

miRNome and Functional Network Analysis of PGRMC1 Regulated miRNA Target Genes Identify Pathways and Biological Functions Associated With Triple Negative Breast Cancer

Diego A. Pedroza¹, Matthew Ramirez¹, Venkatesh Rajamanickam², Ramadevi Subramani^{1,3}, Victoria Margolis¹, Tugba Gurbuz³, Adriana Estrada³ and Rajkumar Lakshmanaswamy^{1,3*}

OPEN ACCESS

Edited by:

Wenwen Zhang, Nanjing Medical University, China

Reviewed by:

Weifeng Ding, Nantong University, China Ammad Ahmad Farooqi, Institute of Biomedical and Genetic Engineering (IBGE), Pakistan

*Correspondence:

Rajkumar Lakshmanaswamy rajkumar.lakshmanaswamy@ ttuhsc.edu

Specialty section:

This article was submitted to Cancer Genetics, a section of the journal Frontiers in Oncology

Received: 15 May 2021 **Accepted:** 24 June 2021 **Published:** 19 July 2021

Citation:

Pedroza DA, Ramirez M, Rajamanickam V, Subramani R, Margolis V, Gurbuz T, Estrada A and Lakshmanaswamy R (2021) miRNome and Functional Network Analysis of PGRMC1 Regulated miRNA Target Genes Identify Pathways and Biological Functions Associated With Triple Negative Breast Cancer. Front. Oncol. 11:710337. doi: 10.3389/fonc.2021.710337 ¹ Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States, ² Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States, ³ Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States

Background: Increased expression of the progesterone receptor membrane component 1, a heme and progesterone binding protein, is frequently found in triple negative breast cancer tissue. The basis for the expression of PGRMC1 and its regulation on cellular signaling mechanisms remain largely unknown. Therefore, we aim to study microRNAs that target selective genes and mechanisms that are regulated by PGRMC1 in TNBCs.

Methods: To identify altered miRNAs, whole human miRNome profiling was performed following AG-205 treatment and PGRMC1 silencing. Network analysis identified miRNA target genes while KEGG, REACTOME and Gene ontology were used to explore altered signaling pathways, biological processes, and molecular functions.

Results: KEGG term pathway analysis revealed that upregulated miRNAs target specific genes that are involved in signaling pathways that play a major role in carcinogenesis. While multiple downregulated miRNAs are known oncogenes and have been previously demonstrated to be overexpressed in a variety of cancers. Overlapping miRNA target genes associated with KEGG term pathways were identified and overexpression/ amplification of these genes was observed in invasive breast carcinoma tissue from TCGA. Further, the top two genes (*CCND1* and *YWHAZ*) which are highly genetically altered are also associated with poorer overall survival.

Conclusions: Thus, our data demonstrates that therapeutic targeting of PGRMC1 in aggressive breast cancers leads to the activation of miRNAs that target overexpressed genes and deactivation of miRNAs that have oncogenic potential.

Keywords: PGRMC1, miRNA, miRNome, TNBC, KEGG, REACTOME, Gene Ontology

July 2021 | Volume 11 | Article 710337

1

INTRODUCTION

Breast cancer is the most commonly diagnosed cancer in women in the U.S (1). Treatment for breast cancers are guided by the identification of hormone receptors, Estrogen receptor (ER), Progesterone receptor (PR), and Human Epidermal Growth Factor Receptor 2 (HER2) (2, 3). Based on receptor status, breast cancers are categorized into four major molecular subtypes: Luminal A, Luminal B, HER2-enriched, and triple negative/basal-like (3). Among these triple negative breast cancers (TNBCs) are the most aggressive breast cancers with an overall poorer prognosis compared to other subtypes (4, 5). Because TNBC lack ER, PR and HER2, endocrine and antibodybased therapy are ineffective (6–8). Therefore, it is important to identify novel molecular drivers that enable TNBC growth and metastasis and target or reprogram these markers to better treat patients with aggressive metastatic cancers.

Recent evidence in multiple cancers (9-13) including breast cancer (14-16) identify microRNAs (miRNAs) as novel gene expression regulators and potential biomarkers (17-19). miRNAs are small non-coding RNAs approximately 19 to 25 nucleotides in length; they control gene expression by targeting selective-sequences of mRNAs, inducing translational repression or complete mRNA degradation (20). miRNA expression profiles have the ability to identify molecular breast cancer subtypes (21, 22) and can differentiate between basal and luminal subtypes (23). Their effect on hormone receptor expression, regulation, and activity remains in its infant stage. Ongoing studies however, have a major focus for miRNAs that target genes that are altered in aggressive breast cancers while dysregulation of miRNAs has been directly linked to aggressive basal-like breast cancers (24-28). Although one miRNA can target hundreds of genes, treatments that can switch-on specific miRNAs could lead to direct targeted gene suppression of multiple genes that are overexpressed or have oncogenic potential.

PGRMC1 a member of the membrane-associated progesterone receptor (MAPR) family with the ability to initiate non-classical signaling has been described in breast cancers (29–33). PGRMC1 overexpression is observed in more aggressive phenotypes and is associated with poor prognosis in patients diagnosed with ER-negative breast cancers (34). In addition, *in vitro* and *in vivo* studies demonstrate that PGRMC1 possess the ability to promote the growth and survival of human breast cancer cells and xenografted breast tumors (35, 36). Although PGRMC1 expression has been observed in multiple cancers (36–40), it's signaling mechanism remains unknown.

Sequencing and microarray technology has opened new insights into the genetic and genomic landscape of all breast cancers including TNBC (41, 42). For example, amplification of MYC and loss-of-function mutation of BRCA1 are often described in TNBCs (43, 44). Further, the most frequently mutated or amplified genes in TNBCs include PI3KCA (55%), AKT1 (13%) and CDH1 (13%) (45). These genes can activate downstream cell-cycle regulators that can either activate (cyclin D1) or repress (p53), leading to sustained proliferation and inhibition of apoptosis of breast cancers (46). Our recent work

demonstrated that PGRMC1 activates EGFR and PI3K/AKT signaling pathways, leading to increased cell proliferation of TNBC cells (33). While, other studies have demonstrated cell-specific effects between PGRMC1 and AKT signaling (47–49). Historically, the PI3K/AKT pathway is one of the most altered signaling mechanisms in human cancers (50–53). It plays a key role in controlling cellular processes such as cell proliferation and tumor growth (54, 55). Although directly targeting amplified genes such as *PI3KCA* and *AKT1* has proven to be difficult but promising (56, 57), novel genes that behave in a similar fashion should be identified.

To uncover genes and pathways associated with PGRMC1 in TNBCs we performed human miRNome profiling. We impaired PGRMC1 signaling using a chemical inhibitor and RNA interference. Whole human miRNome profiling identified miRNAs that were both up and down regulated following PGRMC1 impairment. Using an array of online databases and datasets we identified direct miRNA target genes. We proceeded to study these genes by identifying their involvement in the different signaling pathways that were altered following PGRMC1 suppression. More importantly, these genes were differentially expressed in human metastatic tumor samples. From all of the miRNA target genes observed, CyclinD1 (CCND1) and 14-3-3 protein zeta/delta (YWHAZ) had the highest gene expression in human tumors and were involved in various signaling pathways. Patient samples with high expression of either gene were associated with overall poorer survival probability. Increased relative gene expression and copy number variation of CCND1 and YWHAZ was observed in MDA-MB-468 breast cancer cells and silencing PGRMC1 reduced the expression of these genes. Interestingly, multiple miRNAs (miR-224, miR-550a, miR-181a, miR-664a, miR-30b, miR-345, miR-93) that were downregulated upon PGRMC1 impairment are known to be overexpressed in multiple cancers and are described as possible oncogenes. Our results demonstrate that targeting PGRMC1 regulates miRNAs that directly target amplified genes and downregulates oncogenic miRNAs in TNBCs.

MATERIALS AND METHODS

Cell Culture

MDA-MB-468 cells were obtained from the American Type Culture Collection (Manassas, VA, USA). Cells were cultured in RPMI-1640 media supplemented with 100 units/mL of penicillin, 100 μ g/mL of streptomycin (Life Technologies, Grand Island, NY, USA), and 10% fetal bovine serum (FBS). Cells were incubated at 37°C in 5% CO² and maintained at an atmosphere of 95% air.

Treatment With Small Molecule Inhibitor and Gene Silencing

MDA-MB-468 cells were plated in six-well plates at a density of $5x10^5$ cells/well and allowed to attach overnight. Cells were then

either treated with 50 μ M AG-205 for 24 h or transfected with PGRMC1 siRNA for 48 h. Using MIrus bio TransIT siQUEST transfection reagent (Mirus Bio) with either a control scrambled-sequence or siRNAs targeting PGRMC1-sequence (Origene). Three different siRNA sequences (A, B and C) and multiple concentrations ranging from 20 to 60 nM were used to effectively silence PGRMC1. To minimize toxicity, the ratio of siRNA to transfection reagent was maintained at 1:1, in accordance with the manufacture's protocol. siRNA sequences used were as follows:

- SR323253A-rGrArUrCrArArCrUrUrUrUrArGrUrCrA rUrGrArUrGrUrUCT
- SR323253B-rCrArArUrUrGrArCrUrUrArArCrUrGrCrA rUrGrArUrUUCT
- SR323253C-rUrCrArArCrUrUrUrUrArGrUrCrArUrGr ArUrGrUrUrCrUGT

Quantitative RT-PCR

Total RNA was isolated from MDA-MB-468 breast cancer cells using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA). RNA was then reverse transcribed using the RT2 first strand kit (Qiagen; Cat. No. 330401). qRT-PCR was performed using the StepOnePlus real time PCR system (Applied Biosystems, Foster City, CA, USA). The comparative Ct ($2^{-\Delta\Delta CT}$) method was used to analyze the results. The primers used for PGRMC1, CCND1, YWHAZ and 18S are as follows:

PGRMC1

Forward: 5'-CGACGGCGTCCAGGACCC-3' Reverse: 5'-TCTTCCTCATCTGAGTACACAG-3' CCND1 Forward: 5'-ATGGAACATCAGCTGCTGT-3'

Reverse: 5'-TCAGATGTCCACATCCCGC-3' YWHAZ

Forward: 5'-ATGCAACCAACACATCCTATC-3' Reverse: 5'- GCATTATTAGCGTGCTGTCTT-3' 18S

Forward: 5'-CCTCGATGCTCTTAGCTGAGT-3' Reverse: 5'-TCCTAGCTGCGGTATCCAG-3'

miRNome Profiling

Global microRNA profiling was generated using the SABiosciences PCR miScript PCR Array Human miRNome (Cat No. MIHS-216Z). Briefly, total RNA was extracted using TRIzol reagent (Life Technologies) from MDA-MB-468 cells treated with 50 μ M AG-205 for 24 h or 48 h post siRNA transfection. Human miRNome array was performed following the synthesis of cDNA using miScript II RT kit (SABiosciences). miScript miRNA PCR array was performed using miScript SYBR Green PCR Kit (SABiosciences). All of the differentially expressed miRNAs were well-characterized in the human genome as annotated by miRNet (http://www.mirnet.ca/).

Identifying Pathways Altered by PGRMC1 Using KEGG, Gene Ontology and Reactome

Using KEGG and gene ontology terms we analyzed the signaling pathways that were significantly altered following PGRMC1 disruption. The Reactome Analysis Tool (http://reactome.org) (58, 59) was used to visualize the genome-wide hierarchy of enriched pathways in response to PGRMC1. The most significantly enriched pathways are represented as yellow and are maintained in the middle of the circular representation and the less or non-significantly enriched pathways are labeled in grey. A list of all the miRNA target genes was uploaded into the Reactome database and significantly enriched pathway analysis was defined by FDR < 0.05.

Determining PGRMC1-Induced Genetic Alterations Using In Silico Analysis

To study possible genetic alterations such as inframe, missense, truncating mutations as well as gene amplification and deep deletion of the miRNA target genes observed following PGRMC1 disruption. We uploaded the DEG dataset onto the cbioportal (http://www.cbioportal.org/) database and analyzed it in reference to the cancer genome atlas (TCGA). Oncoprint diagrams were used to visualize genetic alterations from invasive breast carcinoma samples (60). Because we impaired PGRMC1 in TNBC cells, using the xena platform (https://xenabrowser.net) database, we studied the altered gene expression in response to PGRMC1 disruption. More specifically we obtained data from the breast cancer cell line Heiser 2012 (54 breast and breast cancer cell lines), breast cancer cell line encyclopedia (68 breast and breast cancer cell lines) as well as TCGA Breast Cancer (BRCA) dataset (n = 1,247 samples).

Assessing PGRMC1 Signaling and Overall Survival in Breast Cancer Patients Using KM Plotter and Interaction of miRNA Target Genes Using Genemania

The cBioportal (http://www.cbioportal.org/) database was used to study overall cumulative survival of patients with high and low expression of the miRNA target genes observed following PGRMC1 impairment. Kaplan-Meier plots were generated from TCGA breast invasive carcinoma samples (n=817). To study the impact of individual genes on overall survival probability, we used the KM plotter (http://kmplot.com/) database and generated Kaplan-Meier plots from ER-negative/HER2-negative breast cancer samples (n=869). Finally, using genemania 3 (http:// genemania.org) we explored the interconnection between miRNA target genes involved in the pathways that were significantly altered following PGRMC1 impairment.

Statistical Analysis

All data are expressed as the mean \pm SD. The differences between control and experimental groups were compared using Student's *t*-test. *P* < 0.05 was considered to be statistically significant. Statistical analysis was conducted using GraphPad Prism 7 software, version 7.0 (GraphPad Prism Software, San Diego, CA, USA).

RESULTS

Disrupting PGRMC1 Signaling the Human miRNome

To identify miRNAs regulated by PGRMC1, whole human miRNome profiling was performed using a miScript miRNA PCR array (miRNome V16) where a total of 1,084 mature miRNAs including their respective controls were measured. MDA-MB-468 breast cancer cells were treated with 50 µM AG-205. AG-205 is known to disrupt the downstream signaling of PGRMC1 possibly causing it to accumulate in the membrane. Therefore, it was not surprising to observe an increase in PGRMC1 mRNA expression (Figure 1A) as earlier studies have shown increased protein expression of PGRMC1 following AG-205 treatment (33, 38). Human miRNome profiling following AG-205 treatment identified alterations in the expression of various miRNAs (Figure 1B). The 20 most upregulated and downregulated miRNAs were observed (Figures 1C, D). Because AG-205 increased PGRMC1 mRNA expression, we proceeded to silence PGRMC1 to further study its impact on miRNA expression (Figure 1E). Following successful PGRMC1 silencing, human miRNome profiling identified alterations to 776 miRNAs (Figure 1F). Here again, the 20 most upregulated and downregulated miRNAs, were identified (Figures 1G, H). We then identified the target genes for the 20 most altered miRNAs using the miRNet database. Following AG-205

treatment the 20 most upregulated miRNAs targeted 2,898 genes while the 20 most downregulated miRNAs targeted 2,501 genes (**Figure 11** and **Supplementary Tables 1, 2**). Similarly, the top 20 most upregulated miRNAs accounted for 1,788 target genes. While, the 20 most downregulated miRNAs targeted 3,029 genes after PGRMC1 was silenced (**Figure 1J** and **Supplementary Tables 3, 4**).

