259 
demonstrating the maximum number of feasible secondary infections per day from a transmitter 260 
given an exposure viral load on log10 scale (x-axis) and number of exposed contacts per day (y-261 
axis). The exposed contact network allows a maximum of 150 exposed contacts per day (black 262 
dotted line) which is sufficient for multiple transmissions from a single person per day. B. 10,000 263 
simulated transmitters followed for 30 days. The white space is a parameter space with no 264 
transmissions. Each dot represents the number of secondary transmissions from a transmitter per 265 
day. Input variables are log10 SARS-CoV-2 on the start of that day and number of contact 266 
exposures per day for the transmitter. There are 1,154,001 total exposure contacts and 15,992 267 
total infections. C. 10,000 simulated infections with percent of infections due to exposure viral 268 
load binned in intervals of 0.5 intervals on log10 scale (x-axis) and number of exposed contacts 269 
(y-axis).   270 
 271 

 272 

Requirements for SARS CoV-2 super-spreader events. The solved value for exposed contact 273 

network heterogeneity (r) is 40 indicating high variability in day-to-day exposure contact rates 274 

(Fig S3d) with a high average number of exposed contacts per day (q=4). We generated a heat 275 

map from our TD curve to identify conditions required for super-spreader events which included 276 

viral load exceeding 107 SARS CoV-2 RNA copies and a high number of exposure contacts on 277 

that day. We observed an inflection point between 106 and 107 SARS CoV-2 RNA copies where 278 
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large increases in the number of daily exposure contacts had a more limited impact on increasing 279 

the number of transmissions from a single person (Fig 4a). The exposure contact network 280 

occasionally resulted in days with ≥150 exposure contacts per day, which may allow an 281 

extremely high number of secondary infections from a single person (Fig 4a).  282 

 We next plotted transmission events simulated on a daily basis over 30 days since 283 

infection, from 10,000 transmitters, according to viral load at exposure and number of exposure 284 

contacts on that day (Fig 4b). Secondary transmissions to only 1-3 people occurred almost 285 

exclusively with daily numbers of exposure contacts below 10 with any exposure viral load 286 

exceeding 106 RNA copies or with higher numbers of exposure contacts per day and viral loads 287 

exceeding 105 RNA copies. Massive super-spreader events with over 50 infected people almost 288 

always occurred at viral loads exceeding 107 RNA copies with high levels of concurrent 289 

exposure contacts (Fig 4b).  290 

We next identified that over 50% of secondary infections were associated with a 291 

transmitter who has a high number of exposed contacts (11-100 per day) and a viral load 292 

exceeding 106 RNA copies (Fig 4c), which is the mechanistic underpinning of why ~70% of all 293 

secondary infections arose from transmitters who produced more than 10 secondary infections 294 

(Table 1).  295 

 296 

Model predicted individual R0 and serial intervals for influenza infection. A single model 297 

parameter set most closely reproduced empirically observed histograms and cumulative 298 

distribution functions for individual R0 and serial intervals for influenza: (𝛼, 𝜆, 𝜏, 𝜃, 𝜌) = (0.7, 299 

105.5, 0-0.5, 4, 1). ID50 values for influenza were lower than SARS CoV-2, but a direct 300 

comparison cannot be made because tissue culture infectious dose (TCID) has been more 301 
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commonly used for measurements of influenza viral load, whereas viral RNA is used for SARS-302 

CoV-2. Nevertheless, TCID is a closer measure of infectious virus and it is thus reasonable that 303 

ID50 based on TCID for influenza would be ~30-fold lower than ID50 based on total viral RNA 304 

(infectious and non-infectious virus) for SARS-CoV-2.37 305 

 306 

 307 
 308 
Fig 5. Influenza transmission model fit. A. Simulated and actual frequency histograms of 309 
individual R0 values, B. Simulated and actual cumulative distribution of individual R0 values. C. 310 
Simulated and actual frequency histograms of individual serial intervals, D. Simulated and actual 311 
cumulative distribution of individual serial intervals. E. Frequency distribution of simulated 312 
generation times.   313 

 314 

 315 

The other notable difference was a considerably lower 𝜌 value for influenza (Fig S3b), 316 

denoting much less heterogeneity in the number of exposure contacts per person while the 317 

average daily exposure contact was the same for both viruses (4 per day). The model captures the 318 
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fact that 40% of influenza infected people do not transmit to anyone else and that each increase 319 

in the number of individual transmissions is associated with a lower probability (Fig. 5a). 320 

Relative to SARS-CoV-2, super-spreader events involving 5 or more people were predicted to be 321 

5-fold less common overall and 10-fold less common among transmitters (~2% of all infected 322 

people and ~3% of transmitters) (Fig. 5b, Table 1). Super-spreaders defined as those infecting 323 

≥5 individuals contributed to only ~10% to all transmissions (Table 1). 324 

The model also recapitulated the lower variance of serial interval for influenza relative to 325 

SARS-CoV-2 (Fig 5c, d). We next identified that the mean and variance of the serial interval 326 

provide good approximations of the mean and variance for generation time. A majority of 327 

generation times fell between 2 and 6 days (Fig 5e).  328 

 329 
 330 
Fig 6. Influenza transmission probability as a function of shedding. A. Optimal infectious 331 
dose (ID) response curve (infection risk = Pt) and transmission dose (TD) response curve 332 
(transmission risk = Pt * Pt) curves for influenza. Transmission probability is a product of two 333 
probabilities, contagiousness and infectiousness (Fig 1). B-D. Three simulated viral shedding 334 
curves. Heat maps represent risk of transmission at each shedding timepoint given an exposed 335 
contact with an uninfected person at that time. 336 
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 337 

