
p-21 activated kinase 4 (PAK4) maintains stem cell-like 
phenotypes in pancreatic cancer cells through activation of 
STAT3 signaling

Nikhil Tyagia,1, Saravanakumar Marimuthua,1, Arun Bhardwaja, Sachin K. Deshmukha, 
Sanjeev K. Srivastavaa, Ajay P. Singha,b, Steven McClellana, James E. Carterc, and Seema 
Singha,b,*

aDepartment of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 
Mobile, Alabama 36604, USA

bDepartment of Biochemistry and Molecular Biology, College of Medicine, University of South 
Alabama, Mobile, Alabama 36688, USA

cDepartment of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama 
36688, USA

Abstract

Pancreatic cancer (PC) remains a highly lethal malignancy due to its unusual chemoresistance and 

high aggressiveness. A subpopulation of pancreatic tumor cells, known as cancer stem cells 

(CSCs), is considered responsible not only for tumor-maintenance, but also for its widespread 

metastasis and therapeutic failure. Here we investigated the role of p-21 activated kinase 4 (PAK4) 

in driving PC stemness properties. Our data demonstrate that triple-positive (CD24+/CD44+/

EpCAM+) subpopulation of pancreatic CSCs exhibits greater level of PAK4 as compared to triple-

negative (CD24−/CD44−/EpCAM−) cells. Moreover, PAK4 silencing in PC cells leads to 

diminished fraction of CD24, CD44, and EpCAM positive cells. Furthermore, we show that 

PAK4-silenced PC cells exhibit decreased sphere-forming ability and increased chemo-sensitivity 

to gemcitabine toxicity. PAK4 expression is also associated with enhanced levels of stemness-

associated transcription factors (Oct4/Nanog/Sox2 and KLF4). Furthermore, our data show 

decreased nuclear accumulation and transcriptional activity of STAT3 in PAK4-silenced PC cells 

and restitution of its activity leads to restoration of stem cell phenotypes. Together, our findings 

deliver first experimental evidence for the involvement of PAK4 in PC stemness and support its 

clinical utility as a novel therapeutic target in PC.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Corresponding author. Tel.: +1 251 445 9844; fax: +1 251 460 6994. seemasingh@health.southalabama.edu (S. Singh).
1Authors contributed equally in this manuscript.

Conflict of interest
None.

Authors’ contributions
SS, APS, NT, AB: study design; NT, SM, SMc, SKD: acquisition of data; SS, APS, NT, SM, AB, JEC: analysis and interpretation of 
data; SS, APS, NT, SM, AB, SKS: manuscript preparation; APS, SS: obtained funding.

HHS Public Access
Author manuscript
Cancer Lett. Author manuscript; available in PMC 2017 January 28.

Published in final edited form as:
Cancer Lett. 2016 January 28; 370(2): 260–267. doi:10.1016/j.canlet.2015.10.028.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/4.0/


Keywords

PAK4; Pancreatic cancer; Stemness; STAT3; Sphere formation; Chemoresistance

Introduction

Pancreatic cancer (PC) is one of the most lethal malignancies and stands as the fourth 

leading cause of cancer-related death in the United States [1]. With continued increases in its 

incidence and mortality, PC is expected to take over colorectal and breast malignancies to 

become second leading cause by the year 2030 or even earlier [2]. High mortality in PC 

patients is attributed to late diagnosis and unusual resistance of the disease to currently 

available therapeutic modalities [3,4]. Clearly, this dire situation mandates that efforts 

should be made to identify novel biomarkers and therapeutic targets to enable early 

detection and efficient treatment based on improved mechanistic understanding of disease 

progression, metastasis and therapy-resistance.

A number of studies have demonstrated that a small subpopulation of cells within a tumor, 

referred as cancer initiating cells/cancer stem cells (CSCs), is involved in tumor initiation, 

development, metastasis as well as in therapy resistance and disease relapse [5–7]. 

Pancreatic CSCs were isolated, for the first time, based on phenotypic markers, viz. CD24, 

CD44 and ESA (also known as EpCAM), and demonstrated to be highly tumorigenic [8]. 

Subsequently, several studies attributed high rate of recurrence and chemoresistance in PC 

to pancreatic CSCs [9–13] suggesting that their targeting would be a logical way to find an 

effective cure. However, underlying molecular mechanisms and genetic drivers controlling 

the stemness phenotypes have remained largely undefined.