PGRMC1 Signal Disruption Alters miRNAs Involved in Pathways Associated With Cancers

Since our earlier analysis with the top 20 miRNAs altered by PGRMC1 resulted in a large number of target genes, we proceeded to study the network analysis of the top 10 most upregulated and downregulated miRNAs following AG-205 treatment. Network analysis of the top 10 most upregulated miRNAs (hsa-miR-523-3p, hsa-miR-3167, hsa-miR-3176, hsa-miR-570-3p, hsa-miR-410-3p, hsa-miR-646, hsa-miR-1256, hsa-miR-576-3p, hsa-miR-378a-5p and hsa-miR-1224-5p) identified 1,479 target genes (**Figure 2A** and **Supplementary Table 5**) while the top 10 most downregulated miRNAs (hsa-miR-3681-5p, hsa-miR-3617-5p, hsa-miR-34a-5p, hsa-miR-101-5p, hsa-miR-224-5p, hsa-miR-550a-3p, hsa-miR-181a-3p, hsa-miR-1914-3p, hsa-miR-664a-3p and hsa-miR-3605-3p) targeted 1,402 genes (**Figure 2B** and **Supplementary Table 6**). Studying

FIGURE 1 | Human miRNome profiling identified differentially regulated miRNAs following PGRMC1 signal disruption and silencing. (A) Relative mRNA expression of PGRMC1 in MDA-MB-468 breast cancer cells following 50 µM AG-205 after 24 h. (B) Whole human miRNome profiling identified differentially expressed miRNAs following signaling disruption by AG-205 treatment. (C) The top 20 most upregulated miRNAs were identified all which had a log2 (fold change) greater than 3. (D) The 20 most downregulated miRNAs, all which had a log2 (fold change) less than 1. (E) Relative mRNA expression of PGRMC1 in MDA-MB-468 cells following PGRMC1 silencing after 48 h. (F) miRNome profiling identified differentially expressed miRNAs following PGRMC1 silencing. (G) The 20 most upregulated miRNAs were identified all which had a log2 (fold change) less than -5. (I) Interaction network hubs of the top 20 up and downregulated miRNAs and their mRNA target genes following AG-205 treatment. (J) Interaction network hubs of the top 20 up and downregulated miRNAs and their mRNA target genes following AG-205 treatment. (J) Interaction network hubs of the top 20 up and downregulated miRNAs and their mRNA target genes following PGRMC1 silencing. Four individual networks are demonstrated with miRNAs illustrated in green, miRNA-mRNA interacting nodes in brown and target genes represented in pink. *P < 0.05.

the top miRNAs made our study more focused on miRNAs that may be more effectively regulated by PGRMC1. To identify miRNA target genes that could have a significant impact, we narrowed down our search by performing KEGG and gene ontology analysis. KEGG terms of the computed 1,479 target genes allowed us to pin-point and identify target genes of PGRMC1 altered miRNAs that are uniquely involved within the top signaling pathways, which interestingly included, p53 signaling pathway, cell cycle and pathways in cancers (Figure 2C; Supplementary Figure 1 and Supplementary Table 7). Interestingly, the downregulated miRNAs also significantly altered pathways in cancer, cell cycle and p53 signaling pathways (Figure 2D; Supplementary Figure 2 and Supplementary Table 8). Further, gene functions including kinase binding, single-stranded DNA binding, gene silencing, intrinsic apoptotic signaling pathway, regulated program cell death, enzyme binding, and nucleotide binding were classified using gene ontology based molecular functions and biological processes of both up and downregulated miRNAs (Figures 2E, F). The candidate 10 most up and downregulated miRNAs following AG-205 treatment and their respective target genes were listed (Tables 1, 2).

miRNAs Regulated Signaling Pathways Identified Following PGRMC1 Silencing

Network analysis following PGRMC1 silencing identified 1,015 genes as targets of the 10 most upregulated miRNAs (hsa-miR-617, hsa-miR-3138, hsa-miR-3150b-3p, hsa-miR-101-5p, hsa-miR-483-5p, hsa-miR-1267, hsa-miR-221-5p, hsa-miR-3201, hsa-miR-1273d and hsa-miR-642b-3p) (**Figure 3A** and **Supplementary**

Table 9). While, 2,010 genes were identified to be direct targets of the top 10 most downregulated miRNAs (hsa-miR-135a-5p, hsamiR-3200-5p, hsa-miR-139-5p, hsa-miR-224-5p, hsa-miR-30b-3p, hsa-miR-181a-3p, hsa-miR-345-5p, hsa-miR-93-3p, hsa-miR-4291 and hsa-miR-128-3p) (Figure 3B and Supplementary Table 10). KEGG analysis of the upregulated (Figure 3C; Supplementary Figure 4 and Supplementary Table 11) and downregulated (Figure 3D; Supplementary Figure 5 and Supplementary Table 12) miRNAs following PGRMC1 silencing identified enrichment to similar KEGG terms observed in the AG-205 treatment group, such as p53 signaling pathway, cell cycle and pathways in cancers. Gene ontology terms, identified important molecular functions and biological processes including protein kinase binding, transcription factor binding, MAPK kinase activity, inactivation of MAPK activity, intrinsic apoptotic signaling pathway, purine nucleotide binding, adenyl nucleotide binding, protein phosphorylation, and regulation of phosphorylation (Figures 3E, F). The candidate 10 most up and downregulated miRNAs following PGRMC1 silencing and their respective target genes were listed (Tables 3, 4).

PGRMC1 Signal Disruption and Silencing Alters miRNAs That Target Genes Involved in Breast Cancers

Once we identified the altered pathways following PGRMC1 signal disruption by AG-205 treatment we wanted to identify if the genes that are directly involved within these pathways are observed in breast cancer patient samples. Therefore, the identified genes were taken and computed into the xenabrowser database. TCGA data

TABLE 1 | Upregulated miRNAS and target genes in response to AG-205.

miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID
hsa-mir-3167	MIMAT0015042	CALM2	805	PAR-CLIP	23592263
hsa-mir-3167	MIMAT0015042	AURKA	6790	PAR-CLIP	26701625
hsa-mir-3167	MIMAT0015042	VPS4A	27183	PAR-CLIP	22012620
hsa-mir-3167	MIMAT0015042	WASF2	10163	HITS-CLIP	23824327
hsa-mir-3176	MIMAT0015053	ZNF274	10782	HITS-CLIP	23824327 27418678
hsa-mir-3176	MIMAT0015053	CYCS	54205	HITS-CLIP	19536157
hsa-mir-3176	MIMAT0015053	TTC37	9652	HITS-CLIP	23824327
hsa-mir-3176	MIMAT0015053	ANAPC7	51434	HITS-CLIP	23824327
hsa-mir-3176	MIMAT0015053	LSM3	27258	HITS-CLIP//PAB-CLIP	23446348 23824327
hsa-mir-3176	MIMAT0015053	BAB11FIP4	84440	PAR-CLIP	23446348
hsa-mir-3176	MIMAT0015053	ACTB	60	CLASH	23622248
hsa-mir-570-3n	MIMAT0003235	HHIP	64399	PAR-CLIP	22100165
hea-mir-570-3p	MIMAT0003235	CALM3	808		23502263
hsa mir 570-3p	MIMAT0003235		5366		23502263/21572407
hsa-mir-570-3p	MIMAT0003235	RAC1	5879		23502263
hsa mir 570 3p	MIMAT0003235	TGERP2	7048		10526157
haa mir 570-3p	MIMAT0003233	ETO1	7040		02012620
haa mir 570-3p	MIMAT0003233		1006		22012020
haa mir 570-30	MINAT0003233		7170		20101023 21292023
nsa-mir-570-3p	MINIAT0003235		7170		21572407
nsa-mir-570-3p	MINIAT0003235	INFRSF IUB	8795		22012620 21572407
nsa-mir-570-3p	MINIAT0003235	GRK5	2869		23592263
nsa-mir-570-3p	MIMA 10003235	IGF1R	3480	HIIS-CLIP	23313552
hsa-mir-410-3p	MIMA10002171	VEGFA	7422	PAR-CLIP	23446348
hsa-mir-410-3p	MIMA10002171	CRK	1398	PAR-CLIP	21572407
hsa-mir-410-3p	MIMAT0002171	CHEK1	1111	HITS-CLIP	23824327
hsa-mir-410-3p	MIMAT0002171	HHIP	64399	HITS-CLIP	21572407
hsa-mir-410-3p	MIMAT0002171	PPP2R5E	5529	HITS-CLIP//PAR-CLIP	21572407
hsa-mir-410-3p	MIMAT0002171	CNOT6	57472	PAR-CLIP	23446348
hsa-mir-410-3p	MIMAT0002171	MET	4233	Luciferase reporter assay//qRT-PCR//Western blot	22750473
hsa-mir-410-3p	MIMAT0002171	CUL2	8453	HITS-CLIP//PAR-CLIP	23446348 22012620
					21572407 20371350
					23313552
hsa-mir-410-3p	MIMAT0002171	CDK1	983	PAR-CLIP	21572407
hsa-mir-410-3p	MIMAT0002171	LDLR	3949	HITS-CLIP//PAR-CLIP	23446348 21572407
					20371350
hsa-mir-410-3p	MIMAT0002171	MDM2	4193	Luciferase reporter assay//qRT-PCR//Western blot	25136862
hsa-mir-410-3p	MIMAT0002171	PRKCD	5580	PAR-CLIP	23446348 21572407
hsa-mir-410-3p	MIMAT0002171	BTG3	10950	PAR-CLIP	23446348 22012620
					21572407
hsa-mir-410-3p	MIMAT0002171	NTRK3	4916	HITS-CLIP//PAR-CLIP	23446348 21572407
hsa-mir-410-3p	MIMAT0002171	YWHAZ	7534	HITS-CLIP//PAR-CLIP	23446348 21572407
					20371350 23824327
					23313552
hsa-mir-410-3p	MIMAT0002171	RAB11FIP1	80223	PAR-CLIP	23446348 21572407
hsa-mir-410-3p	MIMAT0002171	FZD5	7855	HITS-CLIP//PAR-CLIP	23446348 21572407
hsa-mir-410-3p	MIMAT0002171	CCNB1	891	Luciferase reporter assav//gRT-PCR	26125663
hsa-mir-410-3p	MIMAT0002171	TFDP1	7027	PAR-CLIP	23446348 21572407
					20371350
hsa-mir-410-3p	MIMAT0002171	THBS1	7057	PAB-CLIP	23592263
hsa-mir-410-3p	MIMAT0002171	TRAF6	7189	PAR-CLIP	22100165
hsa-mir-410-3p	MIMAT0002171	ADCY9	115	HITS-CLIP//PAB-CLIP	23446348 21572407
					20371350
hsa-mir-410-3n	MIMAT0002171	GSK3B	2932	HITS-CLIP//PAR-CLIP	23446348 22012620
115a 1111 410 0p	101101/100021711	COROD	2002		21572/07/23313552
hsa-mir-410-3n		SNAI1	6615	Luciferase reporter assay//aRT_PCR/Mastern blot	27201/65
hea_mir_/10_0p			5204		21221400
hoo mir 410-0p			0200		2101240120010002
nsa-mir-410-3p			9322		23024327
1158-11111-040	IVIIIVIA I UUU33 16	ZIVIA I 3	04393		24390324 22012020
has as 0.10			505		213/240/203/1350
nsa-mir-646	MIMA 10003316	COND1	595		24398324
nsa-mir-646		UHEK1	1111		23313552
nsa-mir-646	WIIVIA 10003316	UKK	1388	PAR-ULIP	215/240/

TABLE 1 | Continued

miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID
hsa-mir-646	MIMAT0003316	VEGFA	7422	HITS-CLIP//PAR-CLIP	23592263 24398324
					23446348 22012620
					21572407 20371350
hsa-mir-646	MIMAT0003316	BTG2	7832	PAR-CLIP	24398324 20371350
					26701625
hsa-mir-646	MIMAT0003316	PPP2R5C	5527	PAR-CLIP	21572407 20371350
hsa-mir-646	MIMAT0003316	DDX6	1656	PAB-CLIP	22012620
hsa-mir-646	MIMAT0003316	CSNK2A1	1457	HITS-CLIP	23313552
hsa-mir-646	MIMAT0003316	ORC4	5000	PAR-CLIP	24398324 23446348
			0000		21572407 20371350 27292025
hsa-mir-646	MIMAT0003316	PRKAR2A	5576	PAR-CUP	23592263 23446348
			0010		21572407 20371350
nsa-mir-646	MIMAT0003316	RBI 1	5933	PAB-CLIP	20371350
nsa mir 040	MIMAT0003316	BIBC5	330		23446348[21572407]
134-1111-040	1011101AT 0000010	DINOS	002		20440040[21072407]
aca mir 646	MIN/AT0002216		7465		21572407/20271250
		ODKG	1001		21072407/20071000
15a-1111-040			1021		203/1330
isa-mir-646	MIMAT0003316	SIKII	6794		26701625
ISa-ITIIF-046		PKUM4	11108		215/2407
nsa-mir-646	MIMA10003316	PIPRE	5792	HIIS-CLIP	19536157
nsa-mir-646	MIMAT0003316	PIK3R1	5295	HITS-CLIP//PAR-CLIP	23446348 21572407
					23824327 23313552
nsa-mir-646	MIMAT0003316	CCNE2	9134	PAR-CLIP	23446348 21572407
					20371350
nsa-mir-646	MIMAT0003316	MAP3K7	6885	PAR-CLIP	20371350
nsa-mir-646	MIMAT0003316	AKT3	10000	PAR-CLIP	23592263 21572407
nsa-mir-646	MIMAT0003316	CCNE1	898	PAR-CLIP	21572407 20371350
nsa-mir-646	MIMAT0003316	FGF2	2247	PAR-CLIP	23446348
nsa-mir-646	MIMAT0003316	PHKA1	5255	HITS-CLIP//PAR-CLIP	23446348 21572407
					20371350
nsa-mir-646	MIMAT0003316	CNOT6L	246175	PAR-CLIP	20371350
nsa-mir-646	MIMAT0003316	CCND2	894	PAR-CLIP	21572407/20371350
15a mir-1256	MIMAT0005907	MKNK2	2872	PAR-CLIP	23592263/20371350
15a mir-1256	MIMAT0005907	WNT2B	7482	HITS-CLIP	27418678
100 mir 1256		CHMDOR	25079		21572407
13a - 1111 - 1250	MIMAT0005907	STKA	6780		26701625
15a-1111-1250	MINAT0005907	31K4 W/AQI	0709		20701023
isa-mir-1200	IVIIIVIA 1 0005907	WASL	8976		23440340
nsa-mir-1256	MIMA10005907	PABPC1	26986	PAR-CLIP	21572407[20371350]
. 570.0	NUN 44 TOOO 4700		5000		26701625
nsa-mir-576-3p	MIMA10004796	PMAIP1	5366	PAR-CLIP	23592263
nsa-mir-576-3p	MIMA10004796	PPP2R5E	5529	PAR-CLIP	23592263
nsa-mir-576-3p	MIMAT0004796	CCDC6	8030	PAR-CLIP	20371350
nsa-mir-576-3p	MIMAT0004796	SESN3	143686	PAR-CLIP	22100165
nsa-mir-576-3p	MIMAT0004796	SH2B3	10019	PAR-CLIP	23592263
nsa-mir-576-3p	MIMAT0004796	HIF1A	3091	PAR-CLIP	21572407
nsa-mir-576-3p	MIMAT0004796	YWHAQ	10971	PAR-CLIP	23446348
nsa-mir-378a-5p	MIMAT0000731	CYCS	54205	HITS-CLIP	23824327
nsa-mir-378a-5p	MIMAT0000731	CCND2	894	PAR-CLIP	22012620
nsa-mir-378a-5p	MIMAT0000731	YWHAB	7529	CLASH	23622248
1sa-mir-378a-5p	MIMAT0000731	TPR	7175	CLASH	23622248
nsa-mir-378a-5p	MIMAT0000731	ATM	472	HITS-CLIP	23824327
nsa-mir-378a-5p	MIMAT0000731	PPP1R3B	79660	HITS-CLIP	23824327
1sa-mir-378a-5p	MIMAT0000731	FGF19	9965	HITS-CLIP	23824327
15a-mir-378a-5n	MIMAT0000731	SMURF2	64750	HITS-CLIP	23824327
15a mir 378a-5p	MIMAT0000731	PYGR	5834	PAR-CLIP	20371350
noa mir 378a 5p		RNE41	10102		21570407
15a-1111-0/08-00			6104		210/240/
15a-1111-0/08-0P			670		20024021
isa-mir-378a-5p		BRAF	673		23622248
isa-mir-378a-5p	MIMA10000731	ACTN4	81	CLASH	23622248
isa-mir-378a-5p	MIMA10000731	SUFU	51684	Luciterase reporter assay//qR1-PCR//Western blot	18077375
1sa-mir-378a-5p	MIMAT0000731	WNT7B	7477	HITS-CLIP	23824327
hsa-mir-378a-5p	MIMAT0000731	CDK4	1019	HITS-CLIP	23824327