Viral load thresholds for influenza transmission. Based on the optimized TD curve for 338 

influenza (Fig 6a), we next plotted the probability of infection given an exposure to an infected 339 

person. The TD50 for influenza was 106.1 TCID/mL. Under various shedding scenarios, the 340 

window of high probability transmission was limited to time points around peak viral load (Fig 341 

6b-d).  In general, infected persons were likely to be most infectious (i.e., above TD50) for a 342 

~0.5-1.0 days period. The observed low variance in serial interval (Fig 5c) resulted primarily 343 

from the narrow range of incubation periods within the transmitter and secondarily infected 344 

person, as well as the limited variability in shedding patterns across transmitters. 345 

 346 

 347 
 348 
Fig 7. Conditional requirements for influenza super spreading events. A. Heatmap 349 
demonstrating the maximum number of secondary infections per day feasible from a transmitter 350 
given an exposure viral load on log10 scale (x-axis) and number of exposed contacts per day (y-351 
axis). The exposed contact network allows a maximum of 15 exposed contacts per day (black 352 
dotted line) which is not sufficient for more than 15 transmissions from a single person per day. 353 
B. 10,000 simulated transmitters followed for 30 days. The white space is a parameter space with 354 
no transmissions. Each dot represents the number of secondary transmissions from a transmitter 355 
per day. Input variables are log10 influenza TCID on the start of that day and number of contact 356 
exposures per day for the transmitter. There are 1,239,984 total exposure contacts and 11,141 357 
total infections. C. 10,000 simulated infections with percent of infections due to exposure viral 358 
load binned in intervals of 0.5 intervals on log10 scale (x-axis) and number of exposed contacts 359 
(y-axis).   360 
 361 

Determinants of influenza individual R0. We generated a heat map from our TD curve to 362 

identify conditions governing influenza transmission to multiple people including viral load 363 
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exceeding 106 influenza TCID and a high number of exposure contacts per day. The contact 364 

network never resulted in days with more than 15 exposure contacts per day, which severely 365 

limited the possible number of transmissions from a single person relative to SARS-CoV-2 (Fig 366 

7a, S3b). 367 

We plotted transmission events simulated on a daily basis over 30 days since infection 368 

from 10,000 transmitters according to viral load at exposure and number of exposure contacts on 369 

that day (Fig 7b). Secondary transmissions to fewer than 5 people accounted for 90% of 370 

infections (Table 1) and occurred with fewer than 10 daily exposure contacts and exposure viral 371 

loads exceeding 104 TCID. Small scale super-spreader events with 5-10 infected people almost 372 

always occurred at viral loads exceeding 105 TCID with 5-10 concurrent exposure contacts (Fig 373 

7b).  374 

We next identified that over 50% of infections were associated with a transmitter who 375 

had fewer than 10 exposure contacts per day and a viral load exceeding 104.5 TCID (Fig 7c), 376 

which is why no infected person ever transmitted to more than 10 other people (Table 1).  377 

 378 

Differing exposed contact distributions, rather than viral kinetics, explain SARS CoV-2 super-379 

spreader events. We sought to explain why SARS-CoV-2 has a more over-dispersed distribution 380 

of individual R0 relative to influenza.  To assess viral kinetics as a potential factor, we 381 

comparatively plotted transmission risk per exposure contact as a function of time since infection 382 

in 10,000 transmitters for each virus. The median per contact transmission risk was slightly 383 

higher for influenza; however, 75% and 95% transmission risks were marginally higher for 384 

SARS-CoV-2 compared to influenza with slightly higher peak transmission risk, and a longer tail 385 

of low transmission risk beyond 7 days (Fig 8a). The transmission risk was considerably higher 386 
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for the 25% of simulated SARS-CoV-2 infections with the highest viral loads, suggesting that a 387 

substantial subset of infected people may be more pre-disposed to super-spreading. When plotted 388 

as time since onset of symptoms, the variability in transmission potential was considerably larger 389 

for persons with high SARS-CoV-2 viral load, owing to the variable incubation period of this 390 

virus (Fig 8b).  391 

 392 

 393 
 394 
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Fig 8. Differing transmission contact distributions, rather than viral kinetics explain SARS 395 
CoV-2 super spreader events. A. Simulated transmission risk dynamics for 10,000 infected 396 
persons with SARS-CoV-2 and influenza.  Solid line is median transmission risk. Dark, dotted 397 
line is transmission risk of 75th percentile viral loads, and light dotted line is transmission risk of 398 
95th percentile viral loads. B. Same as A but plotted as transmission risk since onset of 399 
symptoms. Highest transmission risk for SARS-Co-V-2 is pre-symptoms and for influenza is 400 
post symptoms.  C. Boxplots of duration of time spent above TD10, TD25, TD50, TD75 and 401 
TD90 for 10,000 simulated SARS-CoV-2 and influenza shedding episodes. TD10, TD25, TD50, 402 
TD75 and TD90 are viral loads at which transmission probability is 10%, 25%, 50%, 75% and 403 
90% respectively. The midlines are median values, boxes are interquartile ranges (IQR), and 404 
datapoints are outliers. Superimposed probability distributions of: D & E. number of 405 
transmission contacts per day, F. individual R0, G. serial interval and H. generation time for 406 
influenza and SARS-CoV-2. 407 
 408 