The serine/threonine kinase, p21-activated kinase 4 (PAK4), is essential for embryonic 

development and is a key regulator of various cellular processes including cytoskeleton 

dynamics, cell polarity, etc. [14–16]. In addition, aberrant expression of PAK4 is linked to a 

variety of human cancers [17–20]. In a sub-set of pancreatic tumor specimens, a 

chromosomal region 19q13.2-13.3 harboring PAK4 genetic locus was reported to be 

amplified [21]. Recently, we also reported overexpression of PAK4 in PC and demonstrated 

its role in proliferation and survival of pancreatic tumor cells [22]. The involvement of 

PAK4 in aggressive malignant phenotypes (EMT, invasion and metastasis) and 

chemoresistance of various cancers has also been reported [23–26]. However, to date there 

is no direct evidence associating PAK4 expression with cancer stem cell properties.

In the present study, we investigated the role of PAK4 in maintenance of the stem cell-like 

phenotypes in PC. The data demonstrate that PAK4 is overexpressed in pancreatic CSCs as 

compared to non-CSCs, and its expression is associated with increased sphere-forming 

potential and chemoresistance in PC. Furthermore, PAK4 was shown to activate STAT3 

signaling to promote sphere formation as well as other stem-like phenotypes in PC. These 

findings deliver first experimental evidence for involvement of PAK4 in stemness of PC and 

further support its clinical utility as a therapeutic target.
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Materials and methods

Cell culture

PC cell lines (MiaPaCa and T3M4) were maintained as monolayer cultures in RPMI-1640 

(Life Technologies, Carlsbad, CA) with 5% fetal bovine serum (FBS) (Atlanta Biologicals, 

Lawrenceville, GA), penicillin (100 units/mL) and streptomycin (100 μg/mL) (Life 

Technologies) in a humidified atmosphere (5% CO2 at 37 °C). The cells expressing high 

level of CD24/CD44/EpCAM surface markers were isolated from MiaPaCa and T3M4 cells 

and cultured in Ultra-Low attachment plate/flask (Corning Incorporated, Corning, NY) in 

stem cell culture medium (DMEM:F-12K, 1:1; Life Technologies) supplemented with B27, 

basic fibroblast growth factor (bFGF; 20 ng/mL) and epidermal growth factor (EGF; 20 

ng/mL) (Life Technologies), penicillin (100 units/mL) and streptomycin (100 μg/mL) to 

maintain their undifferentiated status. Cells were routinely monitored for their typical 

morphology, and intermittently tested for mycoplasma contamination at our institutional 

core facility.

Antibodies, siRNAs and plasmids

Anti-PAK4 (rabbit polyclonal), -Sox2, -Nanog, -pSTAT3 (Y705) (rabbit monoclonal) and -

STAT3 (mouse monoclonal) antibodies were purchased from Cell Signaling Technology 

(Beverly, MA). Anti-KLF4, -Oct4 (mouse monoclonal) were procured from Abcam 

(Cambridge, MA). Antibodies targeting Lamin A, α-tubulin (mouse mono-clonal) and 

respective anti-mouse or anti-rabbit horseradish peroxidase (HRP)-conjugated secondary 

antibodies were procured from Santa Cruz Biotechnology (Santa Cruz, CA). β-actin (mouse 

monoclonal) antibody was purchased from Sigma-Aldrich (St. Louis MO). For isolation of 

cancer stem-like cells, anti-human fluorochrome-conjugated antibodies against CD24 (Alexa 

Fluor-647 conjugated), CD44 (Brilliant violent-421 conjugated) and EpCAM (also known as 

ESA) (Phycoerythrin/cy7 conjugated) were procured from BioLegend (San Diego, CA). The 

construct EF.STAT3C.Ubc.GFP (Addgene plasmid #24983) was from Linzhao Cheng 

laboratory and the control vector FUGW (Addgene plasmid #14883) was from David 

Baltimore laboratory and both the plasmids were procured from Addgene. All non-target 

(ONTARGET plus Non-targeting pool) and target-specific (ONTARGET plus SMART 

pool) siRNAs were from Origene (Rockville, MD).