TABLE 1 | Continued

miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID
hsa-mir-378a-5p	MIMAT0000731	XIAP	331	HITS-CLIP	23824327 22927820
hsa-mir-378a-5p	MIMAT0000731	BBC3	27113	PAR-CLIP	23592263 24398324
hsa-mir-378a-5p	MIMAT0000731	PPARGC1A	10891	CLASH	23622248
hsa-mir-378a-5p	MIMAT0000731	DCP2	167227	HITS-CLIP	19536157
hsa-mir-378a-5p	MIMAT0000731	F2R	2149	HITS-CLIP	22927820
hsa-mir-378a-5p	MIMAT0000731	ZMAT3	64393	PAR-CLIP	22012620
hsa-mir-1224-5p	MIMAT0005458	WASF2	10163	CLASH	23622248
hsa-mir-1224-5p	MIMAT0005458	ZMAT3	64393	PAR-CLIP	22100165

from primary and metastatic tumor samples was downloaded and plotted. Genes from p53 signaling pathway, cell cycle neutrophin signaling pathways, pathways in cancer, adherens junction, insulin signaling pathway, oocyte meiosis, mTOR signaling pathway, RNA degradation, and endocytosis were differentially expressed in both metastatic and primary tumor tissue samples (Figure 4). Target genes of downregulated miRNAs were also differentially expressed in similar pathways including pathways in cancer, cell cycle, and p53 signaling pathway (Supplementary Figure 5). Identified genes involved within each pathway following PGRMC1 silencing were similarly computed into the xenabrowser database. TCGA data analyzed from metastatic tumor samples identified upregulated miRNA target genes to be involved in pathways in cancer, T cell receptor signaling pathway, cell cycle, p53 signaling pathway, B cell receptor signaling pathway, MAPK signaling pathway, JAK-STAT signaling pathway, ErbB signaling pathway, NOD-like receptor signaling pathway, and mRNA surveillance pathway (Figure 5). Intriguingly, downregulated miRNAs had similarly altered miRNA target genes in pathways in cancer, p53 signaling pathway, T cell receptor signaling pathway and ErbB signaling pathway (Supplementary Figure 6). However, some miRNA target genes were also observed in adherens junctions, focal adhesion, neurotrophin signaling pathway, regulation of actin cytoskeleton, aldosterone-regulated sodium reabsorption and chemokine signaling pathway (Supplementary Figure 6).

PGRMC1 Regulates miRNAs Involved in Cell Cycle, Disease Signal and Transduction Processes

Gene network analysis allowed us to identify novel target genes and we were able to classify them using KEGG term enrichment following AG-205 treatment of PGRMC1 silencing. We employed the Reactome database to study pathway-topology analysis using the miRNA target genes from KEGG and GO analysis. Using the Reactome pathway identifier we were able to observe genes that are mapped to pathways and over-represented within those pathways (58, 61). Following AG-205 treatment, we identified over-representation of miRNA target genes in pathways involved in cell cycle, gene expression (Transcription), disease, and signal transduction (**Figure 6A**). Similarly, following PGRMC1 silencing we observed over-representation of miRNA target genes in pathways involved in immune system, signal transduction, gene expression (transcription), and cell cycle (**Figure 6B**).

Functional Annotation Analysis of PGRMC1 Altered miRNA Target Genes in Invasive Breast Carcinomas Samples Using TCGA Dataset

TCGA data was used to study possible genetic alterations of the miRNA target genes due to miRNA alterations in response to PGRMC1 disruption. From the miRNA target genes observed, the top 22 that displayed increased mRNA expression within the spectrum of signaling pathways identified by KEGG were further analyzed. Using the cBioportal database we were able to observe and differentiate between the miRNA target genes based on genetic alteration. Using oncoprint we visualized the genetic alterations in the 22 miRNA target genes (CCND1, YWHAZ, TPM3, BTG2, PABPC1, IGF1R, RAB11FIP1, PRKDC, MAPKAPK2, MAPK3, THBS1, CALM2, PIK3R1, RPS6, ACTB, PTPRF, ITGB1, RHOA, MAPK1, BCL2L1, RAC1 and PPP2R1A) (Figure 7A and Supplementary Figure 7). However, the percentage of genetic alteration varied within each gene and most miRNA target genes that displayed an alteration in > 5 percent were mainly amplified (Figure 7A). Patients that displayed high expression of these genes had a cumulative lower survival rate (Figure 7B). Network analysis by the Genemania database demonstrated that these amplified genes have tight interactions within signaling pathways. The light-red lines connect genes that are known to directly interact with one another within signaling pathways that are well studied (Figure 7C). Although, cumulatively these genes displayed a lower survival rate, only high expression of CCDN1 and YWHAZ in ERnegative breast cancer patients displayed significant overall lower survival probability (Figure 7D and Supplementary Figure 8). Finally, gene expression data analysis from the breast cancer cell line dataset and copy number variation from the cancer cell line encyclopedia dataset similarly demonstrated increased expression/CN variation of CCND1 and YWHAZ in TNBC cell lines (Figure 7E). Further, we also confirmed the decreased expression of CCND1 and YWHAZ in PGRMC1 silenced MDA-MB-468 cells (Figure 7F). Overall, our in vitro and in silico analysis demonstrates that PGRMC1 plays a major role in influencing the miRNome in such a way that these alterations favor breast tumor growth and progression.

DISCUSSION

TNBCs account for approximately 12-14% of breast cancers diagnosed in the United States, with most exhibiting ${\rm BRCA1/2}$

TABLE 2 | Downregulated miRNAS and target genes in response to AG-205.

miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID
hsa-mir-181a-3p mir-3605-3p	MIMAT0000270 None	ARHGDIA	396	PAR-CLIP	26701625
hsa-mir-664a-3p	MIMAT0005949	TPR	7175	PAR-CLIP	22012620
hsa-mir-664a-3p	MIMAT0005949	CTBP1	1487	PAR-CLIP	24398324 21572407
					26701625 27292025
hsa-mir-664a-3p	MIMAT0005949	MAPK8	5599	PAR-CLIP	24398324
hsa-mir-664a-3p	MIMAT0005949	WNT7A	7476	PAR-CLIP	22012620
hsa-mir-664a-3p	MIMAT0005949	WEE2	494551	HITS-CLIP	23824327
hsa-mir-664a-3p	MIMAT0005949	CALM1	801	PAR-CLIP	21572407
hsa-mir-664a-3p	MIMAT0005949	RPS6KA5	9252	PAR-CLIP	21572407
hsa-mir-1914-3p	MIMA10007890	YWHAE	7531	PAR-CLIP	23592263
hsa-mir-1914-3p	MIMA10007890	PLCG1	5335		23622248
hsa-mir-1914-3p	MINAT0007890	CTATED	6777		23092203
hsa-mir-1914-3p	MIMAT0007890	TAR2	23118		23502263
hsa-mir-1914-3p	MIMAT0007890	NRG4	145957	PAR-CLIP	23592263
hsa-mir-1914-3p	MIMAT0007890	CALM3	808	PAR-CLIP	23446348 26701625
hsa-mir-3617-5p	MIMAT0017997	CDKN1A	1026	PAR-CLIP	26701625
hsa-mir-3617-5p	MIMAT0017997	CDKN2B	1030	HITS-CLIP	23313552
hsa-mir-3617-5p	MIMAT0017997	MAPK10	5602	HITS-CLIP	23824327 27418678
hsa-mir-3617-5p	MIMAT0017997	MDM2	4193	PAR-CLIP	21572407 26701625
hsa-mir-3617-5p	MIMAT0017997	CDK1	983	PAR-CLIP	21572407
hsa-mir-3617-5p	MIMAT0017997	PMAIP1	5366	PAR-CLIP	27292025
hsa-mir-3617-5p	MIMAT0017997	CALM3	808	PAR-CLIP	21572407 20371350
					26701625
hsa-mir-224-5p	MIMAT0000281	CCND1	595	PAR-CLIP	26701625
hsa-mir-224-5p	MIMA10000281	BCL2	596	Microarray//qRI-PCR//Western blot	22989374
nsa-mir-224-5p	MIMA 10000281	CASP3	836	Luciferase reporter assay//western blot	26307684
hsa-mir-224-5p			346U 4090	PAR-OLIP	2037 1330
nsa-mir-224-5p	IVIIIVIA 1 000020 1	SIVIAD4	4009	Lucierase reporter assay//qn1-ron//western biot	20116412 23922002
hsa-mir-224-5p	MIMAT0000281	PDGFRB	5159	Microarray//Northern blot	16331254
hsa-mir-224-5p	MIMAT0000281	CDC42	998	Luciferase reporter assav//Microarrav//gRT-PCR//Western blot	20023705 24817781
					22989374
hsa-mir-224-5p	MIMAT0000281	MTOR	2475	/Luciferase reporter assay//qRT-PCR//Western blot	27315344
hsa-mir-224-5p	MIMAT0000281	GSK3B	2932	Luciferase reporter assay	25588771
hsa-mir-224-5p	MIMAT0000281	HSP90AA1	3320	PAR-CLIP	23446348 20371350 26701625
hsa-mir-224-5p	MIMAT0000281	MAP2K2	5605	HITS-CLIP	23824327
hsa-mir-224-5p	MIMAT0000281	RAC1	5879	Luciferase reporter assay	27222381
hsa-mir-224-5p	MIMAT0000281	TPR	7175	PAR-CLIP	22012620
hsa-mir-224-5p	MIMAT0000281	GSK3B	2932	Luciferase reporter assay	25588771
hsa-mir-224-5p	MIMAT0000281	SERPINE1	5054	PAR-CLIP	22012620
hsa-mir-224-5p	MIMA10000281	CASP7	840	Luciterase reporter assay//qR1-PCR//Western blot	26307684
nsa-mir-224-5p		KRAS	3845	qR1-PCR//Western blot	23667495
hsa-mir 224-5p	MIMAT0000281		999 7505		22969374 23604030
hsa-mir-224-5p	MIMAT0000281	PAK2	5062	Microarray//gRT_PCR/Mestern blot	22012020
hsa-mir-224-5p	MIMAT0000281	PAK2	5062	Microarray//gRT-PCR//Western blot	22989374
hsa-mir-550a-3p	MIMAT0003257	MAPK3	5595	/Luciferase reporter assav//gRT-PCR//Western blot	27462780
hsa-mir-550a-3p	MIMAT0003257	HSP90AA1	3320	PAR-CLIP	21572407
hsa-mir-550a-3p	MIMAT0003257	MDM2	4193	PAR-CLIP	20371350
hsa-mir-550a-3p	MIMAT0003257	MAPK1	5594	/Luciferase reporter assay//qRT-PCR//Western blot	27462780
hsa-mir-550a-3p	MIMAT0003257	TPM3	7170	PAR-CLIP	26701625
hsa-mir-550a-3p	MIMAT0003257	TRAF1	7185	HITS-CLIP	19536157
hsa-mir-550a-3p	MIMAT0003257	YWHAE	7531	PAR-CLIP	23592263
hsa-mir-101-5p	MIMAT0004513	FOS	2353	Luciferase reporter assay//qRT-PCR//Western blot	27485165
hsa-mir-101-5p	MIMA10004513	VEGFA	7422	Luciterase reporter assay//qR1-PCR//Western blot	26870229
nsa-mir-101-5p	MIMA10004513	KAC1	5879	Luciferase reporter assay//qKI-PCK//Western blot	26697839
nsa-mir-101-5p hsa-mir-101-5p	MIMAT0004513	ΔTM	0709 479	FAN-OLIF Luciferase renorter assau//aRT-PCR	20/01020
hsa-mir-101-5p	MIMAT0004513		+1 Z 5501	Luciferase reporter assay//qn1=r On	20017100
			0001		20011100

TABLE 2 | Continued

miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID
hsa-mir-101-5p	MIMAT0004513	PMAIP1	5366	PAR-CLIP	23446348 22012620
hsa-mir-3681-5p	MIMAT0018108	FZD6	8323	HITS-CLIP//PAR-CLIP	21572407 20371350 24398324 21572407 22212552
haa mir 0601 En			0.400		23313332
hsa-mir 2001-op		GRAPZ	10000		19530157
nsa-mir-3681-5p			10892	PAR-ULIP	23592263
nsa-mir-34a-5p	MINAT0000255	AKTI	207	FIOW//QRT-PCR//Western blot	27073535
hsa-mir-34a-5p	MIMA10000255	BIRC2	329	PCR array	28097098
hsa-mir-34a-5p	MIMA10000255	BIRC3	330	Microarray//Northern blot	17540599
hsa-mir-34a-5p	MIMA10000255	XIAP	331	PCR array	28097098
hsa-mir-34a-5p	MIMAT0000255	BIRC5	332	/PCR array//qRT-PCR//Western blot	23264087 24068565 25436980 26318298 28097098
bee mir 34e En		EASIG	256	PCP array	28097098
haa mir 24a Sp	MINAT0000255	AD	300	POR allay	2009/090
haa mir 24a Sp	MINAT0000255		507	uniferenze reporter appay////leatern blat	23143211
hsa-mir-34a-op			501	Declerase reporter assay//western blot	27010823
nsa-mir-34a-5p	MIMA 10000255	CCNDT	595	/heporter assay//Sequencing//western biot	20309880 20371350 27220728
hsa-mir-34a-5p	MIMAT0000255	BCL2	596	/qRT-PCR//QRTPCR//Reporter assay//Western blot	26802970 27939626 26406332 25910896
hsa-mir-34a-5p	MIMAT0000255	BCL2L1	598	PCR array	28097098
hsa-mir-34a-5p	MIMAT0000255	CASP3	836	PCR array	28097098
hsa-mir-34a-5p	MIMAT0000255	CASP8	841	PCR array	28097098
hsa-mir-34a-5p	MIMAT0000255	CASP9	842	PCR array	28097098
hsa-mir-34a-5p	MIMAT0000255	CDK4	1019	Luciferase reporter assay//Microarray//qRT-PCR//Western blot	21240262 21128241 24504520
hsa-mir-34a-5p	MIMAT0000255	CDK6	1021	/PAR-CLIP//qRT-PCR//Reporter assay//Western blot	19773441 21240262 23035210 23592263
hsa-mir-34a-5p	MIMAT0000255	CDKN1B	1027	PAR-CLIP	23446348
hsa-mir-34a-5p	MIMAT0000255	CDKN2A	1029	Western blot	21128241
hsa-mir-34a-5p	MIMAT0000255	CSF1R	1436	Luciferase reporter assay//gRT-PCR	24198819
hsa-mir-34a-5p	MIMAT0000255	CTNNB1	1499	Proteomics	21566225
, hsa-mir-34a-5p	MIMAT0000255	DAPK1	1612	PCR array	28097098
hsa-mir-34a-5p	MIMAT0000255	E2F1	1869	/Luciferase reporter assav//gRT-PCR//Western blot	17875987 21128241
hsa-mir-34a-5n		E2E3	1871		27704360 28293146
1134-1111-044-00	101101410000200	LZI U	1071		26802970 28389657 25675046
hsa-mir-34a-5p	MIMAT0000255	EBBB2	2064	Luciferase reporter assav//Western blot	27813227
hsa-mir-34a-5p	MIMAT0000255	FOS	2353	ChIP//mBNA.decay//gBT-PCB//Western.blot	27513856
hsa-mir-34a-5p	MIMAT0000255	GBB2	2885	Sequencing	20371350
hsa-mir-34a-5p	MIMAT0000255	HDAC1	3065	/qRT-PCR//Reporter assay//Western blot	21566225 23836017
					26035691 28123637
hsa-mir-34a-5p	MIMAT0000255	IGF1R	3480	CLASH	23622248
hsa-mir-34a-5p	MIMAT0000255	ITGA6	3655	Proteomics	21566225
hsa-mir-34a-5p	MIMAT0000255	KIT	3815	Luciferase reporter assay//Western blot	24009080 27056900
hsa-mir-34a-5p	MIMAT0000255	SMAD4	4089	//PAR-CLIP//qRT-PCR//Western blot	20371350 28348487 26077733
hsa-mir-34a-5p	MIMAT0000255	MET	4233	/Northern blot//qRT-PCR//Western blot	24983493 26313360 26238271 27513895 28250026
hsa-mir-34a-5p	MIMAT0000255	MYC	4609	/Reporter assay//Sequencing//TRAP//Western blot	21297663 22159222 20371350 24510096 25572695
hsa-mir-34a-5p	MIMAT0000255	NFKB1	4790	PCR arrav	28097098
hsa-mir-34a-5n	MIMAT0000255	PDGFRA	5156	//Microarrav//gRT-PCR//Western blot	22479456 23805317
			0100		24837198/27302634
hsa-mir-34a-5p	MIMAT0000255	PDGFRB	5159	/Luciferase reporter assay//qRT-PCR//Western blot	23805317 24837198 26324236
hsa-mir-34a-5n	MIMAT0000255	PIK3CG	5294	Flow//gRT-PCB//Western blot	27073535
hsa-mir-34a-5p	MIMAT0000255	PLCG1	5335	Proteomics	21566225