 409 

The median duration of shedding over infectivity thresholds was short and nearly 410 

equivalent for both viruses. For SARS-CoV-2 and influenza, median [range] time above ID10 411 

was 2.7 [0, 7] and 2.4 [1.6, 3.7] days respectively; median time above ID25 was 1.7 [0, 3] and 412 

1.5 [0, 2.2]  days respectively; median time above ID50 was 0.8 [0, 1.3] and 0 [0, 1.3] days 413 

respectively; median time above ID75 was 0 [0, 0.4] and 0 [0, 0] days respectively; median time 414 

above ID90 was 0 [0, 0] and 0 [0, 0] days respectively. ID10, ID25 and ID50 values were more 415 

variable across SARS-CoV-2 simulations due to a minority of trajectories with prolonged 416 

moderate viral loads.  417 

For SARS-CoV-2 and influenza, median [range] time above TD10 was 1.4 [0, 2.5] and 418 

1.2 [0, 2.0] days respectively; median time above TD25 was 0.8 [0, 1.3] and 0.3 [0, 1.3]  days 419 

respectively; median time above TD50 was 0 [0, 0.5] and 0 [0, 0.4] days respectively; median 420 

time above TD75 was 0 [0, 0] and 0 [0, 0] days respectively. TD10, TD25 and TD50 values were 421 

more variable across SARS-CoV-2 simulations due to a minority of trajectories with prolonged 422 

moderate viral loads (Fig 8c). 423 
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 We next plotted the frequency of exposure contacts per day for both viruses and noted a 424 

higher frequency of days with no exposed contacts (Fig 8d), but also a higher frequency of days 425 

with more than 10 exposure contacts (Fig 8e) for SARS-CoV-2 relative to influenza, despite an 426 

equivalent mean number of daily exposure contacts. To confirm that this distribution drives the 427 

different observed distributions of individual R0 values (Fig 8f), we simulated SARS-CoV-2 428 

infection with an assumed 𝜌=1 and generated a distribution of individual R0 similar to that of 429 

influenza (Fig S6a). Similarly, we simulated influenza infection with an assumed 𝜌=40 and 430 

generated a distribution of individual R0 similar to that of SARS-CoV-2 (Fig S6b). Under all 431 

scenarios, predicted distributions of serial interval (Fig 8g, Fig S6) and generation time (Fig 8h, 432 

Fig S6) were unchanged by shifts in the exposed contact network. 433 

 434 

Projections of targeted physical distancing. Physical distancing is a strategy to decrease R0. We 435 

simulated a decrease in the contact rate uniformly across the population and noted a decrease in 436 

population R0 (Fig S7a) as well the percent of infected people who will transmit (Fig 7b) and 437 

become super-spreaders (Fig S7c-d). An approximately 40% decrease in the average exposed 438 

contact rate decreased R0 below 1 (Fig S6a). We further investigated whether lowering contact 439 

rate among larger groups only, in particular by banning exposure events with a high number of 440 

exposure contacts, could control the epidemic. We identified that limiting exposure contacts to 441 

no more than 5 per day is nearly equivalent to limiting exposure contacts altogether and that only 442 

a small decrease in mean exposure contact rate can achieve R0<1 if exposure events with less 443 

than 20 contacts are eliminated (Fig S8).  444 

 445 
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Pre-symptomatic transmission and super-spreading risk. Much of the highest transmission risk 446 

for SARS-CoV-2 exists in the pre-symptomatic phase (Fig8b) which explains why 62% of 447 

simulated transmissions occurred in the pre-symptomatic phase for SARS-CoV-2, compared to 448 

10% for influenza. Similarly, 62% and 21% of SARS-CoV-2 and influenza super-spreader 449 

events with secondary transmissions ≥5 and 39% of SARS-CoV-2 super-spreader events with 450 

secondary transmissions R0≥10 fell in the pre-symptomatic period.  451 
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Discussion 452 

Our results demonstrate that SARS-CoV-2 shedding kinetics are directly linked to the 453 

virus’ most fundamental epidemiologic properties. First, we identify a transmission dose 454 

response curve which specifies that a nasal viral load below 105 RNA copies is unlikely to 455 

commonly result in transmission. For SARS-CoV-2, this threshold is consistent with the overall 456 

rarity of positive cultures at these levels.37 We also predict a relatively steep TD curve such that 457 

transmission becomes much more likely when shedding exceeds 108 viral RNA copies and there 458 

is an exposure contact between an infected person and susceptible person. The amount of viral 459 

RNA can be roughly converted to the probability of a positive viral culture which approximates 460 

infectiousness. Our results therefore have relevance for dosing of SARS-CoV-2 in human 461 

challenge experiments that are being considered for vaccine trials. 462 

While the duration of shedding for SARS-CoV-2 is often three weeks or longer,11,12 we 463 

predict that the duration of shedding above thresholds required for a moderate probability of 464 

transmission per contact is much shorter, often less than half a day, and is comparable to that of 465 

influenza. While transmission after the first week of infection is quite rare, our model is 466 

consistent with the observation that transmissions commonly occur during the pre-symptomatic 467 

phase of infection,2 given the highly variable incubation period associated with SARS-CoV-2.  468 