Isolation of cancer stem cells

MiaPaCa and T3M4 cells were trypsinized, washed with PBS and resuspended (1 × 106/mL) 

in PBS containing 2% FBS. Subsequently, cells were incubated with fluorochrome-

conjugated anti-CD24, -CD44 and -EpCAM antibodies (5 μL/106 cells each) for 15 min on 

ice. After incubation, cells were washed with PBS, and subjected to sorting of triple positive 

(CD24+, CD44+ and EpCAM+) and negative (CD24−, CD44− and EpCAM−) subpopulation 

of cells using FACS AriaIITM (BD Bioscience). 7-Aminoactinomycin D (7ADD; BD 

Bioscience) was added to exclude non-viable cells prior to FACS analysis. Unstained cells 

were used as control.
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ALDEFLUOR assay

ALDEFLUOR assay was performed using ALDEFLOUR™ kit (Stem Cell Technologies, 

Vancouver, BC, Canada) according to the manufacturer’s protocol. Briefly, MiaPaCa and 

T3M4 cells (2.5 × 105) were incubated in ALDH1 assay buffer containing ALDH1 substrate 

(Bodipy Aminoacetaldehyde; BAAA) at 37 °C for 45 min with intermittent mixing. After 

incubation, cells were centrifuged at 250 g for 5 min and resuspended in 0.5 mL of ALDH1 

assay buffer for analysis using FACS AriaIITM. For control, cells were treated with the 

ALDH1 enzyme inhibitor [diethylaminobenzaldehyde (DEAB)]. 7-AAD was added to the 

cell suspension prior to FACS analysis for the exclusion of dead cells.

RNA isolation and reverse transcription polymerase chain reaction (RT-PCR)

Total RNA was extracted using TRIzol reagent (Invitrogen) and reverse transcribed using 

the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Carlsbad, CA) 

following manufacturer’s instructions as described earlier [27]. Quantitative real-time PCR 

was performed in 96-well plates using cDNA and SYBR Green Master Mix on an iCycler 

system (Bio-Rad, Hercules, CA) using specific sets of primer pairs (Table S1). The 

following thermal conditions were used: cycle 1: 95 °C for 10 min, cycle 2 (×40): 95 °C for 

10 sec and 58 °C for 45 sec. Threshold cycle (CT) value for each gene was separately 

normalized against CT value for GAPDH, and a relative fold-change in expression with 

respect to a reference sample was calculated by the 2−ΔΔCt method.

Transfections and treatments

Stable PAK4 knockdown cell lines (MiaPaCa-shPAK4 and T3M4-shPAK4) were generated 

previously [22]. To dissect the role of the STAT3 signaling pathway, PAK4-expressing PC 

(MiaPaCa- and T3M4-NTScr) cells were cultured in 6-well plates and transfected with 30 

nM of human STAT3 specific siRNAs, while in another approach PAK4-silenced PC cells 

(MiaPaCa- and T3M4-shPAK4) were transduced with a lentivirus expressing a 

constitutively active mutant form of STAT3 (EF.STAT3C.Ubc.GFP) and respective control 

vector (FUGW). For deciphering the role of PAK4 in chemoresistance, cells were treated 

with increasing concentration of gemcitabine (0–10 μM) for 72 h and cell viability was 

calculated using WST-1 assay kit (Roche, Indianapolis, IN) as described earlier [28].

Immunoblot analysis

Immunoblotting was performed as described earlier [29] using specific antibodies against 

various proteins. β-actin, α-tubulin and Lamin A were used as loading controls for total, 

cytoplasmic and nuclear proteins, respectively. All the primary antibodies were used at 

1:1000 dilution whereas all the secondary antibodies were used at 1:2500 dilution. β-actin 

was used at 1:20,000 dilution. The signal was detected using ECL plus Western Blotting 

substrate (Thermo Scientific, Logan, UT) and LAS-3000 image analyzer (Fuji Photo Film 

Co., Tokyo, Japan).