TABLE 2 | Continued

miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID
hsa-mir-34a-5p	MIMAT0000255	MAPK3	5595	CLASH	23622248
hsa-mir-34a-5p	MIMAT0000255	MAP2K1	5604	Luciferase reporter assay//Northern blot//gRT-PCR//Western blot	20299489
hsa-mir-34a-5p	MIMAT0000255	RALB	5899	Proteomics	21566225
hsa-mir-34a-5p	MIMAT0000255	SPI1	6688	Luciferase reporter assay//Reporter assay	20598588
hsa-mir-34a-5p	MIMAT0000255	STAT1	6772	Proteomics	21566225
hsa-mir-34a-5p	MIMAT0000255	TCF7	6932	/Luciferase reporter assav//gRT-PCR//Western blot	25436980
hsa-mir-34a-5p	MIMAT0000255	TGFBR2	7048	PAR-CLIP	22012620
hsa-mir-34a-5p	MIMAT0000255	TP53	7157	/Northern blot//qRT-PCR//QRTPCR//Western blot	23292869 26406332
					26403328 26177460
hsa-mir-34a-5p	MIMAT0000255	TRAF2	7186	PCR array	28097098
hsa-mir-34a-5p	MIMAT0000255	TRAF3	7187	PCR array	28097098
hsa-mir-34a-5p	MIMAT0000255	VEGFA	7422	ELISA//Luciferase reporter assay	18320040
hsa-mir-34a-5p	MIMAT0000255	WNT1	7471	//Luciferase reporter assay//Microarray//qRT-PCR//Western blot	19336450 19398721 28199987
hsa-mir-34a-5p	MIMAT0000255	CCNE2	9134	Luciferase reporter assay//Microarray//PAR-CLIP//Western blot	19461653 17914404
hsa-mir-34a-5p	MIMAT0000255	LEF1	51176	/Microarray//Proteomics//qRT-PCR//Reporter assay//Western blot	21566225 25587085
bea mir 34a 5n		CVCS	54205	DCP array	20090707
hsa-mir-34a-op		KRAG	0045	POR allay	28097098
nsa-mir-224-5p		KRAS	3845	QRI-PCR//Western blot	23667495
nsa-mir-34a-5p	MINIAT0000255	CCND3	896	Western blot	18406353
nsa-mir-34a-5p	MIMA10000255	CDC20	991	CLASH//Proteomics	21566225 23622248
hsa-mir-34a-5p	MIMA10000255	CDC25A	993	Western blot	18406353
hsa-mir-34a-5p	MIMA10000255	CDC25C	995	Microarray	19461653
nsa-mir-34a-5p	MIMA10000255	CDK4	1019	Luciferase reporter assay//Microarray//qR1-PCH//Western biot	19461653 17914404 21240262 21128241
hsa-mir-34a-5p	MIMAT0000255	CDK6	1021	Microarray//PAR-CLIP//qRT-PCR//Reporter assay//Western blot	24504520 17914404 19773441 21240262 23035210
baa mir 24a En			1007		23092203
hsa-mir-34a-5p		CDKNIB	1027		23440346
nsa-mir-34a-5p	MINIAT0000255	CDKN2A	1029	vestern blot	21128241
hsa-mir-34a-5p			1031	QRT-POR/Reporter assay	21120241
hsa-mir-34a-5p		GADD45A	1047	POR allay	2009/090
nsa-mir-34a-5p	WIIWA 10000255	E2FT	1869	/Lucherase reporter assay//qR1-PCR//Western blot	27704360 28293146
hsa-mir-34a-5p	MIMAT0000255	E2F3	1871	/Luciferase reporter assay//Microarray//PAR-CLIP//qRT-PCR// Western blot	23954321 23298779 26802970 28389657
					25675046
hsa-mir-34a-5p	MIMAT0000255	E2F5	1875	Microarray	19461653
hsa-mir-34a-5p	MIMAT0000255	SFN	2810	Proteomics	21566225
hsa-mir-34a-5p	MIMAT0000255	HDAC1	3065	/Proteomics//qRT-PCR//Reporter assay//Western blot	21566225 23836017 26035691 28123637
hsa-mir-34a-5p	MIMAT0000255	SMAD4	4089	/Luciferase reporter assay//PAR-CLIP//qRT-PCR//Western blot	20371350 28348487 26077733
hsa-mir-34a-5p	MIMAT0000255	MCM2	4171	Proteomics	21566225
hsa-mir-34a-5p	MIMAT0000255	MCM3	4172	Proteomics	21566225
hsa-mir-34a-5p	MIMAT0000255	MCM4	4173	Proteomics	21566225
hea-mir-34a-5p	MIMAT0000255	MCM5	1170	Proteomics	21566225
hsa-mir-34a-5p	MIMAT0000255	MCM6	4174	Proteomics	21566225
hsa-mir 34a-5p	MIMAT0000255	MCMZ	4175	Proteomics	21566225
hsa-mir 34a-5p	MIMAT0000255		4170 8607	Proteomics	21566225
hoo mir 24o En	MIMAT0000255	CONE2	0124	Froteonius	21000220
115a-1111-04a-0p	WIIWA 10000233		9104		23446348
nsa-mir-34a-5p	MIMA 10000255	STAG2	10735	Proteomics	21566225
hsa-mir-34a-5p	MIMA10000255	FZR1	51343	PAR-CLIP	26701625
hsa-mir-34a-5p	MIMAT0000255	ANAPC5	51433	CLASH	23622248
hsa-mir-34a-5p	MIMAT0000255	CASP8	841	PCR array	28097098
hsa-mir-34a-5p	MIMAT0000255	CASP9	842	PCR array	28097098
hsa-mir-34a-5p	MIMAT0000255	TNFRSF10B	8795	PCR array	28097098
hsa-mir-34a-5p	MIMAT0000255	CYCS	54205	PCR array	28097098
hsa-mir-34a-5p	MIMAT0000255	AKT1	207	Flow//qRT-PCR//Western blot	27073535

TABLE 2 | Continued

MIRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID
hsa-mir-34a-5p	MIMAT0000255	BIRC2	329	PCR array	28097098
hsa-mir-34a-5p	MIMAT0000255	BIRC3	330	Microarray//Northern blot	17540599
hsa-mir-34a-5p	MIMAT0000255	XIAP	331	PCR array	28097098
hsa-mir-34a-5p	MIMAT0000255	FASLG	356	PCR array	28097098
	A A Constraints A A A A A A A A A A A A A	C KEGG sin cancer cell cycle- ng pathway- ng pathway-	E cose terms	LECULAR FUNCTIONS protein domain specific libring P102 domain libring P102 domain libring protein libring protein libring protein libring protein libring mapselum to indring mapselum to indring protein to indring mapselum to indring <tr< td=""><td>adon of transation adon of transation before sequence escalable fore sequence escalable fore sequence enclosylves fore sequence enclosylves testion with that is supported sequent adon of enclosylone adon of enc</td></tr<>	adon of transation adon of transation before sequence escalable fore sequence escalable fore sequence enclosylves fore sequence enclosylves testion with that is supported sequent adon of enclosylone adon of enc
	Pathway	D KEGG	F com	DLECULAR FUNCTIONE puritie nucleodide binding puritie nucleodide binding puritie nucleodide binding excursue binding haase binding haase binding ATP binding advay nucleodide binding advay nuc	autophosphsydaion attor of Finnis quick in the starty attor of Timing activity attor of Timing activity forming attorn factor bat receptor signaling pathway attor of calibate recornes development we regulator of calibate component organization menti growth factor access signaling pathway be regulator of factor starting pathway hore regulator of calibatesion ducks signaling pathway

treatment) that target similar miRNA target genes which are also upregulated in metastatic breast cancer samples. (A) Target genes highlighted in pink of the top ten most upregulated miRNAs highlighted in green. (B) The top ten most downregulated miRNAs highlighted in green and their direct targets highlighted in gree. (C) and (D) The top 10 most significantly enriched pathways (non-disease related) were identified by KEGG analysis, adjusted p < 0.05. (E, F) miRNA target genes show involvement in GO: terms Molecular functions and Biological process.

and p53 germline mutations (62, 63). TNBCs are the most aggressive type of breast cancer and most patients do not respond well to conventional chemotherapy (64, 65). The concept of gene therapy has been brought up as an alternative to chemotherapy to treat these aggressive cancers (66, 67) in this case RNAi could be used to target mutated proteins which are a product of missense mutations, leading to high constitutive expression of mutated proteins such as TP53 (68). However, suppressing genes with RNAi requires effective delivery methods, which have proven to be effective in some cases but difficult in both *in vivo* and *in vitro* systems (69–71). Therefore, other means of gene targeting therapies could be valued options.

miRNAs have emerged as important biological regulators of normal development (72) and evidence suggest that they play a major role in human cancers (73). miRNAs are abundantly found in multiple human cells and have the ability to regulate gene expression of approximately 60% of all mammalian genes (74, 75) hence they promote themselves as an attractive therapeutic option. Several miRNAs have been shown to be altered in TNBCs (24–28). Two examples of this are through the activation of STAT3, a transcription factor that is well documented in cancers (76). Activation of STAT3 is observed in TNBC tumors where epigenetic suppression of miR-146b leads to constitutive STAT3 activation and tumor growth (77, 78). Secondly, through the activation of the miRNA-200 family, these miRNAs are known to negatively regulate the epithelial to mesenchymal transition (EMT) and can specifically target ZEB1/ 2 (79, 80). Thereby, leading to the question, if miRNAs such as miR-14b or the miR-200 family of miRNAs were to be upregulated could they then target genes that are overexpressed or active like STAT3 and EMT inducers to inhibit tumor growth?

PGRMC1 has been deemed a novel tumor biomarker due to its elevated levels in human cancers (49, 81–84). Because PGRMC1 plays a role in chemoresistance, tumor progression and growth it has become an attractive therapeutic target (36). Intriguingly, PGRMC1 is commonly observed in aggressive TNBC tissue (35). This is particularly interesting because TNBCs lack the classical signaling hormone receptors, ER and PR yet TNBCs that overexpress PGRMC1 could respond to steroid hormones *via* PGRMC1. Our previous studies showed that PGRMC1 is clearly overexpressed in the TNBC cell line MDA-MB-468 and using a known inhibitor (AG-205) and

TABLE 3 | Upregulated miRNAS and target genes in response to silencing PGRMC1.

miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID
hsa-mir-617	MIMAT0003286	PABPC1	26986	HITS-CLIP	19536157
hsa-mir-3138	MIMAT0015006	PPP2R5E	5529	PAR-CLIP	23592263
hsa-mir-3138	MIMAT0015006	PPP2R1A	5518	PAR-CLIP	26701625
hsa-mir-3138	MIMAT0015006	CDC25A	993	PAR-CLIP	23592263
hsa-mir-3138	MIMAT0015006	CDK6	1021	PAR-CLIP	26701625
hsa-mir-3138	MIMAT0015006	FZD6	8323	HITS-CLIP//PAR-CLIP	24398324 21572407 23313552
hsa-mir-3138	MIMAT0015006	PIAS4	51588	PAR-CLIP	26701625
hsa-mir-3150b-3p	MIMAT0018194	CBL	867	PAR-CLIP	26701625
hsa-mir-3150b-3p	MIMAT0018194	BBC3	27113	PAR-CLIP	23592263
hsa-mir-3150b-3p	MIMAT0018194	WNT7B	7477	PAR-CLIP	23592263 26701625
hsa-mir-3150b-3p	MIMAT0018194	RBM8A	9939	PAR-CLIP	23592263 23446348 22012620 20371350 26701625 27292025
hsa-mir-3150b-3p	MIMAT0018194	YWHAZ	7534	PAR-CLIP	26701625
hsa-mir-3150b-3p	MIMAT0018194	SUGT1	10910	PAR-CLIP	23592263 20371350
hsa-mir-3150b-3p	MIMAT0018194	RALBP1	10928	PAR-CLIP	26701625
hsa-mir-3150b-3p	MIMAT0018194	CBLB	868	HITS-CLIP	19536157
hsa-mir-3150b-3p	MIMAT0018194	PABPC1L2B	645974	PAR-CLIP	23592263
hsa-mir-3150b-3p	MIMAT0018194	FZD7	8324	PAR-CLIP	26701625
hsa-mir-3150b-3p	MIMAT0018194	IKBKG	8517	PAR-CLIP	24398324
hsa-mir-3150b-3p	MIMAT0018194	PLK1	5347	PAR-CLIP	26701625
hsa-mir-3150b-3p	MIMAT0018194	PABPC1L2A	340529	PAR-CLIP	23592263
hsa-mir-3150b-3p	MIMAT0018194	BCL2L1	598	PAR-CLIP	23592263 26701625
hsa-mir-3150b-3p	MIMAT0018194	CDK2	1017	PAR-CLIP	23446348 20371350 26701625
hsa-mir-3150b-3p	MIMAT0018194	MAPK1	5594	PAR-CLIP	23592263
hsa-mir-3150b-3p	MIMAT0018194	PABPN1	8106	PAR-CLIP	26701625
hsa-mir-3150b-3p	MIMAT0018194	CACNA1B	774	HITS-CLIP	23824327 27418678
hsa-mir-3150b-3p	MIMA10018194	CDKN1A	1026	PAR-CLIP	23592263
hsa-mir-101-5p	MIMA10004513	STMN1	3925	Immunofluorescence//Luciferase reporter assay//qR1-PCR// Western blot	25607713
hsa-mir-101-5p	MIMAT0004513	STK4	6789	PAR-CLIP	26701625
hsa-mir-101-5p	MIMAT0004513	DUSP3	1845	PAR-CLIP	21572407
hsa-mir-101-5p	MIMA10004513	VEGFA	7422	Luciterase reporter assay//qR1-PCR//Western blot	26870229
hsa-mir-101-5p	MIMA10004513	AIM	472	Luciterase reporter assay//qRT-PCR	20617180
nsa-mir-101-5p	MIMA10004513	FUS	2353	Luciferase reporter assay//qR1-PCR//Western blot	27485165
nsa-mir-101-5p	MINAT0004513		5879	Luciferase reporter assay//qR1-PCR//western blot	2009/839
nsa-mir-101-5p	WIIWIA T0004515		5500		20371350
hsa-mir-101-5p	MIMA10004513	PRKDC	5591	Luciferase reporter assay//qR1-PCR	20617180
hsa-mir-101-5p	MIMA10004513	PABPN1	8106	PAR-CLIP	23592263
nsa-mir-483-5p	MIMA10004761	CACING8	59283	HITS-CLIP	23313552
nsa-mir-463-5p	WIIWA 10004761	RHUA	307	Western blot	201488/1 20/01025
hsa-mir-483-5p	MIMAT0004761	NCBP2	22916	HITS-CLIP	21572407
hsa-mir-483-5p	MIMA10004761	PDGFRA	5156	HITS-CLIP//PAR-CLIP	23446348 23313552
hsa-mir-483-5p	MIMA10004761	VHL	7428	HITS-CLIP	23824327
nsa-mir-483-5p	MIMA10004761	TRAF1	7185	PAR-CLIP	21572407
nsa-mir-483-5p	MIMA10004761		50615	PAR-CLIP	20371350
hoo mir 492 5p			9201 5071		20701020
hsa-mir 483 5p	MINAT0004761		5505	HIG-ULIF	20010002
hsa mir 483 5p	MINAT0004761		3454		22403003 23022703
hsa-mir-483-5p	MIMAT0004761	SRE	6722	Luciferase reporter assav//gBT-PCB/Western blot	21893058
hsa-mir-1267	MIMAT0005921		3559	HITS-CLIP	23824327
hsa-mir-1267	MIMAT0005921	MAPK14	1432	HITS-CLIP	23824327
hsa-mir-1267	MIMAT0005921	CRK	1398	HITS-CLIP	23824327
hsa-mir-1267	MIMAT0005921	CDK4	1019	HITS-CLIP	23824327
hsa-mir-1267	MIMAT0005921	SMAD2	4087	PAR-CLIP	27292025
hsa-mir-1267	MIMAT0005921	RPS6KA5	9252	HITS-CLIP	23824327
hsa-mir-1267	MIMAT0005921	CUL2	8453	HITS-CLIP//PAR-CLIP	21572407
hsa-mir-1267	MIMAT0005921	WEE1	7465	HITS-CLIP	27418678
hsa-mir-1267	MIMAT0005921	NFKBIB	4793	HITS-CLIP	27418678
hsa-mir-1267	MIMAT0005921	CDKN1B	1027	PAR-CLIP	23446348