The observed high heterogeneity in serial interval is attributable almost entirely to the 469 

variable nature of the incubation period, rather than transmission occurring extremely late after 470 

infection. While our estimate for mean generation time is equivalent to that of mean serial 471 

interval, it is notable that the range of SARS-CoV-2 serial intervals is much wider than the range 472 

of generation times. This result is evident even though we built substantial heterogeneity into our 473 

viral shedding curves beyond that observed in the somewhat limited existing shedding data.  474 
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The finding of limited duration of SARS-CoV-2 infectivity has practical implications. 475 

First, considerable resources are being used in hospitals and skilled nursing facilities to isolate 476 

patients with persistent SARS-CoV-2 shedding. We propose that a low nasal viral load, 477 

particularly during late infection, need not justify full patient isolation procedures in the absence 478 

of aerosolizing procedures. This observation could save substantial hospital resources and 479 

valuable isolation beds during subsequent waves of infection. Similar considerations are relevant 480 

for employees wishing to return to work. Our results also suggest that time since first positive 481 

test may be predictive of lack of contagion, though more viral load kinetic studies will be needed 482 

to confirm the existing observation that viral loads after a week of infection are usually low and 483 

associated with negative viral cultures.37 Finally, our conclusions are supportive of rapid, less 484 

sensitive assays which are more likely to detect infection at periods of contagion.43 485 

 Many of these conclusions, including specific viral load thresholds for transmission, a 486 

steep dose response curve and a maximum 2-day duration of contagion within an infected 487 

individual are equally relevant for influenza infection. One important difference is that 488 

incubation periods for influenza are far less variable which means that at the individual level, the 489 

serial interval is much more likely to be predictive of the generation time.  490 

 Another finding is that SARS-CoV-2 super-spreading events are dependent on a large 491 

number of exposure contacts during the relatively narrow 1-2 days window during which a ~25% 492 

subset of infected people is shedding at extremely high levels above the TD50. Because we 493 

predict that super-spreader potential may be somewhat of a generalized property of infection, 494 

rather than a characteristic of a tiny subset of infected people, this result also has practical 495 

implications. A common experience during the pandemic has been early identification of a 496 

cluster of infected people within a specific confined environment such as a senior living home, 497 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2020. .https://doi.org/10.1101/2020.08.07.20169920doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.07.20169920
http://creativecommons.org/licenses/by-nc-nd/4.0/


crowded work environment, athletic team, or restaurant. Our results demonstrate that newly 498 

diagnosed people within small clusters may be past the peak of their super-spreading potential. 499 

At this stage, many more infections have often been established and drastic quarantine 500 

procedures should be considered. Other undiagnosed, pre-symptomatic infected people may have 501 

super-spreader potential while the known infected person is no longer contagious, highlighting 502 

the importance of effective contact tracing. 503 

At the prevention level, school opening and work opening strategies should focus on 504 

severely limiting the possible number of exposure contacts per day. Where large numbers of 505 

exposure contacts are unavoidable, mandatory masking policies, perhaps with N95 masks that 506 

may more significantly lower exposure viral loads should be considered.23  507 

 Influenza infection is much less predisposed to super-spreader events than SARS-CoV-2.  508 

Yet, influenza shedding at levels above those required for a high probability of transmission 509 

occurs with only slightly lower frequency. Therefore, the markedly different probability of 510 

super-spreader events between the two viruses is unlikely to relate to different viral host kinetics, 511 

despite the fact that the overall duration of SARS-CoV-2 shedding exceeds duration of influenza 512 

shedding often by more than two weeks.  513 

Rather, our analysis suggests that the exposure contact networks of SARS-CoV-2 514 

transmitters are highly variable relative to those of influenza. One possible explanation 515 

underlying this finding is that SARS-CoV-2 is more predisposed to airborne transmission than 516 

influenza.44 Here our precise definition of an exposure contact (sufficient contact between a 517 

transmitter and an uninfected person to potentially allow transmission) is of high relevance. Our 518 

result suggests that a SARS-CoV-2 infected person in a crowded, poorly ventilated room, may 519 

generate more exposure contacts than an influenza infected person in the same room, likely 520 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2020. .https://doi.org/10.1101/2020.08.07.20169920doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.07.20169920
http://creativecommons.org/licenses/by-nc-nd/4.0/


based on wider dispersal and / or longer airborne survival of the virus. Thus, our results suggest a 521 

possible downstream quantitative effect of airborne transmission on SARS-CoV-2 epidemiology. 522 