Nuclear and cytoplasmic fractionation

The preparation of cytoplasmic and nuclear extracts was performed using the nuclear extract 

kit (Active Motif, Carlsbad, CA) as described previously [22,30].
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STAT3 transcriptional activity assay

The transcriptional activity of STAT3 was measured by Cignal STAT3 Reporter (Luc) kit 

(SA Bioscience, Valencia, CA) according to manufacturer’s instructions. Briefly, PC cells 

were grown in 6-well plate and transiently transfected with 1.0 μg of STAT3 reporter along 

with negative control. STAT3 reporter is a mixture of inducible STAT3-responsive firefly 

luciferase construct and constitutively expressing Renilla luciferase construct (40:1). 

Negative control is a mixture of non-inducible firefly luciferase construct and constitutively 

expressing Renilla luciferase construct (40:1). After 48 h of transfection, cells were 

harvested in passive lysis buffer and luciferase activity was measured using the Dual 

Luciferase Assay System (Promega, Madison, WI).

Clonogenicity and sphere formation assay

The clonogenicity and sphere formation assays were performed as described previously 

[31,32]. Briefly, for sphere formation assay, cells (1 × 103/well) were seeded in the 6-well 

ultralow attachment plate in 2 mL of stem cell culture medium and on every alternate day 

the medium was supplemented with 2% B27, 20 ng/mL EGF and 20 ng/mL FGF-b. After 10 

days, the pancreatospheres larger than 50 μm were counted and photographed using phase 

contrast microscope as described previously [32].

Statistical analysis

All the experiments were performed at least three times independently, and all data are 

expressed as “mean ± SD”. Wherever appropriate, the data were also subjected to unpaired 

two tailed Student’s t-test. p < 0.05 was considered statistically significant.

Results

PAK4 is highly expressed in pancreatic cancer stem cells

To investigate the role of PAK4 in stemness of PC cells, we isolated cancer stem cells 

(CSCs) from two PAK4 expressing highly aggressive PC cell lines (MiaPaCa and T3M4) by 

flow-cytometry using a set of previously characterized phenotypic biomarkers, viz. CD24, 

CD44 and EpCAM [8]. Sub-set of PC cells with high expression of CD24, CD44 and 

EpCAM was designated as CSCs (CD24+/CD44+/EpCAM+) while cells with no or 

negligible expression were designated as non-CSCs (CD24−/CD44−/EpCAM−). Apparently, 

~3.3% (MiaPaCa) and ~6.0% (T3M4) cells were identified as CSC population while the 

fraction of non-CSCs was ~3.0 and ~11.1% in MiaPaCa and T3M4 cells, respectively (Fig. 

1A). Furthermore, we also examined the expression of PAK4 in CSCs (CD24+/CD44+/

EpCAM+) and non-CSCs (CD24−/ CD44−/EpCAM−) by immunoblot analysis. We observed 

that the expression level of PAK4 is remarkably higher in CSCs (CD24+/ CD44+/EpCAM+) 

as compared to non-CSCs (CD24−/CD44−/EpCAM−) in both the cell lines (MiaPaCa and 

T3M4) (Fig. 1B). The densitometry analyses show that the expression of PAK4 is 8.0- and 

7.7-fold higher in CSCs of MiaPaCa and T3M4 cells, respectively (Fig. 1C). Together, these 

findings suggest that PAK4 is highly expressed in pancreatic cancer stem cells.
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Silencing of PAK4 reduces the expression of stemness-associated markers in PC cells

Having observed the elevated expression of PAK4 in CSCs, we sought to investigate its 

significance in PC stemness. For this, we used PAK4-silenced (-shPAK4) stable sublines of 

MiaPaCa and T3M4 cells (Fig. S1) and examined the expression of various stemness-

associated markers (CD24, CD44 and EpCAM) by flow-cytometry. We observed that the 

individual geometric mean fluorescence intensity (MFI) of CD24, CD44 and EpCAM was 

considerably decreased in PAK4-silenced PC cells (Fig. 2A). The relative MFI of CD24, 

CD44 and EpCAM is reduced by 20.0%, 26.8% and 38.5%, respectively, in MiaPaCa-

shPAK4 cells, while it was decreased by 40.0%, 28.3% and 46.3%, respectively, in PAK4-

silenced T3M4 cells (Fig. 2A). Since pancreatic CSCs are also known to be enriched with 

aldehyde dehydrogenase (ALDH1) [33], we explored whether PAK4 silencing has any 

effect on ALDH1 level. Data from flow-cytometry analysis demonstrate that the number of 