TABLE 3 | Continued

miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID
hsa-mir-221-5p	MIMAT0004568	CDKN1B	1027	Chromatin immunoprecipitation//Co-immunoprecipitation//qRT- PCR//Western blot	26153983
hsa-mir-221-5p	MIMAT0004568	ABL1	25	PAR-CLIP	26701625
hsa-mir-221-5p	MIMAT0004568	CDKN1C	1028	Chromatin immunoprecipitation//Co-immunoprecipitation//qRT- PCR//Western blot	26153983
hsa-mir-221-5p	MIMAT0004568	ITGB1	3688	PAR-CLIP	20371350
hsa-mir-221-5p	MIMAT0004568	GRB2	2885	PAR-CLIP	26701625
hsa-mir-221-5p	MIMAT0004568	CARD8	22900	HITS-CLIP	23313552
hsa-mir-221-5p	MIMAT0004568	STAT2	6773	PAR-CLIP	20371350
hsa-mir-221-5p	MIMAT0004568	FZD2	2535	HITS-CLIP	23824327
hsa-mir-221-5p	MIMAT0004568	IL6R	3570	Luciferase reporter assay//qRT-PCR//Western blot	26645045
hsa-mir-3201	MIMAT0015086	LAMC1	3915	PAR-CLIP	23446348 22012620 20371350 26701625 27292025
hsa-mir-3201	MIMAT0015086	SPRED1	161742	PAR-CLIP	23592263
hsa-mir-3201	MIMAT0015086	TNFRSF10B	8795	HITS-CLIP	23313552
hsa-mir-3201	MIMAT0015086	PTEN	5728	PAR-CLIP	23592263
hsa-mir-3201	MIMAT0015086	EGLN1	54583	PAR-CLIP	21572407
hsa-mir-3201	MIMAT0015086	DUSP10	11221	HITS-CLIP	23824327
hsa-mir-3201	MIMAT0015086	CDC25B	994	PAR-CLIP	23592263
hsa-mir-1273d	MIMAT0015090	CBL	867	HITS-CLIP	23824327
hsa-mir-1273d	MIMAT0015090	VAV2	7410	PAR-CLIP	26701625
hsa-mir-1273d	MIMAT0015090	CD4	920	PAR-CLIP	23592263
hsa-mir-1273d	MIMAT0015090	SERPINE1	5054	PAR-CLIP	22012620
hsa-mir-642b-3p	MIMAT0018444	CACNA1B	774	HITS-CLIP	23824327
hsa-mir-642b-3p	MIMAT0018444	CDC25B	994	PAR-CLIP	23592263
hsa-mir-642b-3p	MIMAT0018444	SYK	6850	HITS-CLIP	24906430 19536157
hsa-mir-642b-3p	MIMAT0018444	MAP3K5	4217	PAR-CLIP	21572407 27292025
hsa-mir-642b-3p	MIMAT0018444	NRAS	4893	PAR-CLIP	21572407
hsa-mir-642b-3p	MIMAT0018444	CDKN1A	1026	PAR-CLIP	26701625

PGRMC1 silencing we demonstrated that it promotes TNBC cell proliferation through the EGFR/PI3K/AKT pathway (33). However, our study also focused on signaling pathways associated with ER-positive breast cancers (33). Here, we mainly focused on TNBCs as alternative mechanisms regulated by PGRMC1 in TNBCs should be further explored. To study and uncover novel mechanisms behind PGRMC1 we performed miRNome profiling following AG-205 treatment and PGRMC1 silencing. Studying the human miRNome enabled us to identify miRNAs that were significantly altered following PGRMC1 signal disruption and silencing. This presents itself as an important way to identify signaling pathways and genes involved within these pathways that could be associated with PGRMC1.

Human miRNome profiling identified alteration of 1,008 miRNAs following AG-205 treatment and 776 miRNAs after PGRMC1 siRNA transfection. Using a variety of gene mining platforms (miRNet, xenabrowser, cbioportal, Reactome, Kaplan-Meier plotter and GeneMANIA) we identified miRNA-mRNA network hubs that are altered when PGRMC1 is impaired. Network analysis by miRNet, an all in one, high-performance, analytics tool was used to predict PGRMC1 altered miRNAs targets (85). miRNet, incorporates data from TarBase, miRTarBase, starBase, EpimiR, PharmacomiR, SM2miR, PhenomiR, HMDD, miR2Disease, miRanda and miRecords making it a reliable data mining source (86). The top 10 most upregulated and downregulated miRNAs following AG-205 treatment and PGRMC1 silencing were identified. KEGG pathway analysis

identified matching enriched pathways between the two treatment groups which included, pathways in cancer, cell cycle and p53 signaling pathway. In addition, TCGA derived gene expression data analysis taken from metastatic tissue identified the 22 most overexpressed genes in response to PGRMC1 signaling inhibition and silencing. Based on the above data, miRNAs that were upregulated following PGRMC1 impairment directly target and have the capability to suppress genes that are overexpressed in TNBC patient samples. However, because of their function we proceeded to study the downregulated miRNAs but considered them to be possible biomarkers. Interestingly, miR-30b, miR-664a-3p and miR-93-3p, miR-224-5p all which were downregulated following PGRMC1 impairment are commonly observed in multiple cancers including ovarian (87), prostate (88), gastric (89) and metastatic breast cancer (90-92). Furthermore, miR-181a-3p, miR-224-5p, miR-345-5p and miR-93-3p act like oncogenes and all have been associated with chemoresistance, migration, metastasis and stemness (87, 88, 91, 93). Based on the available literature disrupting PGRMC1 downregulates miRNAs that display oncogenic potential.

To get a better understanding of the signaling mechanism involved within the upregulated miRNA target genes we employed the Reactome pathway analyzer. This enabled us to study different signaling pathways that are not associated with the KEGG analysis from the miRNet database. We observed the upregulated genes to be involved in cell cycle and signal transduction mechanisms. This agrees with our previous findings of cell cycle involvement; TABLE 4 | Downregulated miRNAS and target genes in response to silencing PGRMC1.

miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID
hsa-mir-139-5p	MIMAT0000250	BCL2	596	Luciferase reporter assay//qRT-PCR//Western blot	27244080
hsa-mir-139-5p	MIMAT0000250	FOS	2353	qRT-PCR//Western blot	23001723 27668889
hsa-mir-139-5p	MIMAT0000250	HRAS	3265	Luciferase reporter assay	24158791
hsa-mir-139-5p	MIMAT0000250	HSP90AA1	3320	PAR-CLIP	21572407
hsa-mir-139-5p	MIMAT0000250	IGF1R	3480	Luciferase reporter assay//qRT-PCR//Western blot	22580051 24942287 26097570
hsa-mir-139-5p	MIMAT0000250	JUN	3725	/Luciferase reporter assay//qRT-PCR//Western blot	25499265
hsa-mir-139-5p	MIMAT0000250	MET	4233	/Luciferase reporter assay//qRT-PCR//Western blot	26497851
hsa-mir-139-5p	MIMAT0000250	NFKB1	4790	Luciferase reporter assay	24158791
hsa-mir-139-5p	MIMAT0000250	PIK3CA	5290	Luciferase reporter assay	24158791
hsa-mir-139-5p	MIMAT0000250	WNT1	7471	Luciferase reporter assay//Western blot	25529604
hsa-mir-139-5p	MIMAT0000250	IGF1R	3480	Luciferase reporter assay//qRT-PCR//Western blot	22580051 24942287 26097570
hsa-mir-139-5p	MIMAT0000250	MET	4233	Luciferase reporter assay//qRT-PCR//Western blot	26497851
hsa-mir-139-5p	MIMAT0000250	BCL2	596	Luciferase reporter assay//qRT-PCR//Western blot	27244080
hsa-mir-139-5p	MIMAT0000250	HRAS	3265	Luciferase reporter assay	24158791
hsa-mir-139-5p	MIMAT0000250	IGF1R	3480	Luciferase reporter assay//qRT-PCR//Western blot	22580051 24942287 26097570
hsa-mir-139-5p	MIMAT0000250	JUN	3725	Luciferase reporter assay//gRT-PCR//Western blot	25499265
hsa-mir-139-5p	MIMAT0000250	MET	4233	Luciferase reporter assay//gRT-PCR//Western blot	26497851
hsa-mir-139-5p	MIMAT0000250	PIK3CA	5290	Luciferase reporter assay	24158791
hsa-mir-139-5p	MIMAT0000250	RAP1B	5908	PAR-CLIP//gRT-PCR//Western blot	24942287 23592263
hsa-mir-139-5p	MIMAT0000250	ROCK2	9475	Luciferase reporter assay//gRT-PCR//Western blot	24942287
hsa-mir-224-5p	MIMAT0000281	BCL2	596	Microarray//gRT-PCR//Western blot	22989374
hsa-mir-224-5p	MIMAT0000281	HSP90AA1	3320	PAR-CLIP	23446348 20371350 26701625
hsa-mir-224-5p	MIMAT0000281	IGF1R	3480	PAR-CLIP	20371350
hsa-mir-224-5p	MIMAT0000281	CCND1	595	PAR-CLIP	26701625
hsa-mir-224-5p	MIMAT0000281	CASP3	836	Luciferase reporter assav//Western blot	26307684
hsa-mir-224-5p	MIMAT0000281	CDC42	998	/Microarray//gBT-PCB//Western blot	20023705 24817781 22989374
hsa-mir-224-5p	MIMAT0000281	MTOR	2475	Luciferase reporter assav//gRT-PCR//Western blot	27315344
hsa-mir-224-5p	MIMAT0000281	GSK3B	2932	Luciferase reporter assay	25588771
hsa-mir-224-5p	MIMAT0000281	KRAS	3845	aBT-PCB/Western blot	23667495
hsa-mir-224-5p	MIMAT0000281	SMAD4	4089	Luciferase reporter assav//gRT-PCR//Western blot	20118412 23922662 25804630
hsa-mir-224-5p	MIMAT0000281	PDGERB	5159	Microarray//Northern blot	16331254
hsa-mir-224-5p	MIMAT0000281	MAP2K2	5605	HITS-CLIP	23824327
hsa-mir-224-5p	MIMAT0000281	BAC1	5879	Luciferase reporter assay	27222381
hsa-mir-224-5p	MIMAT0000281	TPR	7175		22012620
hsa-mir-224-5p	MIMAT0000281	CDH1	999	Luciferase reporter assav//gRT-PCR//Western blot	22989374125804630
hsa-mir-224-5p	MIMAT0000281	VES1	7525		22012620
hsa-mir-224-5p	MIMAT0000281	PAK2	5062	Microarray//gBT-PCB/Western blot	22080374
hsa-mir-139-5p	MIMAT0000250	HRAS	3265		24158791
hsa-mir-130-5p	MIMAT0000250		3725	Luciferase reporter assay//gRT_PCR/Mestern blot	25400265
hsa-mir-130-5p	MIMAT0000250	NEKB1	4790	Luciferase reporter assay	2/158701
hsa-mir-130-5p	MIMAT0000250		5290	Luciferase reporter assay	24158791
hsa-mir-130-5p	MIMAT0000250	RAP1R	5908	PAR-CLIP//gRT-PCR/M/estern blot	24100791
hsa mir 120 5p	MINAT0000250		27		24942207 20092200
hsa-mir 139-5p	MINAT0000250		2265	FAN-OLIF	20440040[21072407]20071000
hoo mir 120 En		DOCK2	0475	Luciferance reporter annu//aPT_PCP/Mantern blot	24130791
hoo mir 1250 En			506	Luciferase reporter assay//qRT_PCR//Western biol	24942207
hoo mir 1250 50		BIDOS	090	DAD OUD	20200140
hoo mir 1250 50		DINOJ EDE1	1960	Microarray//aDT DCD/M/catora blat	23440340[21372407]20371330
hoo mir 1250 50			1009	Inicioanay//gni-FCn//western blot	
hoo mir 1250 50		FUXUT	2300	DAR CLIR/Montern blot	23000930/20201311/27400303
hoo mir 1250 50			4009	FAR-OLIF//Western blot	215724072037155020701025
haa mir 105a En	MINAT0000420	TDAFE	7190		26413713
hoo mir 1250 50			7109	FAD-ULIF Microarray//aDT DCD/M/catora blat	20701025
haa mir 105a En	MINAT0000420		23004		27003111
haa mir 105a 5p			1050	HITS-CLP	23024327
hoa mir 1250 50			1900	Lucierase reporter assay//western biot	21024492
nsa-mir 105- 5			0/14		20304608
nsa-mir-135a-5p	IVIIIVIA I UUUU428	RUUKZ	9475	Luciferase reporter assay//qR1-PCK//Western blot	20065599
nsa-mir-135a-5p	IVIIIVIA I UUUU428		7100	Luciierase reporter assay//qRT-PCK//Western blot	24405504/25065599
nsa-mir-135a-5p	IVIIIVIA 1 0000428	IKAFO	/189		26701625
nsa-mir-135a-5p	MIMA10000428	IKS2	8660	Luciterase reporter assay	23579070
nsa-mir-135a-5p	IVIIIVIA 1 0000428	PIK2	5/4/	Luciferase reporter assay//qRT-PCR//Western blot	28415713
nsa-mir-135a-5p	IVIIIVIA 1 0000428	APU	324	Luciferase reporter assay//qKT-PCK	18632633
nsa-mir-135a-5p	MIMA I 0000428	PIP5K1A	8394	PAK-CLIP	22100165