Another possibly important variable is that pre-symptomatic transmission, which is a common 523 

feature of SARS-CoV-2 may predispose to multiple transmissions. This prediction reinforces 524 

current public health recommendation to avoid crowded indoor spaces with poor air 525 

recirculation. 526 

On the other hand, a much higher proportion of SARS-CoV-2 infected people than 527 

influenza infected people do not transmit at all. This result lacks a clear mechanistic explanation 528 

but may imply that aerosolization occurs only in a subset of infected people. One theoretical 529 

explanation is that high viral load shedding in the pre-symptomatic phase is defined by lack of 530 

cough or sneeze leading to limited spatial diffusion of virus. Alternatively, it is also possible that 531 

a proportion of infected people never shed virus at high enough viral loads to allow efficient 532 

transmission. This possibility speaks to the need for more quantitative viral load data gathered 533 

during the initial stages of infection. 534 

Age cohort structure differs between the two infections, with a lower proportion of 535 

observed pediatric infections for SARS-CoV-2. If adults have more high exposure events than 536 

children, then this could also explain super-spreader events. We are less enthusiastic about this 537 

hypothesis. First, SARS-CoV-2 super-spreader events have occurred in schools and camps and 538 

would likely be more common in the absence of widespread global school closures in high 539 

prevalence regions. Second, a sufficient proportion of influenza cases occur in adults to rule out 540 

the presence of frequent large super-spreading events in this population.  541 

 Our analysis has important limitations. First, exposure contacts were assumed to be 542 

homogeneous and we do not capture the volume of the exposing aerosol or droplet. For instance, 543 
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if a large-volume droplet contains ten times more viral particles than an aerosol droplet, then the 544 

exposure could be dictated by this volume as well as the viral load of the potential transmitter. It 545 

is possible that under rare circumstances with extremely high-volume exposures, even persons 546 

with extremely low viral loads may transmit. Second, based on the quality of available data, we 547 

fit our models for SARS-CoV-2 and influenza to viral RNA and viral culture respectively. 548 

Existing data suggest that kinetics of viral RNA and culture are similar during both infections, 549 

with culture having lower sensitivity to detect virus.37 Third, our intra-host model of SARS-550 

CoV-2 was fit to heterogeneous data with different sampling techniques and PCR assays.24  551 

Moreover, R0 estimates have varied across the globe. Our estimates of TD50 are necessarily 552 

imprecise based on available data and should serve only as a conservative benchmark. Most 553 

importantly, we cannot rule out the possibility that a small minority of infected people shed at 554 

sufficient levels for transmission for much longer than has been observed to date. Fourth, 555 

contagiousness could have different dose response dynamics than viral load dependent 556 

infectiousness and may require investigation in the future upon the availability of 557 

epidemiologically relevant additional data. Finally, the model is intended to capture a general 558 

property of SARS-CoV-2 infection but is not specific for local epidemics. The degree of R0 559 

overdispersion in various countries and regions is likely to vary dramatically according to 560 

numerous factors related to social contact networks that are not explicitly captured in our model. 561 

In conclusion, fundamental epidemiologic features of SARS-CoV-2 and influenza 562 

infections can be directly related to viral shedding patterns in the upper airway as well as the 563 

nature of exposure contact networks. We contend that this information should be leveraged for 564 

more nuanced public health practice in the next phase of the pandemic.  565 
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Methods 566 

 567 

SARS-CoV-2 within-host model. To simulate SARS-CoV-2 shedding dynamics, we employed our 568 

previously-described viral infection model.24 In this model, susceptible cells (S) after coming into 569 

contact with SARS-CoV-2 (V) become infected at rate 𝛽𝑉𝑆. The infected cells (I) produce new 570 

virus at a per-capita rate 𝜋. The model also includes the clearance of infected cells in two ways: 571 

(1) by an innate response with density dependent rate 𝛿𝐼!; and (2) an acquired response with rate 572 

𝑚𝐸𝑟

𝐸𝑟+𝜙𝑟	 mediated by SARS-CoV-2-specific effector cells (𝐸). The clearance mediated by innate 573 

immunity depends on the infected cell density and is controlled by the exponent 𝑘. The Hill 574 

coefficient 𝑟 parameterizes the nonlinearity of the second response and allows for rapid saturation 575 

of the killing. Parameter 𝜙 defines the effector cell level by which killing of infected cells by 𝐸 is 576 

half maximal.  577 

In the model, SARS-CoV-2-specific effector cells rise after 2 stages from precursors cells 578 

(𝑀1 and 𝑀2). The first precursor cell compartment (𝑀1) proliferates in the presence of infection 579 

with rate	𝜔𝐼𝑀) and differentiates into the effector cell at a per capita rate 𝑞 during the next 580 

intermediate stage. Finally, effector cells die at rate 𝛿𝐸. The model is expressed as a system of 581 

ordinary differential equations:  582 
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𝑑𝑆
𝑑𝑡 = −𝛽𝑉𝑆

𝑑𝐼
𝑑𝑡 = 𝛽𝑉𝑆 − 𝛿𝐼𝑘𝐼 −𝑚

𝐸𝑟

𝐸𝑟 +𝜙𝑟	
𝐼

𝑑𝑉
𝑑𝑡 = 	𝜋𝐼 − 𝛾𝑉
𝑑𝑀1
𝑑𝑡 = 𝜔𝐼𝑀1 − 𝑞𝑀1

𝑑𝑀2
𝑑𝑡 = 𝑞(𝑀1 −𝑀2)
𝑑𝐸
𝑑𝑡 = 𝑞𝑀2 − 𝛿𝐸𝐸

 583 

 584 

We assumed 𝑆(0) = 10, cells/mL, 𝐼(0) = 1 cells/mL, 𝑉(0) = -.(0)
2

 copies/mL, 𝑀1(0) = 1, 585 

𝑀2(0) = 0 and 𝐸0 = 0.  586 

When we introduce simulated heterogeneity in cases of SARS-CoV-2 (by increasing the 587 

standard deviation of the random effects of parameters β by 20, δ by 2, k by 2 and π by 5 in the 588 

original distribution from24), some of the viral shedding curves suggest that viral shedding could 589 

continue for long period (over 6 weeks). Indeed, while median viral shedding duration has been 590 

estimated at 12-20 days, shedding for many months is also observed commonly.45 We assumed 591 

that viral loads after day 20 drop to a exposure-level viral load level (i.e., 𝑉(0)) as most viral 592 

shedding observed after this point is transient and at an extremely low viral load.46 The population 593 

distribution of parameters to simulate artificial SARS-CoV-2 viral shedding dynamics is provided 594 

in Table S1. 595 

 596 

Influenza within-host model. To simulate viral shedding dynamics of influenza viral, we employ 597 

a model38 that is a simplified version of the viral dynamics model presented for SARS-CoV-2. 598 