ALDH1 positive cells is remarkably decreased ~2.5 fold (MiaPaCa) and ~1.7 fold (T3M4) 

upon silencing of PAK4 (Fig. S2). Furthermore, we confirmed all these findings by 

performing quantitative RT-PCR assays. Similar to our flow cytometry data, we found that 

the expression level of CD24, CD44, EpCAM and ALDH1 was significantly decreased in 

low PAK4 expressing (MiaPaCa- and T3M4-shPAK4) cells in comparison to their control 

cells (MiaPaCa- and T3M4-NTScr) at mRNA level (Fig. 2B). In addition, we also examined 

the effect of PAK4 silencing on the expression of stemness-associated transcription factors 

(KLF4, Sox2, Nanog and Oct4) at mRNA level. Data demonstrate a drastic decrease in the 

level of KLF4, Sox2, Nanog and Oct4 in PAK4 silenced MiaPaCa and T3M4 cells (Fig. 

2B). PAK4-silencing induced downregulation of KLF4, Sox2, Nanog and Oct4 was further 

validated at protein level by immunoblot assay (Fig. 2C).

Silencing of PAK4 suppresses sphere formation ability and chemo-resistance in PC cells

Unlimited self-renewal potential to maintain their undifferentiated state is a hallmark of 

CSCs [6]. Therefore, we next sought to investigate the role of PAK4 in the self-renewal 

ability of pancreatic CSCs by sphere formation assay. For this, PAK4-silenced sublines (-

shPAK4) of MiaPaCa and T3M4 cells were seeded at low density (1 × 103/well) along with 

their high PAK4-expressing (MiaPaCa- and T3M4-NTScr) counterparts in low attachment 

plate. The cells were allowed to grow in stem cell culture medium for 10 days and the 

number of spheres formed was counted. We observed lesser sphere forming ability in 

PAK4-silenced PC cells as compared to PAK4 expressing cells (Fig. 3A). The data 

demonstrate 4.4-fold and 3.8-fold greater sphere formation in MiaPaCa-NTScr and T3M4-

NTScr cells, respectively, as compared to MiaPaCa-shPAK4 and T3M4-shPAK4 cells (Fig. 

3A).

Resistance to chemo-therapeutic agents is another key characteristic of CSCs [6,7]. To 

examine the significance of PAK4 in chemoresistance, PAK4-expressing and -silenced cells 

were treated with increasing doses of gemcitabine and the effect on growth was examined 

by short-term (WST1 assay) and long-term (colony-formation) growth assays. Our data 

showed that PAK4-silenced cells (MiaPaCa- and T3M4-shPAK4) were more sensitive to 

gemcitabine-cytotoxicity as compared to respective control cells in both short-term (Fig. 3B) 

and long-term (Fig. 3C) growth assays. Data show significantly (p ≤ 0.01) lower IC50 values 

of gemcitabine ~2.08 μM in MiaPaCa-shPAK4 and 1.54 μM in T3M4-shPAK4 cells as 
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compared to MiaPaCa-NTScr (~5.53 μM) and T3M4-NTScr (~3.44 μM) cells (Fig. 3B). 

Importantly, the chemosensitizing effect of PAK4 silencing is more prominent in long-term 

assay as evidenced by very few or no visible colonies in PAK4 silenced cells at 1.0 and 2.5 

μM gemcitabine doses. Taken together, our findings suggest that PAK4 enhances stem cell-

associated phenotypes in PC cells.

PAK4 enhances stemness potential via activation of STAT3 signaling in PC cells

Signal transducer and activator of transcription 3 (STAT3) remains constitutively active in 

various cancer types including PC and plays pivotal role in proliferation and self-renewal of 

CSCs [34,35]. Therefore, we investigated the involvement of STAT3 in PAK4-induced 

stemness in PC cells. For this, we first examined the effect of PAK4 silencing on the 

transcriptional activity of STAT3 by luciferase-based promoter reporter assay. Data show 

that the transcriptional activity of STAT3 responsive promoter is decreased by ~3.1 fold 

(MiaPaCa) and ~2.2 fold (T3M4) upon silencing of PAK4 (Fig. 4A). These findings were 

further confirmed by analyzing the cellular localization and activation status of STAT3 in 

low and high PAK4-expressing PC cells by immunoblot assay. An enhanced nuclear level 

with concomitant decreased cytoplasmic level of STAT3 is observed in high PAK4 

expressing (MiaPaCa-NTScr and T3M4-NTScr) cells as compared to low PAK4 expressing 

(MiaPaCa-shPAK4 and T3M4-shPAK4) cells (Fig. 4B). In addition, significantly decreased 

phosphorylation of STAT3 in PAK4-silenced MiaPaCa as well as T3M4 cells is observed 

(Fig. 4C).