TABLE 4 | Continued

miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID
hsa-mir-135a-5p	MIMAT0000428	NR3C2	4306	Luciferase reporter assay//qRT-PCR	19944075
hsa-mir-3200-5p	MIMAT0017392	PAX8	7849	PAR-CLIP	23446348
hsa-mir-3200-5p	MIMAT0017392	TGFBR2	7048	HITS-CLIP	19536157
hsa-mir-3200-5p	MIMAT0017392	IGF1R	3480	PAR-CLIP	24398324 21572407
hsa-mir-3200-5p	MIMAT0017392	CCND2	894	PAR-CLIP	22012620
hsa-mir-3200-5p	MIMAT0017392	ENAH	55740	PAR-CLIP	21572407
, hsa-mir-3200-5p	MIMAT0017392	PFN2	5217	PAR-CLIP	23446348 21572407 20371350
hsa-mir-128-3p	MIMAT0000424	CASP3	836	Sequencing	20371350
hsa-mir-128-3p	MIMAT0000424	MTOR	2475	Luciferase reporter assav//Microarrav//gRT-PCR	27893811
hsa-mir-128-3p	MIMAT0000424	BAX	581	Luciferase reporter assav//gRT-PCR//Western blot	23526655
hsa-mir-128-3p	MIMAT0000424	RUNX1	861	HITS-CLIP	23313552
hsa-mir-128-3p	MIMAT0000424	E2E3	1871	Luciferase reporter assay	18810376 19013014
hsa-mir-128-3p	MIMAT0000424	EGFR	1956	Western blot	22853714
hsa-mir-128-3p	MIMAT0000424	IGF1	3479	Luciferase reporter assav//Microarrav//gRT-PCR	27893811
hsa-mir-128-3p	MIMAT0000424	JAK1	3716	Microarray	17612493
hsa-mir-128-3p	MIMAT0000424	SMAD2	4087	Luciferase reporter assav	27087048
hsa-mir-128-3p	MIMAT0000424	PIK3B1	5295	Luciferase reporter assav//Microarrav//gRT-PCB	27893811
hsa-mir-128-3p	MIMAT0000424	MAP2K1	5604	Sequencing	20371350
hsa-mir-128-3p	MIMAT0000424	PTEN	5728	Luciferase reporter assav//aRT-PCR//Western blot	24132591/25250855
hsa-mir-128-3p	MIMAT0000424	PTGS2	5743	Microarray	17612493
hsa-mir-128-3n	MIMAT0000424	RET	5979	Flow//Luciferase reporter assay	23022987
hsa-mir-128-3p	MIMAT0000424	RYRA	6256	Microarray//aRT_PCR/Mestern blot	23990020
hsa-mir-128-3p	MIMAT0000424	SOS1	6654	HITS_CLIP	23313552
hsa mir 128 3n		TGERD1	7046	Luciforase reporter assau//PAP CLIP/M/ostern blot	20010002
hsa mir 128 3n			7040		20034041123022240123392203
hsa mir 128 3n		VEGEC	7104	Microarray//aPT PCP/M/ostorn blot	17612402 25001182 26460060
hoo mir 109 20		CODOG	9020	Microarray	17612495 25001105 20400900
haa mir 109 2n		EZDO	0030		024462490157040700271250
haa mir 109 2n		FZD9	0320	FAD-ULIF	23440340/21372407/20371330
haa mir 100 0n			0772	Mieropresu	24310133
haa mir 109 2n			1056	Western blot	00950714
haa mir 100 On			1956		22003714
haa mir 108 0p		SIVIADZ	4087	Luciferase reporter assay	27007040
haa mir 100 On			7046	Lucierase reporter assay//PAR-CLIP//western biot	20034041 23022248 23392203
haa mir 100 On			2034	Microarray	17012493
nsa-mir-128-3p		SINAIZ	0015	FIOW//QRT-PCR//Western biol	23019226
nsa-mir-128-3p		SINALI	0015	Luciferase reporter assay//qR1-PCR//western blot	28424413
nsa-mir-128-3p		VVASL	8976	PAR-GLIP	23592263
nsa-mir-128-3p	MIMAT0000424	INECTIN4	81607	Luciferase reporter assay//western blot	27507538
nsa-mir-128-3p	MIMA10000424	EGFR	1956	Western blot	22853714
nsa-mir-128-3p	MIMA10000424	IGF1	3479	Luciterase reporter assay//Microarray//qRI-PCR	27893811
nsa-mir-128-3p	MIMA10000424	PIK3R1	5295	Luciterase reporter assay//Microarray//qRI-PCR	27893811
hsa-mir-128-3p	MIMA10000424	MAP2K1	5604	Sequencing	20371350
hsa-mir-128-3p	MIMA10000424	PIEN	5728	Luciferase reporter assay//qR1-PCR//Western blot	24132591 25250855
hsa-mir-128-3p	MIMA10000424	SOS1	6654	HITS-CLIP	23313552
hsa-mir-128-3p	MIMA10000424	VEGEC	7424	/Microarray//qR1-PCR//Western blot	17612493 25001183 26460960
hsa-mir-128-3p	MIMA10000424	FYN	2534	Microarray	17612493
hsa-mir-128-3p	MIMA10000424	RAP1B	5908	PAR-CLIP	23592263
hsa-mir-128-3p	MIMAT0000424	ARHGAP5	394	Microarray	17612493
hsa-mir-128-3p	MIMA10000424	ILK	3611	PAR-CLIP	23592263
hsa-mir-128-3p	MIMAT0000424	PDPK1	5170	Microarray	17612493
hsa-mir-128-3p	MIMAT0000424	RELN	5649	Luciferase reporter assay//qRT-PCR//Western blot	19713529
hsa-mir-128-3p	MIMAT0000424	BAX	581	Luciferase reporter assay//qRT-PCR//Western blot	23526655
hsa-mir-128-3p	MIMAT0000424	PIK3R1	5295	Luciferase reporter assay//Microarray//qRT-PCR	27893811
hsa-mir-128-3p	MIMAT0000424	MAP2K1	5604	Sequencing	20371350
hsa-mir-128-3p	MIMAT0000424	SOS1	6654	HITS-CLIP	23313552
hsa-mir-128-3p	MIMAT0000424	RAP1B	5908	PAR-CLIP	23592263
hsa-mir-128-3p	MIMAT0000424	MAPK14	1432	Immunoblot//Luciferase reporter assay//qRT-PCR	23109423
hsa-mir-128-3p	MIMAT0000424	NTRK3	4916	Luciferase reporter assay	19370765 21143953
hsa-mir-128-3p	MIMAT0000424	PDK1	5163	Luciferase reporter assay//qRT-PCR//Western blot	26949090
hsa-mir-128-3p	MIMAT0000424	YWHAZ	7534	HITS-CLIP	23824327
hsa-mir-128-3p	MIMAT0000424	RPS6KA5	9252	Sequencing	20371350
hsa-mir-128-3p	MIMAT0000424	BEX3	27018	PAR-CLIP	23592263 24398324
hsa-mir-128-3p	MIMAT0000424	MTOR	2475	Luciferase reporter assay//Microarray//qRT-PCR	27893811

TABLE 4 | Continued

miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID
hsa-mir-128-3p	MIMAT0000424	EGFR	1956	Western blot	22853714
hsa-mir-128-3p	MIMAT0000424	PIK3R1	5295	Luciferase reporter assay//Microarray//qRT-PCR	27893811
hsa-mir-128-3p	MIMAT0000424	MAP2K1	5604	Sequencing	20371350
hsa-mir-128-3p	MIMAT0000424	SOS1	6654	HITS-CLIP	23313552
hsa-mir-128-3p	MIMAT0000424	NCK2	8440	Microarray	17612493
hsa-mir-128-3p	MIMAT0000424	EGFR	1956	Western blot	22853714
hsa-mir-128-3p	MIMAT0000424	PIK3R1	5295	Microarrav//gRT-PCR	27893811
hsa-mir-128-3p	MIMAT0000424	MAP2K1	5604	Sequencing	20371350
hsa-mir-128-3p	MIMAT0000424	SOS1	6654	HITS-CLIP	23313552
hsa-mir-128-3p	MIMAT0000424	WASL	8976	PAR-CLIP	23592263
hsa-mir-128-3p	MIMAT0000424	GNG12	55970	PAR-CLIP	24398324 21572407 20371350
hsa-mir-128-3p	MIMAT0000424	IGF1	3479	Luciferase reporter assav//Microarrav//gRT-PCB	27893811
hsa-mir-128-3p	MIMAT0000424	PIK3B1	5295	Luciferase reporter assav//Microarray//gRT-PCB	27893811
hsa-mir-128-3p	MIMAT0000424	PDPK1	5170	Microarray	17612493
hsa-mir-128-3n	MIMAT0000424	FXYD2	486	Microarray	17612493
hsa-mir-93-3n	MIMAT0004509	CDC42	998	CLASH	23622248
hsa-mir-93-3n	MIMAT0004509	MAP2K1	5604	CLASH	23622248
hsa-mir-93-3n	MIMAT0004509	HSP904R1	3326	CLASH	23622248
hsa-mir-93-3n	MIMAT0004509		3910	CLASH	23622248
hsa-mir-93-3n	MIMAT0004509	STAT5B	6777	CLASH	23622248
hsa-mir-93-3n	MIMAT0004509		8031		23622240
hsa-mir-93-3p	MIMAT0004509		8453		23622240
hsa-mir-93-3p	MIMAT0004509	SUEL	51684	CLASH	23622240
haa mir 02 2p	MINAT0004509	3010 CVCS	51004	CLASH	23022240
haa mir 02 2p	MINAT0004509	EVN	04200		23022240
haa mir 02 2p	MINAT0004509		2004		23022240
haa mir 02 2p	MINAT0004509	ACTN	00	CLASH	23022240
hsa-mir-93-3p	NIIVIA 10004509		0/		23022240
hoo mir 02 2p	MINAT0004509		ZZ4 I		23024327
haa mir 02 0n	NIIVIA 10004509		10200	CLASH	23022240
hsa-mir-93-3p	NIIVIA 10004509		4059		23022240
hsa-mir-93-3p	NIIVIA 10004509		3034		23022240
haa mir 02 0n	NIIVIA 10004509		1970		20371330
hsa-mir-93-3p	NIIVIA 10004509		7074		23022240
hsa-mir-93-3p	NIIVIA 10004509		35740		23022240
hsa-mir-93-3p	NIIVIA 10004509		470		23022240
nsa-mir-93-3p	MINAT0004509	NEDD4L	23327	Luciferase reporter assay//qR1-PCR//western biot	26581907
nsa-mir-30b-3p	MINIAT0004589		3479		23824327
nsa-mir-30b-3p	MINIA 10004589		1026		26701625
nsa-mir-30b-3p	MINIA 10004589		331	HITS-CLIP//PAR-CLIP	23446348 23824327
nsa-mir-30b-3p	MINIA 10004589	BGL2L1	598		26701625
nsa-mir-30b-3p	MINAT0004589	URKL	1399	HITS-CLIP	23824327
nsa-mir-30b-3p	MIMA10004589	TIGA3	3675	HITS-CLIP	23706177 23313552
nsa-mir-30b-3p	MIMA10004589	MDM2	4193		27292025
nsa-mir-30b-3p	MIMA10004589	PDGFRA	5156	HITS-CLIP//PAR-CLIP	23446348 23313552
hsa-mir-30b-3p	MIMA10004589	RARA	5914		23592263
hsa-mir-30b-3p	MIMA10004589	SIK4	6789	HITS-CLIP	23824327
nsa-mir-30b-3p	MIMA10004589	WIN17B	7477	PAR-CLIP	23592263
hsa-mir-30b-3p	MIMA10004589	YES1	7525	PAR-CLIP	27292025
hsa-mir-30b-3p	MIMA10004589	CINND1	1500	PAR-CLIP	23592263 26701625
hsa-mir-30b-3p	MIMA10004589	COL5A1	1289	PAR-CLIP	23592263
hsa-mir-30b-3p	MIMA10004589	TIGB3	3690	HITS-CLIP	23824327
hsa-mir-30b-3p	MIMA10004589	ILN1	7094	HIS-CLIP	23824327
hsa-mir-30b-3p	MIMA10004589	YWHAZ	7534	PAR-CLIP	26701625
hsa-mir-30b-3p	MIMA10004589	YWHAB	7529	PAR-CLIP	27292025
hsa-mir-30b-3p	MIMA10004589	IRAK3	11213	HITS-CLIP//PAR-CLIP	21572407 20371350 23824327
hsa-mir-30b-3p	MIMAT0004589	MSN	4478	PAR-CLIP	23592263
hsa-mir-30b-3p	MIMAT0004589	MYH9	4627	HIIS-CLIP//PAR-CLIP	23824327 23313552 26701625
hsa-mir-30b-3p	MIMAT0004589	ARPC3	10094	PAR-CLIP	20371350
hsa-mir-30b-3p	MIMAT0004589	ABI2	10152	HITS-CLIP	23824327
hsa-mir-30b-3p	MIMAT0004589	ATP1B4	23439	HITS-CLIP	23824327
hsa-mir-345-5p	MIMAT0000772	CDKN1A	1026	Luciferase reporter assay//qRT-PCR//Western blot	20190813
hsa-mir-345-5p	MIMAT0000772	PAX8	7849	PAR-CLIP	23446348
hsa-mir-345-5p	MIMAT0000772	CDKN1A	1026	Luciferase reporter assay//qRT-PCR//Western blot	20190813

TABLE 4 | Continued

miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID
hsa-mir-345-5p	MIMAT0000772	NTRK3	4916	Luciferase reporter assay	19370765
hsa-mir-4291	MIMAT0016922	CDKN1A	1026	PAR-CLIP	26701625
hsa-mir-4291	MIMAT0016922	LAMA4	3910	PAR-CLIP	23592263
hsa-mir-4291	MIMAT0016922	CDK6	1021	PAR-CLIP	23446348 21572407 20371350
hsa-mir-4291	MIMAT0016922	FGF2	2247	PAR-CLIP	23446348 21572407 20371350
hsa-mir-4291	MIMAT0016922	RAF1	5894	PAR-CLIP	21572407
hsa-mir-4291	MIMAT0016922	TRAF1	7185	PAR-CLIP	23592263
hsa-mir-4291	MIMAT0016922	FZD6	8323	PAR-CLIP	22100165
hsa-mir-4291	MIMAT0016922	LAMA4	3910	PAR-CLIP	23592263
hsa-mir-4291	MIMAT0016922	RAF1	5894	PAR-CLIP	21572407
hsa-mir-4291	MIMAT0016922	VASP	7408	PAR-CLIP	26701625
hsa-mir-4291	MIMAT0016922	RAF1	5894	PAR-CLIP	21572407
hsa-mir-4291	MIMAT0016922	CDKN1A	1026	PAR-CLIP	26701625
hsa-mir-4291	MIMAT0016922	RAF1	5894	PAR-CLIP	21572407
hsa-mir-4291	MIMAT0016922	RAF1	5894	PAR-CLIP	21572407
hsa-mir-181a-3p	MIMAT0000270	ARHGDIA	396	PAR-CLIP	26701625

interestingly upregulated genes involved in signal transduction mechanisms could be directly regulated by PGRMC1, as signal transduction mechanisms are known to be directly involved in cellular membranes where PGRMC1 is primarily located (94). To further study the clinical impact of these genes, we studied genetic alterations using OncoPrint. It was particularly interesting to see that only 10 genes displayed significant genetic alteration among the 22 genes that were overexpressed. However, of the ten genes the top two most genetically altered, CCND1 and YWHAZ seemed to be overexpressed due to amplification and had overall lower survival probability. CCND1 has long been considered an oncogene and has been demonstrated to be amplified in 10-20% in one study while in another study CCND1 amplification was seen in 78.6% of breast cancer cases (95-97). CCND1 is thought to play a major role in ER-positive but not in ER-negative breast cancers (98). One of the reasons could be because it is a known downstream target of PR that can promote breast cancer cell proliferation (99, 100). One interesting thought could be that in TNBCs that overexpress PGRMC1, it could be enhancing the

transcription of *CCND1* even in tumors that lack ER and PR making it a potential target in TNBCs. The *YWHAZ* gene has been described in multiple cancers including non-small lung cancer (101), hepatocellular carcinoma (102), gastric cancer (103), bladder cancer (104), and in breast cancers (105). Overexpression of *YWHAZ* in breast cancers has been associated with chemoresistance to anthracyclines particularly associated with metastatic recurrence (105). This is also extremely interesting as PGRMC1 has been linked to chemoresistance (106) and it would be strongly warranted to further explore the possibility of a PGRMC1/YWHAZ axis in metastatic breast cancers that do not respond to chemotherapy.