This model assumes 𝑘 = 0 and 𝑚 = 0 and can be expressed as a system of ordinary differential 599 

equations:  600 
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𝑑𝑆
𝑑𝑡 = −𝛽𝑉𝑆 601 

𝑑𝐼
𝑑𝑡 = 𝛽𝑉𝑆 − 𝛿𝐼 602 
𝑑𝑉
𝑑𝑡 = 𝜋𝐼 − 𝛾𝑉 603 

Following this model,38 we assumed 𝑆(0) = 4 × 104 cells/mL, 𝐼(0) = 1 cells/mL, 𝑉(0) = -.(0)
2

 604 

copies/mL. To simulate artificial influenza viral shedding dynamics, we assumed the population 605 

distribution of parameters	𝐿𝑜𝑔10(𝛽), 𝐿𝑜𝑔10(𝜋), 𝐿𝑜𝑔10(𝛾) and 𝐿𝑜𝑔10(𝛿) are -4.56 (0.17), -1.98 606 

(0.14), 0.47 (0.03) and 0.60 (0.06), respectively. 607 

  608 

Dose-response model. For both viruses, to estimate the infectiousness 𝑃5[𝑉(𝑡)] based on viral 609 

loads 𝑉(𝑡), we employed the function, 𝑃5[𝑉(𝑡)] =
6(5)"

7"86(5)"
 . Here, 𝜆 is the infectivity parameter 610 

that represents the viral load that corresponds to 50% infectiousness and 50% contagiousness, 611 

and 𝛼 is the Hill coefficient that controls the slope of the dose-response curve.  612 

 613 

Transmission Model and Reproduction number. Our transmission model assumes that only some 614 

contacts of an infected individual with viral load dependent infectiousness are physically exposed 615 

to the virus (defined as exposure contacts), that only some exposure contacts have virus passaged 616 

to their airways (contagiousness) and that only some exposed contacts with virus in their airways 617 

become secondarily infected (successful secondary infection). Contagiousness and infectiousness 618 

are then treated as viral load dependent multiplicative probabilities with transmission risk for a 619 

single exposure contact being the product. Contagiousness is considered to be viral load dependent 620 

based on the concept that a transmitter’s dispersal cloud of virus is more likely to prove contagious 621 
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at higher viral load, which is entirely separate from viral infectivity within the airway once a virus 622 

contacts the surface of susceptible cells. 623 

We next assume that the total exposed contacts within a time step (𝜂9#) is gamma 624 

distributed, i.e. 𝜂9#~𝛤 Q
:
;
, 𝜌R Δ5, using the average daily contact rates (𝜃) and the dispersion 625 

parameter (𝜌). To obtain the true number of exposure contacts with airway exposure to virus, we 626 

simply multiply the contagiousness of the transmitter with the total exposed contacts within a time 627 

step (i.e., 𝜁5 = 𝜂9#𝑃5).  628 

Transmissions within a time step are simulated stochastically using time-dependent viral 629 

load to determine infectiousness (𝑃5). Successful transmission is modelled stochastically by 630 

drawing a random uniform variable (𝑈(0,1)) and comparing it with infectiousness of the 631 

transmitter. In the case of successful transmission, the number of secondary infections within that 632 

time step (𝑇9#) is obtained by the product of the infectiousness (𝑃5) and the number of exposure 633 

contacts drawn from the gamma distribution (𝜁5).  In other words, the number of secondary 634 

infections for a time step is 𝑇9# = 𝐵𝑒𝑟(𝑃5)𝑃5𝜂9#. If we disregard contagiousness by assuming 𝑃5 =635 

1 in 𝜁5, we identify that there are little to no differences on overall results other than the emergent 636 

TD curve and optimal parameter set describing dose-response curve and exposed contact network, 637 

which no longer agrees as closely with in vitro probability of positive virus culture (Fig S5).37 638 

We obtain the number of secondary infections from a transmitter on a daily basis noting 639 

that viral load, and subsequent risk, does not change substantially within a day. We then summed 640 

up the number of secondary infections over 30 days since the time of exposure to obtain the 641 

individual reproduction number, i.e.	𝑅0 = ∑ 𝑇9#9# .   642 

 643 
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Serial interval and generation time. We further assume that upon successful infection, it takes 𝜏 644 

days for the virus to move within-host, reach infection site and produce the first infected cell. 645 