To validate whether STAT3 is involved in PAK4-induced stemness in PC cells, low PAK4 

expressing (MiaPaCa-shPAK4 and T3M4-shPAK4) cells were transiently transfected with 

constitutively active mutant of STAT3 (STAT3C) and the effect on transcriptional activity 

of STAT3, stemness-associated markers and sphere-forming potential was examined. Our 

data demonstrate that transcriptional activity (Fig. 5A) is restored in PAK4-silenced 

MiaPaCa and T3M4 cells transfected with active mutant of STAT3, which is associated with 

increased nuclear and decreased cytoplasmic level of STAT3 in these cells (Fig. 5B). 

Notably, we observed regain of stemness-associated markers (Oct4, Sox2 and Nanog) in 

PAK4-silenced PC cells upon transfection of active mutant of STAT3 (Fig. 6A). Moreover, 

sphere-forming ability of PAK4-silenced cells is also restored after forced activation of 

STAT3 in these cells (Fig. 6B). These findings were further confirmed by reverse approach 

where STAT3 expression was silenced in MiaPaCa-NTScr and T3M4-NTScr cells (Fig. S3). 

Taken together, our findings suggest that PAK4-induces stemness potential in PC cells 

through activation of STAT3.

Discussion

In spite of advances in surgery and chemotherapy, the mortality rate of PC remains very 

high due to lack of effective therapy and late diagnosis. Chemoresistance imposes one of the 

major clinical problems in PC treatment. Recent studies have shown that CSCs, 

characterized by high expression of ESA, CD24 and CD44 surface proteins in PC [8], are 

the main entity responsible for therapy resistance and tumor recurrence [5,9,11–13]. 

Therefore, therapeutic targeting of CSCs along with bulk epithelial tumor cells would have 
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profound clinical implications for better management of this disease. In this study, we 

demonstrated, for the first time, that PAK4 expression is associated with increased stemness 

characteristics like high expression of stemness-associated markers, sphere-forming ability 

as well as chemoresistance.

Li et al. used CD24, CD44 and ESA markers alone or in combination for isolating the CSC 

population from pancreatic tumors [8]. Their study revealed that pancreatic tumor cells that 

were positive for all three (CD24, CD44 and ESA) surface molecules exhibited greater self-

renewal capacity and were highly tumorigenic in nature as compared to pancreatic tumor 

cells that were positive for single or double markers [8]. Ohara et al. investigated the clinical 

significance of CD44+/CD24+/EpCAM+ cells in pancreatic adenocarcinoma. Their study 

suggested that the presence of CD44+/CD24+/EpCAM+ cells correlates with poor 

differentiation [36]. Moreover, CD44+/ CD24+ cells are associated with poor prognosis of 

pancreatic cancer patients [36]. Additionally, high rate of chemoresistance in PC is 

suggested to be attributed to CD44, CD24, and EpCAM positive stem cells [37]. The present 

study demonstrated that the level of PAK4 was considerably high in triple positive (CD24+/

CD44+/EpCAM+) pancreatic CSCs as compared to non-CSCs (CD24−/CD44−/EpCAM−). 

Moreover, silencing of PAK4 in high PAK4 expressing (MiaPaCa and T3M4) PC cells led 

to reduction in expression of CD24, CD44 and EpCAM. These complementary sets of data 

provide a direct support for the association of high PAK4 levels with pancreatic CSCs.

In addition to the CD44, CD24 and EpCAM, we also observed decreased expression of 

other stemness-associated markers including ALDH1, KLF4, Oct4, Sox2 and Nanog in 

PAK4-silenced PC cells. Enormous studies are available to support the role of ALDH1, 

KLF4, Oct4, Sox2 and Nanog in stemness potential of different cancer types including PC 

[38–42]. Wei et al. reported that KLF4 is up-regulated in PC, and its expression inversely 

correlates with the survival of PC patients [43]. Overexpression of Oct4 and Nanog in 

PDAC is associated with early state carcinogenesis [44] and worst prognosis [45]. These 

studies indicate that KLF4, Oct4, and Nanog may contribute to PC pathobiology via 

enhancing the stemness potential of pancreatic tumor cells. Sox2 expression has been 

associated with increased levels of the stem cell markers, viz. ALDH1, EpCAM and CD44, 

in pancreatic tumor and CD44/EpCAM positive CSCs isolated from pancreatic tumor 

specimens have enhanced expression of Sox2 [46]. Rasheed et al. established the role of 

ALDH1 in the maintenance of stem cells potential of PC [33]. Together, these findings add 

further support for the association of PAK4 with pancreatic CSCs.

Enhanced sphere-forming potential and resistance to therapy are the main characteristics of 

CSCs [6,9]. It is widely accepted that the resistance to chemotherapeutic agents is largely 

attributed to self-renewing subpopulations of CSCs present in the bulk tumor. Earlier studies 

have shown that pancreatic CSCs confer increased resistance towards 5-fluorouracil (5-FU) 

and gemcitabine [47,48]. We demonstrated that PAK4-silencing not only reduced the 

expression of stemness markers, but also decreased the sphere formation ability of PC cells. 

Moreover, PAK4 silencing caused sensitization of PC cells against gemcitabine-induced 

toxicity. Enhanced chemoresistance ability of CSCs is majorly due to their enhanced 

survival mechanisms [49] as compared to the other cells of the tumor bulk. In this regard, 

our earlier findings supporting a direct role of PAK4 with increased survival of PC cells are 
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highly relevant [22]. We observed that PAK4-overexpressing PC cells exhibited enhanced 

expression of anti-apoptotic proteins (Bcl-2 and Bcl-xL) [22], which are shown to confer 

apoptosis-resistance to CSCs [50,51]. PAK4 has been shown to promote chemoresistance in 

other cancer types as well [52,53] suggesting its universal association with CSC phenotypes.

Using various experimental approaches, we demonstrated a role of STAT3, an oncogenic 

transcription factor, in PAK4-induced expression of stem cell-associated markers and 

sphere-forming potential of pancreatic tumor cells. In the aspect of pancreatic car-

cinogenesis, it has been suggested that STAT3 is frequently overexpressed in PC [35,54] 

and plays a vital role in PC pathogenesis by regulating genes involved in proliferation, 

survival, and metastasis of pancreatic tumor cells [55–57]. In addition, a role of STAT3 in 

the maintenance of stemness behavior in various tumor types, including PC, has also been 

well documented [34,58–60]. Recently, Guha et al. revealed the important role of STAT3 in 

nicotine-induced apoptosis resistance and CSC characteristics in breast cancer cells [61]. 

Furthermore, the important role of STAT3/Sox2 axis in maintaining stem cell phenotypes in 

PC cells has also been documented [62]. Notably, apart from maintaining the stemness 

phenotypes in tumor cells, STAT3 activation is also suggested to convert non-CSCs to CSCs 

[63]. The precise molecular mechanism(s) responsible for the activation of STAT3 in PC is 

not well understood. In this regard, our findings suggesting PAK4 as an upstream activator 

of STAT3 are highly innovative. However, the signaling axis/molecules involved in PAK4-

mediated STAT3 activation need to be explored in future studies.

In conclusion, the present study establishes a direct association of PAK4 with pancreatic 

cancer stemness, an effect that is mediated through STAT3 activation. Thus, targeting of 

PAK4 could be of great significance for not only managing the bulk tumor cells, but CSCs 

as well. Therefore, development of novel approaches for inhibiting PAK4 activity in PC 

should be the next logical step that could lead to an effective cure for this devastating 

malignancy.
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Fig. 1. 
PAK4 expression analysis in pancreatic cancer stem cells (CD44+/CD24+/EpCAM+) and 

non-CSCs (CD44−/CD24−/EpCAM−). (A) Pancreatic cancer stem cells (CSCs) were 

isolated from PAK4 expressing MiaPaCa and T3M4 PC parent cells on the basis of triple 

positive and negative CD24, CD44, and EpCAM surface markers using flow-cytometry. (B) 