To calculate serial interval (time between the onset of symptoms of transmitter and secondarily 646 

infected person), we sample the incubation period in the transmitter and in the secondarily infected 647 

person from a gamma distribution with a shape described in the Fig S4.3,30 In cases in which 648 

symptom onset in the newly infected person precedes symptom onset in the transmitter, the serial 649 

interval is negative; otherwise, serial interval is non-negative. We calculate generation time as the 650 

difference between the time of infection of transmitter and the time of infection of secondarily 651 

infected person.  652 

 653 

Individual R0 and serial interval data for model fitting. There is abundance of data confirming 654 

over-dispersed R0 for SARS-CoV-2. From contact tracing of 391 SARS-CoV-2 cases in 655 

Shenzhen, China, 1286 close contacts were identified: the distribution of individual R0 values in 656 

this cohort was highly over-dispersed, with 80% of secondary infections being caused by 8-9% of 657 

infected people.6 In another study, authors analyzed the contact/travel history of 135 infected cases 658 

in Tianjin, China and determined heterogeneity in the individual R0.34 Another contract tracing 659 

study also identified and characterized SARS-CoV-2 clusters in Hong Kong and estimated that 660 

20% of cases were responsible for 80% of local transmission.35  661 

A modeling study that simulated observed outbreak sizes in ~40 affected countries during 662 

the early phase of epidemics also confirmed that ~80% of secondary transmissions may have been 663 

caused by a small fraction of infectious individuals (~10%).4 The latter study provided the 664 

distribution of individual R0 (Fig 2A) that we employed for fitting purposes. Using the data on 665 

468 COVID-19 transmission events reported in mainland China, Du et al. estimated the mean 666 
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serial interval as well as the distribution of serial interval (Fig 2C).31 We employed this data for 667 

fitting purposes. 668 

The cumulative distribution function of individual R0 for influenza was obtained from a 669 

modeling study that simulated the transmission dynamics of seasonal influenza in Switzerland 670 

from 2003 to 2015.10  We picked the parameters mean R0=1.26 and dispersion parameter=2.36 in 671 

the negative binomial distribution that corresponded to the 2008-2009 influenza A H1N1 672 

pandemic.10 Another modeling study that simulated the age-specific cumulative incidence of 2009 673 

H1N1 influenza in 8 Southern Hemisphere Countries yielded similar results.40 By following the 674 

household members of index cases, a study estimated the cumulative distribution of serial interval 675 

based on symptom-onset times from 14 transmission pairs.9 We employed these cumulative 676 

distribution functions of individual R0 and serial interval of influenza for fitting purposes. 677 

 678 

Fitting procedure. To estimate the values of unknown parameters in cases of SARS-CoV-2, we 679 

performed a grid search comprehensively exploring a total of ~500,000 combinations of 5 680 

parameters taking the following values, 681 

(i) 𝜏 ∈ [0.5, 1, 2, 3] days, 682 

(ii)  𝛼 ∈ [0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0] 683 

(iii) 𝜆 ∈ [100, 100.=, 10).0… , 104] 684 

(iv) 𝜃 ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 20.0, 50.0].  685 

(v) 𝜌 ∈ [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 5.0, 10.0,	 686 

20.0, 30.0, 40.0, 50.0, 75.0, 100, 200, 500].  687 
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The parameter sets of (𝜆, 𝜏, 𝛼, 𝜃) were simulated for 1000 infected individuals to determine how 688 

well each set generates the summary statistics of mean R0, mean SI and the R0 histograms by 689 

following a procedure explained in Fig S1 and below: 690 

Step A: 691 

1. Simulate viral load 𝑉(𝑡) of 1,000 simulated infected individuals using Eq. 1  692 

2. For each combination of (𝜆, 𝜏, 𝛼, 𝜃, 𝜌)  693 

a. For each time step Δ5 694 

i. Compute 𝑃5[𝑉(𝑡); 𝜆, 𝛼] 695 

ii. Draw 𝜂9#~𝛤 Q
:
;
, 𝜌R Δ5 696 

iii. Calculate 𝑇9# = 𝐵𝑒𝑟(𝑃5)𝑃5𝜂9# 697 

b. Calculate 𝑅0 = ∑ 𝑇9#9#  698 

i. Check if calculated mean 𝑅0 is in the range:3,31  699 

c. Calculate Serial Interval based on 𝜏	and incubation period  700 

i. Check if calculated 𝑆𝐼 is in the range in:3,31,33  701 

Step B: 702 

1. If the parameter combination in Step A satisfy the criteria, then 703 

i. Compute RSS for the obtained 𝑅0 and histogram from:4,6,34,36 [Ref] 704 

 705 

We visually checked whether our dose-response curve matched the observed probability 706 

of positive virus culture.37 We assumed that viral loads derived from positive culture37 can be 707 

considered equivalent to viral loads in the within-host model if divided by a positive integer. We 708 

identified an integer of 25 to provide closest fit to the empirical data (Fig S5). 709 
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We performed a global sensitivity analysis to identify which parameter variability 710 

accounted for fit to different components of the data. Only narrow ranges of l permitted close fit 711 

to the mean of R0 and distribution functions of individual R0 (Fig S9), while a specific value for 712 

a was necessary to fit to mean serial interval and distribution functions of individual R0 (Fig 713 

S9). Only narrow ranges of q permitted close fit to the mean of R0 and distribution functions of 714 

individual R0 (Fig S10), while a specific value for r was necessary to fit to distribution functions 715 

of individual R0 (Fig S10). 716 

To obtain TD50 (𝜆>) based on ID50 (𝜆), we use the relation 717 

1

(`10
7

𝑉 a
?

+ 1)@
=

1

`10
7$

𝑉 a
?$
+ 1

= 0.5 718 

 From solving the second half ( )

A%&
'$
( B

"$
8)
= 0.5), we get 719 

𝑉 = 107$ 720 

Substituting 𝑉 = 107$ in the first-half, we have 721 

1

(` 10
7

107$a
?

+ 1)@
= 0.5 722 

Or, (Q )0
'

)0'$
R
?
+ 1)@ = 2 723 

Or, Q )0
'

)0'$
R
?
= √2 − 1 724 

Or, 107$? = )0'"

√@D)
 725 

Or, 𝜆> = 𝜆 + 0.E4
?

 726 
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Supplementary Materials 746 

 747 

 748 

Fig S1. Mathematical model workflow.  749 
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 750 

Fig S2. Mathematical model of SARS-CoV-2 transmission dynamics. A. Simulated viral load 751 
shedding tracings of possible transmitters.  B. Simulated viral load shedding with imputed 752 
heterogeneity. C. Simulated infection dose (ID) response curves with variance in infectivity 753 
(ID50) and D. dose response slopes. E. Simulated transmission dose (TD) response curves with 754 
variance in infectivity (TD50) and F. dose response slopes. The TD response curve is a product 755 
of the infection and contagion dose response curves.   756 
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 757 
 758 
Fig S3. Stochastic simulations of exposed contact frequency for varying dispersion (ρ). The 759 
average number of exposed contacts is 4 per day in each example with imputed daily 760 
heterogeneity based on an elevated value of ρ from a gamma distribution~Γ(4/ρ, ρ).  761 
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 762 

Fig S4.  Gamma distribution functions of incubation periods. A.  SARS-CoV-2 (mean 5.2 763 
days, shape parameter =3.45 and rate =0.66) and B. influenza (mean 2 days, shape 764 
parameter=6.25 and scale parameter=0.32).   765 
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 766 
 767 
Fig S5. Mathematical model recapitulation of relationship between SARS-CoV-2 viral load 768 
and viral culture. In a clinical study, probability of positive viral culture was projected against 769 
SARS-CoV-2 RNA (https://www.medrxiv.org/content/10.1101/2020.06.08.20125310v1). When 770 
we divided these PCR values by 25 (light blue line), we identified high similarity between the 771 
clinical data and our projected infectiousness dose response curve (red line).  772 
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  773 
 774 
Fig S6. Impact of changes in contact network heterogeneity on individual R0, serial 775 
interval, and generation time. A. SARS-CoV-2, and B. influenza. Lowering exposed contact 776 
network heterogeneity to levels observed with influenza decreases SARS-CoV-2 individual R0 777 
over-dispersion. Increasing exposed contact network heterogeneity to levels observed with 778 
SARS-CoV-2 increases influenza R0 over-dispersion. Neither change impacts observed serial 779 
interval or estimate generation time.  780 
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 781 

 782 
Fig S7. Potential impact of population physical distancing on SARS-Co-V2 epidemiology.  783 
A. Mean reproductive number B. Percent transmitters of all infected people C. Percent super-784 
spreaders (individual R0>5) of all infected people D. Percent super spreaders of all transmitters. 785 
Transmitters are defined as infected people who generate at least one secondary infection.  786 
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 787 

  788 
 789 
Fig S8. Potential impact of enhanced physical distancing only within high exposure contact 790 
networks on SARS-CoV-2 epidemiology.  Simulations assume limitation of exposed contacts 791 
only among daily exposures of more than 5, 10, 20 or 50 people. Mean reproductive number 792 
decreases below one with only marginal decreases in overall rate of exposure contacts when 793 
contacts are limited to fewer than 20 people.  794 
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 795 
 796 
Fig S9. Sensitivity analysis of transmission curve parameter for model fit to SARS-CoV-2 797 
data. Effects of varying transmission curve slope (x-axis) and TD50 for infectiousness (y-axis) 798 
on fit to A. Mean R0, B. Mean serial interval, C. Cumulative distribution function of individual 799 
R0, and D. Sum of Errors in A, B and C.  800 
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 801 

  802 
 803 
Fig S10. Sensitivity analysis of contact network structure for model fit to SARS-CoV-2 804 
data. Effects of dispersion parameter (x-axis) and average exposed contacts per day (y-axis) on 805 
fit to A. Mean R0, B. Mean serial interval, C. Cumulative distribution function of individual R0, 806 
and D. Sum of Errors in A, B and C.   807 
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Lo𝐠𝟏𝟎β 
(virions-1 day-1) 

δ 
(day-1 

cells-k) 

k 
(-) 

Lo𝐠𝟏𝟎π 
(log10 day-1) 

m 
(day-1 

cells-1) 

𝐋𝐨𝐠𝟏𝟎ω 
(day-1 cells-1) 

-7.23 3.13 0.08 2.59 3.21 -4.55 
0.2 0.02 0.02 0.05 0.33 0.01 

 808 
Table S1: Population parameter estimates for simulated SARS-CoV-2 viral shedding 809 
dynamics. Parameters are from (doi: https://doi.org/10.1101/2020.04.10.20061325). The top row 810 
is the fixed effects (mean) and the bottom row is the standard deviation of the random effects. 811 
We also fixed r=10, δE=1/day, q=2.4×10-5/day and c=15/day.    812 
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