PAK4 expression was analyzed in pancreatic CSCs (CD44+/CD24+/EpCAM+) and non-

CSCs (CD44−/CD24−/EpCAM−) by immunoblot assay using PAK4 specific antibody. β-

actin was used as an internal control. (C) Relative expression of PAK4 in CSCs and non-

CSCs isolated from MiaPaCa and T3M4 cells estimated by densitometry. Error bars 

represent the mean ± SD; n = 3; *p < 0.05.
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Fig. 2. 
PAK4 induces expression of stemness-associated markers in PC cells. (A) PAK4-expressing 

and silenced cells were incubated with fluorochrome-conjugated anti-CD24, -CD44 and -

EpCAM antibodies for 15 min on ice, followed by washing with PBS and subjected to 

FACS analysis. The data are presented as geometric mean of fluorescence intensity (MFI). 

The expression of other stemness associated markers was examined (B) at mRNA level by 

quantitative RT-PCR (mean ± SD; n = 3; *p < 0.05) and (C) protein level by immunoblot 

assay. β-actin was used as an internal control.
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Fig. 3. 
PAK4 facilitates sphere formation and drug resistance in PC cells. PAK4 expressing or 

silenced MiaPaCa and T3M4 cells (1 × 103) were seeded in ultra-low attachment plate and 

allowed to grow for 10 days in stem cell culture medium. (A) Images were taken under light 

microscope at 200× magnification and the number of spheres (size > 50 μm) was counted. 

Error bars represent the mean ± SD; n = 3; *p < 0.05. (B) PAK4 expressing or silenced PC 

cells were treated with indicated doses of gemcitabine (0–10 μM) for 72 h. Cell viability was 

analyzed by WST-1 assay. OD value of untreated cells was taken as 100% viable. Data 

represent the mean ± SD; n = 3; *p < 0.01. (C) Representative images of colonies formed by 

PAK4-expressing and -silenced cells treated with various concentrations of gemcitabine (0, 

0.5, 1.0 and 2.5 μM) for 24 h and further allowed to form colonies for 2 weeks.
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Fig. 4. 
PAK4 induces transcriptional activity of STAT3 in human PC cells by promoting its nuclear 

translocation. The cells were co-transfected with Cignal STAT3 reporter (mixture of 

STAT3-responsive firefly luciferase reporter and Renilla luciferase plasmids) and negative 

control plasmids. (A) After 48 h, cells were harvested in passive lysis buffer and luciferase 

activity was assessed using a dual-luciferase assay system. Data are presented as normalized 

relative luciferase activity (mean ± SD; n = 3, *p < 0.05). Total, nuclear and cytoplasmic 

extracts were prepared and (B) cellular localization of STAT3 and (C) expression level of 

pSTAT3 or total were analyzed by immunoblot analysis. Lamin A (for nuclear fraction), α-

tubulin (for cytoplasmic fraction) and β-actin (for total fraction) were used as loading 

controls.
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Fig. 5. 
Forced expression of STAT3 active mutant restores transcriptional activity and localization 

of STAT3 in PAK4-silenced PC cells. In this approach, PAK4 silenced cells were 

transfected with constitutively active STAT3 mutant (EF.STAT3C.Ubc.GFP) or empty 

vector (FUGW) and (A) after 48 h transfection, cells were again transfected with STAT3 

luciferase promoter-reporter plasmid and transcriptional activity of STAT3 was examined. 

Data are presented as normalized relative luciferase activity (mean ± SD; n = 3, *p < 0.05). 

(B) Nuclear and cytoplasmic fractions were prepared after 24 h of transfection and 

expression level of STAT3 was examined by immunoblot analysis. Lamin A (for nuclear 

fraction), α-tubulin (for cytoplasmic fraction) and β-actin (for total fraction) were used as 

loading controls.
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Fig. 6. 
STAT3-mediates PAK4-induced stemness in PC cells. (A) The expression of stem cell 

markers was analyzed by immunoblot analysis. β-actin was used as an internal control. (B) 

After transfection, cells were cultured in ultra-low attachment plate to analyze the effect of 

STAT3 on sphere-forming potential of these cells by sphere forming capacity. Sphere >50 

μm in diameter was counted at 200× magnification (mean ± SD; n = 3, *p < 0.05).
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