CONCLUSION

In summary, our study identified that impairing PGRMC1 can alter miRNAs, specifically hsa-mir-646 that directly targets *CCND1* (107) as well as hsa-mir-410-3p and hsa-mir-3150b-3p

which target *YWHAZ* (108–113). Interestingly, both genes were amplified in patients with aggressive TNBCs and patients that express high levels of either gene have lower overall survival probability. Lastly, PGRMC1 impairment downregulates oncogenic miRNAs (miR-30b, miR-664a-3p and miR-93-3p, miR-224-5p, miR-181a-3p and miR-345-5p) in TNBC cells. Therefore, targeting PGRMC1 with AG-205 or a novel compound that can downregulate PGRMC1 expression could

FIGURE 7 | PGRMC1 impairment identified miRNA target genes to be amplified in invasive breast carcinoma patients. (A) Oncoprint illustrates genetic alterations such as inframe mutations, missense mutation, truncating mutation, amplification and deep deletion of breast cancer tumor samples (n=816). miRNA target genes that had a greater than 5% genetic alteration were considered for further analysis. (B) Cumulatively patient samples that have high signature/expression of miRNA target genes exhibiting > 5% genetic alterations are associated with poorer overall survival. (C) Network analysis links the top ten miRNA target genes with associated pathway interactions and predicts interactions within known pathways. (D) The top two miRNA target genes, *CCND1* and *YWHAZ* are associated with significantly poorer overall survival in ER-negative breast tumor samples (P < 0.05 was considered significant). (E) Increased relative gene expression and copy number variation of *CCND1* and *YWHAZ*, are observed in MDA-MB-468 breast cancer cell lines. (F) Relative mRNA expression of *CCND1* and *YWHAZ* in PGRMC1 silenced MDA-MB-468 cells. *P < 0.05.

be potential therapeutic options for TNBC patients that overexpress PGRMC1.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**. Further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Conception and design: RL and DP. Methodology was developed by DP and VR. Data acquisition: DP, MR, and VR. Data was interpreted by RL, DP, MR, VR, RS, and AE. The manuscript was written and/or revised by DP, MR, RS, VM, TG, and RL. This study was supervised by RL. All authors contributed to the article and approved the submitted version.

REFERENCES

- 1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2020. CA Cancer J Clin (2020) 70(1):7–30. doi: 10.3322/caac.21590
- Prat A, Perou CM. Deconstructing the Molecular Portraits of Breast Cancer. Mol Oncol (2011) 5(1):5–23. doi: 10.1016/j.molonc.2010.11.003
- Clark SE, Warwick J, Carpenter R, Bowen RL, Duffy SW, Jones JL. Molecular Subtyping of DCIS: Heterogeneity of Breast Cancer Reflected in Pre-Invasive Disease. *Br J Cancer* (2011) 104(1):120–7. doi: 10.1038/ sj.bjc.6606021

FUNDING

Breast Cancer Discretionary Fund from Texas Tech University Health Sciences Center El Paso.

ACKNOWLEDGMENTS

We would like to thank Texas Tech University Health Sciences Center El Paso for supporting this research.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2021. 710337/full#supplementary-material

- McGuire A, Lowery AJ, Kell MR, Kerin MJ, Sweeney KJ. Locoregional Recurrence Following Breast Cancer Surgery in the Trastuzumab Era: A Systematic Review by Subtype. Ann Surg Oncol (2017) 24(11):3124–32. doi: 10.1245/s10434-017-6021-1
- Cheang MC, Martin M, Nielsen TO, Prat A, Voduc D, Rodriguez-Lescure A, et al. Defining Breast Cancer Intrinsic Subtypes by Quantitative Receptor Expression. Oncologist (2015) 20(5):474–82. doi: 10.1634/theoncologist.2014-0372
- Jhan JR, Andrechek ER. Triple-Negative Breast Cancer and the Potential for Targeted Therapy. *Pharmacogenomics* (2017) 18(17):1595–609. doi: 10.2217/ pgs-2017-0117

- Gradishar WJ, Anderson BO, Abraham J, Aft R, Agnese D, Allison KH, et al. Breast Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw (2020) 18(4):452–78. doi: 10.6004/jnccn.2020.0016
- Li X, Yang J, Peng L, Sahin AA, Huo L, Ward KC, et al. Triple-Negative Breast Cancer has Worse Overall Survival and Cause-Specific Survival Than non-Triple-Negative Breast Cancer. *Breast Cancer Res Treat* (2017) 161 (2):279–87. doi: 10.1007/s10549-016-4059-6
- Hasegawa S, Eguchi H, Nagano H, Konno M, Tomimaru Y, Wada H, et al. MicroRNA-1246 Expression Associated With CCNG2-mediated Chemoresistance and Stemness in Pancreatic Cancer. Br J Cancer (2014) 111(8):1572–80. doi: 10.1038/bjc.2014.454
- Schreiber R, Mezencev R, Matyunina LV, McDonald JF. Evidence for the Role of microRNA 374b in Acquired Cisplatin Resistance in Pancreatic Cancer Cells. *Cancer Gene Ther* (2016) 23:241–5. doi: 10.1038/cgt.2016.23
- Asakura K, Kadota T, Matsuzaki J, Yoshida Y, Yamamoto Y, Nakagawa K, et al. A miRNA-based Diagnostic Model Predicts Resectable Lung Cancer in Humans With High Accuracy. *Commun Biol* (2020) 3:134. doi: 10.1038/ s42003-020-0863-y
- Yokoi A, Matsuzaki J, Yamamoto Y, Yoneoka Y, Takahashi K, Shimizu H, et al. Integrated Extracellular microRNA Profiling for Ovarian Cancer Screening. *Nat Commun* (2018) 9:4319. doi: 10.1038/s41467-018-06434-4
- Le Rhun E, Seoane J, Salzet M, Soffietti R, Weller M. Liquid Biopsies for Diagnosing and Monitoring Primary Tumors of the Central Nervous System. *Cancer Lett* (2020) 480:24–8. doi: 10.1016/j.canlet.2020.03.021
- Nandy SB, Arumugam A, Subramani R, Pedroza D, Hernandez K, Saltzstein E, et al. MicroRNA-125a Influences Breast Cancer Stem Cells by Targeting Leukemia Inhibitory Factor Receptor Which Regulates the Hippo Signaling Pathway. Oncotarget (2015) 6:17366–78. doi: 10.18632/oncotarget.3953
- Nandy SB, Orozco A, Lopez-Valdez R, Roberts R, Subramani R, Arumugam A, et al. Glucose Insult Elicits Hyperactivation of Cancer Stem Cells Through miR-424-cdc42-prdm14 Signalling Axis. Br J Cancer (2017) 117(11):1665– 75. doi: 10.1038/bjc.2017.335
- Sherafatian M. Tree-Based Machine Learning Algorithms Identified Minimal Set of miRNA Biomarkers for Breast Cancer Diagnosis and Molecular Subtyping. *Gene* (2018) 677:111–8. doi: 10.1016/j.gene.2018.07.057
- Subramani R, Gangwani L, Nandy SB, Arumugam A, Chattopadhyay M, Lakshmanaswamy R. Emerging Roles of microRNAs in Pancreatic Cancer Diagnosis, Therapy and Prognosis (Review). *Int J Oncol* (2015) 47(4):1203– 10. doi: 10.3892/ijo.2015.3129
- Ivanov Y, Pleshakova T, Malsagova K, Kurbatov L, Popov V, Glukhov A, et al. Detection of Marker Mirnas, Associated With Prostate Cancer, in Plasma Using SOI-NW Biosensor in Direct and Inversion Modes. *Sensors* (*Basel*) (2019) 19(23). doi: 10.3390/s19235248
- Blenkiron C, Miska EA. miRNAs in Cancer: Approaches, Aetiology, Diagnostics and Therapy. *Hum Mol Genet* (2007) 16 Spec No 1:R106–13. doi: 10.1093/hmg/ddm056
- Piva R, Spandidos DA, Gambari R. From microRNA Functions to microRNA Therapeutics: Novel Targets and Novel Drugs in Breast Cancer Research and Treatment (Review). *Int J Oncol* (2013) 43:985–94. doi: 10.3892/ijo.2013.2059
- 21. van Schooneveld E, Wouters MC, Van der Auwera I, Peeters DJ, Wildiers H, Van Dam PA, et al. Expression Profiling of Cancerous and Normal Breast Tissues Identifies microRNAs That are Differentially Expressed in Serum From Patients With (Metastatic) Breast Cancer and Healthy Volunteers. *Breast Cancer Res* (2012) 14(1):R34. doi: 10.1186/bcr3127
- 22. Van der Auwera I, Yu W, Suo L, Van Neste L, van Dam P, Van Marck EA, et al. Array-Based DNA Methylation Profiling for Breast Cancer Subtype Discrimination. *PLoS One* (2010) 5(9):e12616. doi: 10.1371/journal.pone.0012616
- 23. van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ. Dysregulation of microRNAs in Breast Cancer and Their Potential Role as Prognostic and Predictive Biomarkers in Patient Management. *Breast Cancer Res* (2015) 17:21. doi: 10.1186/s13058-015-0526-y
- Piasecka D, Braun M, Kordek R, Sadej R, Romanska H. MicroRNAs in Regulation of Triple-Negative Breast Cancer Progression. J Cancer Res Clin Oncol (2018) 144(8):1401–11. doi: 10.1007/s00432-018-2689-2
- Chang YY, Kuo WH, Hung JH, Lee CY, Lee YH, Chang YC, et al. Deregulated microRNAs in Triple-Negative Breast Cancer Revealed by Deep Sequencing. *Mol Cancer* (2015) 14:36. doi: 10.1186/s12943-015-0301-9

- Lü L, Mao X, Shi P, He B, Xu K, Zhang S, et al. MicroRNAs in the Prognosis of Triple-Negative Breast Cancer: A Systematic Review and Meta-Analysis. *Med (Baltimore)* (2017) 96:e7085. doi: 10.1097/MD.000000000007085
- Zhu H, Dai M, Chen X, Qin S, Dai S. Integrated Analysis of the Potential Roles of miRNA–mRNA Networks in Triple Negative Breast Cancer. *Mol Med Rep* (2017) 16:1139–46. doi: 10.3892/mmr.2017.6750
- Paszek S, Gabło N, Barnaś E, Szybka M, Morawiec J, Kołacińska A, et al. Dysregulation of microRNAs in Triple-Negative Breast Cancer. *Ginekol Pol* (2017) 88:530–6. doi: 10.5603/GP.a2017.0097
- Mueck AO, Ruan X, Seeger H, Fehm T, Neubauer H. Genomic and non-Genomic Actions of Progestogens in the Breast. J Steroid Biochem Mol Biol (2014) 142:62–7. doi: 10.1016/j.jsbmb.2013.08.011
- Wang C, Liu Y, Cao JM. G Protein-Coupled Receptors: Extranuclear Mediators for the non-Genomic Actions of Steroids. *Int J Mol Sci* (2014) 15:15412–25. doi: 10.3390/ijms150915412
- Zhang Y, Ruan X, Mi X, Mueck AO. Expression of PGRMC1 in Paraffin-Embedded Tissues of Breast Cancer. Int J Clin Exp Pathol (2017) 10:9639–43.
- Pedroza DA, Subramani R, Lakshmanaswamy R. Classical and Non-Classical Progesterone Signaling in Breast Cancers. *Cancers (Basel)* (2020) 12(9). doi: 10.3390/cancers12092440
- 33. Pedroza DA, Rajamanickam V, Subramani R, Bencomo A, Galvez A, Lakshmanaswamy R. Progesterone Receptor Membrane Component 1 Promotes the Growth of Breast Cancers by Altering the Phosphoproteome and Augmenting EGFR/PI3K/AKT Signalling. Br J Cancer (2020). doi: 10.1038/s41416-020-0992-6
- 34. Ruan X, Zhang Y, Mueck AO, Willibald M, Seeger H, Fehm T, et al. Increased Expression of Progesterone Receptor Membrane Component 1 is Associated With Aggressive Phenotype and Poor Prognosis in ER-positive and Negative Breast Cancer. *Menopause* (2017) 24:203–9. doi: 10.1097/ GME.0000000000000739
- 35. Clark NC, Friel AM, Pru CA, Zhang L, Shioda T, Rueda BR, et al. Progesterone Receptor Membrane Component 1 Promotes Survival of Human Breast Cancer Cells and the Growth of Xenograft Tumors. *Cancer Biol Ther* (2016) 17:262–71. doi: 10.1080/15384047.2016.1139240
- Rohe HJ, Ahmed IS, Twist KE, Craven RJ. PGRMC1 (Progesterone Receptor Membrane Component 1): A Targetable Protein With Multiple Functions in Steroid Signaling, P450 Activation and Drug Binding. *Pharmacol Ther* (2009) 121:14–9. doi: 10.1016/j.pharmthera.2008.09.006
- Cahill MA, Jazayeri JA, Catalano SM, Toyokuni S, Kovacevic Z, Richardson DR. The Emerging Role of Progesterone Receptor Membrane Component 1 (PGRMC1) in Cancer Biology. *Biochim Biophys Acta* (2016) 1866:339–49. doi: 10.1016/j.bbcan.2016.07.004
- Ahmed IS, Rohe HJ, Twist KE, Mattingly MN, Craven RJ. Progesterone Receptor Membrane Component 1 (Pgrmc1): A Heme-1 Domain Protein That Promotes Tumorigenesis and is Inhibited by a Small Molecule. *J Pharmacol Exp Ther* (2010) 333:564–73. doi: 10.1124/jpet.109.164210
- 39. Willibald M, Wurster I, Meisner C, Vogel U, Seeger H, Mueck AO, et al. High Level of Progesteron Receptor Membrane Component 1 (PGRMC 1) in Tissue of Breast Cancer Patients is Associated With Worse Response to Anthracycline-Based Neoadjuvant Therapy. *Horm Metab Res* (2017) 49:595–603. doi: 10.1055/s-0043-113635
- Shih CC, Chou HC, Chen YJ, Kuo WH, Chan CH, Lin YC, et al. Role of PGRMC1 in Cell Physiology of Cervical Cancer. *Life Sci* (2019) 231:116541. doi: 10.1016/j.lfs.2019.06.016
- Network, C. G. A. Comprehensive Molecular Portraits of Human Breast Tumours. *Nature* (2012) 490:61–70. doi: 10.1038/nature11412
- 42. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The Landscape of Cancer Genes and Mutational Processes in Breast Cancer. *Nature* (2012) 486:400–4. doi: 10.1038/nature11017
- 43. Kawazu M, Kojima S, Ueno T, Totoki Y, Nakamura H, Kunita A, et al. Integrative Analysis of Genomic Alterations in Triple-Negative Breast Cancer in Association With Homologous Recombination Deficiency. *PLoS Genet* (2017) 13:e1006853. doi: 10.1371/journal.pgen.1006853
- 44. Rice JC, Ozcelik H, Maxeiner P, Andrulis I, Futscher BW. Methylation of the BRCA1 Promoter is Associated With Decreased BRCA1 mRNA Levels in Clinical Breast Cancer Specimens. *Carcinogenesis* (2000) 21:1761–5. doi: 10.1093/carcin/21.9.1761
- 45. Bareche Y, Venet D, Ignatiadis M, Aftimos P, Piccart M, Rothe F, et al. Unravelling Triple-Negative Breast Cancer Molecular Heterogeneity Using

an Integrative Multiomic Analysis. Ann Oncol (2018) 29:895–902. doi: 10.1093/annonc/mdy024

- Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast Cancer. *Nat Rev Dis Primers* (2019) 5:66. doi: 10.1038/s41572-019-0111-2
- 47. Zhu X, Han Y, Fang Z, Wu W, Ji M, Teng F, et al. Progesterone Protects Ovarian Cancer Cells From Cisplatin-Induced Inhibitory Effects Through Progesterone Receptor Membrane Component 1/2 as Well as AKT Signaling. Oncol Rep (2013) 30:2488–94. doi: 10.3892/or.2013.2680
- 48. Liu L, Wang J, Zhao L, Nilsen J, McClure K, Wong K, et al. Progesterone Increases Rat Neural Progenitor Cell Cycle Gene Expression and Proliferation Via Extracellularly Regulated Kinase and Progesterone Receptor Membrane Components 1 and 2. *Endocrinology* (2009) 150:3186–96. doi: 10.1210/en.2008-1447
- Neubauer H, Clare SE, Wozny W, Schwall GP, Poznanovic S, Stegmann W, et al. Breast Cancer Proteomics Reveals Correlation Between Estrogen Receptor Status and Differential Phosphorylation of PGRMC1. Breast Cancer Res (2008) 10:R85. doi: 10.1186/bcr2155
- Polivka J, Janku F. Molecular Targets for Cancer Therapy in the PI3K/AKT/ mTOR Pathway. *Pharmacol Ther* (2014) 142:164–75. doi: 10.1016/ j.pharmthera.2013.12.004
- Engelman JA. Targeting PI3K Signalling in Cancer: Opportunities, Challenges and Limitations. Nat Rev Cancer (2009) 9:550-62. doi: 10.1038/nrc2664
- Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the Phosphoinositide 3-Kinase Pathway in Cancer. Nat Rev Drug Discov (2009) 8:627–44. doi: 10.1038/nrd2926
- Fruman DA, Rommel C. PI3K and Cancer: Lessons, Challenges and Opportunities. Nat Rev Drug Discov (2014) 13:140–56. doi: 10.1038/nrd4204
- Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in Cancer: Divergent Roles of Isoforms, Modes of Activation and Therapeutic Targeting. *Nat Rev Cancer* (2015) 15:7–24. doi: 10.1038/nrc3860
- Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K Pathway in Cancer: Are We Making Headway? Nat Rev Clin Oncol (2018) 15:273–91. doi: 10.1038/nrclinonc.2018.28
- 56. Shapiro GI, LoRusso P, Kwak E, Pandya S, Rudin CM, Kurkjian C, et al. Phase Ib Study of the MEK Inhibitor Cobimetinib (GDC-0973) in Combination With the PI3K Inhibitor Pictilisib (GDC-0941) in Patients With Advanced Solid Tumors. *Invest New Drugs* (2020) 38:419–32. doi: 10.1007/s10637-019-00776-6
- 57. Basho RK, Gilcrease M, Murthy RK, Helgason T, Karp DD, Meric-Bernstam F, et al. Targeting the PI3K/AKT/mTOR Pathway for the Treatment of Mesenchymal Triple-Negative Breast Cancer: Evidence From a Phase 1 Trial of Mtor Inhibition in Combination With Liposomal Doxorubicin and Bevacizumab. JAMA Oncol (2017) 3:509–15. doi: 10.1001/jamaoncol.2016.5281
- Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, et al. The Reactome Pathway Knowledgebase. *Nucleic Acids Res* (2020) 48:D498–503. doi: 10.1093/nar/gkz1031
- Milacic M, Haw R, Rothfels K, Wu G, Croft D, Hermjakob H, et al. Annotating Cancer Variants and Anti-Cancer Therapeutics in Reactome. *Cancers (Basel)* (2012) 4:1180–211. doi: 10.3390/cancers4041180
- Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. *Cell* (2015) 163:506–19. doi: 10.1016/j.cell.2015.09.033
- Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin–Garcia P, Arnau V, et al. Reactome Pathway Analysis: A High-Performance in-Memory Approach. *BMC Bioinf* (2017) 18:142. doi: 10.1186/s12859-017-1559-2
- Hwang SY, Park S, Kwon Y. Recent Therapeutic Trends and Promising Targets in Triple Negative Breast Cancer. *Pharmacol Ther* (2019) 199:30–57. doi: 10.1016/j.pharmthera.2019.02.006
- 63. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The Clonal and Mutational Evolution Spectrum of Primary Triple-Negative Breast Cancers. *Nature* (2012) 486:395–9. doi: 10.1038/nature10933
- Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-Negative Breast Cancer: Clinical Features and Patterns of Recurrence. *Clin Cancer Res* (2007) 13:4429–34. doi: 10.1158/1078-0432.CCR-06-3045
- 65. de Ruijter TC, Veeck J, de Hoon JP, van Engeland M, Tjan-Heijnen VC. Characteristics of Triple-Negative Breast Cancer. J Cancer Res Clin Oncol (2011) 137:183–92. doi: 10.1007/s00432-010-0957-x

- 66. O'Toole SA, Beith JM, Millar EK, West R, McLean A, Cazet A, et al. Therapeutic Targets in Triple Negative Breast Cancer. J Clin Pathol (2013) 66:530–42. doi: 10.1136/jclinpath-2012-201361
- Turner N, Moretti E, Siclari O, Migliaccio I, Santarpia L, D'Incalci M, et al. Targeting Triple Negative Breast Cancer: Is p53 the Answer? *Cancer Treat Rev* (2013) 39:541–50. doi: 10.1016/j.ctrv.2012.12.001
- Coradini D, Biganzoli E, Ardoino I, Ambrogi F, Boracchi P, Demicheli R, et al. p53 Status Identifies Triple-Negative Breast Cancer Patients Who do Not Respond to Adjuvant Chemotherapy. *Breast* (2015) 24:294–7. doi: 10.1016/j.breast.2015.01.007
- Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, et al. Evidence of RNAi in Humans From Systemically Administered siRNA Via Targeted Nanoparticles. *Nature* (2010) 464:1067–70. doi: 10.1038/nature08956
- Lares MR, Rossi JJ, Ouellet DL. Rnai and Small Interfering RNAs in Human Disease Therapeutic Applications. *Trends Biotechnol* (2010) 28:570–9. doi: 10.1016/j.tibtech.2010.07.009
- Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, et al. Therapeutic siRNA: State of the Art. Signal Transduct Target Ther (2020) 5:101. doi: 10.1038/ s41392-020-0207-x
- Ivey KN, Srivastava D. microRNAs as Developmental Regulators. Cold Spring Harb Perspect Biol (2015) 7:a008144. doi: 10.1101/cshperspect.a008144
- 73. Peng Y, Croce CM. The Role of MicroRNAs in Human Cancer. Signal Transduct Target Ther (2016) 1:15004. doi: 10.1038/sigtrans.2015.4
- Friedman RC, Farh KK, Burge CB, Bartel DP. Most Mammalian mRNAs are Conserved Targets of Micrornas. *Genome Res* (2009) 19:92–105. doi: 10.1101/gr.082701.108
- Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, et al. The microRNAs of Caenorhabditis Elegans. *Genes Dev* (2003) 17:991–1008. doi: 10.1101/gad.1074403
- Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 Signalling in Cancer: New and Unexpected Biological Functions. *Nat Rev Cancer* (2014) 14:736–46. doi: 10.1038/nrc3818
- 77. Xiang M, Birkbak NJ, Vafaizadeh V, Walker SR, Yeh JE, Liu S, et al. STAT3 Induction of miR-146b Forms a Feedback Loop to Inhibit the NF-kb to IL-6 Signaling Axis and STAT3-driven Cancer Phenotypes. *Sci Signal* (2014) 7: ra11. doi: 10.1126/scisignal.2004497
- Paliouras AR, Monteverde T, Garofalo M. Oncogene-Induced Regulation of microRNA Expression: Implications for Cancer Initiation, Progression and Therapy. *Cancer Lett* (2018) 421:152–60. doi: 10.1016/j.canlet.2018.02.029
- Korpal M, Lee ES, Hu G, Kang Y. The miR-200 Family Inhibits Epithelial-Mesenchymal Transition and Cancer Cell Migration by Direct Targeting of E-cadherin Transcriptional Repressors ZEB1 and ZEB2. J Biol Chem (2008) 283:14910–4. doi: 10.1074/jbc.C800074200
- Wang J, Tsouko E, Jonsson P, Bergh J, Hartman J, Aydogdu E, et al. miR-206 Inhibits Cell Migration Through Direct Targeting of the Actin-Binding Protein Coronin 1C in Triple-Negative Breast Cancer. *Mol Oncol* (2014) 8:1690–702. doi: 10.1016/j.molonc.2014.07.006
- Zhang D, Xia X, Wang X, Zhang P, Lu W, Yu Y, et al. PGRMC1 Is a Novel Potential Tumor Biomarker of Human Renal Cell Carcinoma Based on Quantitative Proteomic and Integrative Biological Assessments. *PLoS One* (2017) 12:e0170453. doi: 10.1371/journal.pone.0170453
- Craven RJ. PGRMC1: A New Biomarker for the Estrogen Receptor in Breast Cancer. Breast Cancer Res (2008) 10(6):113. doi: 10.1186/bcr2191
- Peluso JJ, Liu X, Saunders MM, Claffey KP, Phoenix K. Regulation of Ovarian Cancer Cell Viability and Sensitivity to Cisplatin by Progesterone Receptor Membrane Component-1. J Clin Endocrinol Metab (2008) 93 (5):1592–9. doi: 10.1210/jc.2007-2771
- Mir SU, Ahmed IS, Arnold S, Craven RJ. Elevated Progesterone Receptor Membrane Component 1/Sigma-2 Receptor Levels in Lung Tumors and Plasma From Lung Cancer Patients. *Int J Cancer* (2012) 131(2):E1–9. doi: 10.1002/ijc.26432
- Fan Y, Xia J. Mirnet-Functional Analysis and Visual Exploration of Mirna-Target Interactions in a Network Context. *Methods Mol Biol* (2018) 1819:215–33. doi: 10.1007/978-1-4939-8618-7_10
- Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J. miRNet -Dissecting miRNA-target Interactions and Functional Associations Through Network-Based Visual Analysis. *Nucleic Acids Res* (2016) 44(W1):W135–41. doi: 10.1093/nar/gkw288

- Zhao H, Bi T, Qu Z, Jiang J, Cui S, Wang Y. Expression of miR-224-5p is Associated With the Original Cisplatin Resistance of Ovarian Papillary Serous Carcinoma. Oncol Rep (2014) 32(3):1003–12. doi: 10.3892/or.2014.3311
- Tinay I, Tan M, Gui B, Werner L, Kibel AS, Jia L. Functional Roles and Potential Clinical Application of miRNA-345-5p in Prostate Cancer. *Prostate* (2018) 78(12):927–37. doi: 10.1002/pros.23650
- Wang L, Li B, Zhang L, Li Q, He Z, Zhang X, et al. miR-664a-3p Functions as an Oncogene by Targeting Hippo Pathway in the Development of Gastric Cancer. *Cell Prolif* (2019) 52(3):e12567. doi: 10.1111/cpr.12567
- Wu L, Li Y, Li J, Ma D. Microrna-664 Targets Insulin Receptor Substrate 1 to Suppress Cell Proliferation and Invasion in Breast Cancer. Oncol Res (2019) 27(4):459–67. doi: 10.3727/096504018X15193500663936
- Li HY, Liang JL, Kuo YL, Lee HH, Calkins MJ, Chang HT, et al. miR-105/93-3p Promotes Chemoresistance and Circulating miR-105/93-3p Acts as a Diagnostic Biomarker for Triple Negative Breast Cancer. Breast Cancer Res (2017) 19(1):133. doi: 10.1186/s13058-017-0918-2
- Estevão-Pereira H, Lobo J, Salta S, Amorim M, Lopes P, Cantante M, et al. Overexpression of Circulating MiR-30b-5p Identifies Advanced Breast Cancer. J Transl Med (2019) 17(1):435. doi: 10.1186/s12967-019-02193-y
- 93. Lu Q, Chen Y, Sun D, Wang S, Ding K, Liu M, et al. Microrna-181a Functions as an Oncogene in Gastric Cancer by Targeting Caprin-1. Front Pharmacol (2018) 9:1565. doi: 10.3389/fphar.2018.01565
- Groves JT, Kuriyan J. Molecular Mechanisms in Signal Transduction at the Membrane. Nat Struct Mol Biol (2010) 17(6):659–65. doi: 10.1038/nsmb.1844
- Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C, et al. Amplification and Overexpression of Cyclin D1 in Breast Cancer Detected by Immunohistochemical Staining. *Cancer Res* (1994) 54(7):1812–7.
- Zhang SY, Caamano J, Cooper F, Guo X, Klein-Szanto AJ. Immunohistochemistry of Cyclin D1 in Human Breast Cancer. Am J Clin Pathol (1994) 102(5):695–8. doi: 10.1093/ajcp/102.5.695
- 97. Mohammadizadeh F, Hani M, Ranaee M, Bagheri M. Role of Cyclin D1 in Breast Carcinoma. J Res Med Sci (2013) 18(12):1021–5.
- Ahlin C, Lundgren C, Embretén-Varro E, Jirström K, Blomqvist C, Fjällskog M. High Expression of Cyclin D1 is Associated to High Proliferation Rate and Increased Risk of Mortality in Women With ER-positive But Not in ERnegative Breast Cancers. *Breast Cancer Res Treat* (2017) 164(3):667–78. doi: 10.1007/s10549-017-4294-5
- 99. Giulianelli S, Vaqué JP, Soldati R, Wargon V, Vanzulli SI, Martins R, et al. Estrogen Receptor Alpha Mediates Progestin-Induced Mammary Tumor Growth by Interacting With Progesterone Receptors at the Cyclin D1/MYC Promoters. *Cancer Res* (2012) 72(9):2416–27. doi: 10.1158/0008-5472.CAN-11-3290
- 100. Diep CH, Ahrendt H, Lange CA. Progesterone Induces Progesterone Receptor Gene (PGR) Expression Via Rapid Activation of Protein Kinase Pathways Required for Cooperative Estrogen Receptor Alpha (ER) and Progesterone Receptor (PR) Genomic Action at ER/PR Target Genes. *Steroids* (2016) 114:48–58. doi: 10.1016/j.steroids.2016.09.004
- 101. Deng Y, Zheng J, Ma J. The Clinical and Prognostic Significance of YWHAZ in non-Small-Cell Lung Cancer Patients: Immunohistochemical Analysis. *J Cell Biochem* (2019) 120(4):6290–8. doi: 10.1002/jcb.27915
- 102. Zhao JF, Zhao Q, Hu H, Liao JZ, Lin JS, Xia C, et al. The ASH1-miR-375-YWHAZ Signaling Axis Regulates Tumor Properties in Hepatocellular Carcinoma. *Mol Ther Nucleic Acids* (2018) 11:538–53. doi: 10.1016/ j.omtn.2018.04.007

- 103. Guo F, Jiao D, Sui GQ, Sun LN, Gao YJ, Fu QF, et al. Anticancer Effect of YWHAZ Silencing Via Inducing Apoptosis and Autophagy in Gastric Cancer Cells. *Neoplasma* (2018) 65(5):693–700. doi: 10.4149/neo_2018_170922N603
- 104. Liu S, Jiang H, Wen H, Ding Q, Feng C. Knockdown of Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Zeta (YWHAZ) Enhances Tumorigenesis Both In Vivo and In Vitro in Bladder Cancer. Oncol Rep (2018) 39(5):2127–35. doi: 10.3892/or.2018.6294
- 105. Li Y, Zou L, Li Q, Haibe-Kains B, Tian R, Desmedt C, et al. Amplification of LAPTM4B and YWHAZ Contributes to Chemotherapy Resistance and Recurrence of Breast Cancer. *Nat Med* (2010) 16(2):214–8. doi: 10.1038/ nm.2090
- 106. Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, et al. Haem-Dependent Dimerization of PGRMC1/Sigma-2 Receptor Facilitates Cancer Proliferation and Chemoresistance. *Nat Commun* (2016) 7:11030. doi: 10.1038/ncomms11030
- 107. Farazi TA, Ten Hoeve JJ, Brown M, Mihailovic A, Horlings HM, van de Vijver MJ, et al. Identification of Distinct miRNA Target Regulation Between Breast Cancer Molecular Subtypes Using AGO2-PAR-CLIP and Patient Datasets. *Genome Biol* (2014) 15(1):R9. doi: 10.1186/gb-2014-15-1-r9
- Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a Large Class of Animal RNAs With Regulatory Potency. *Nature* (2013) 495:333–8. doi: 10.1038/nature11928
- 109. Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M. A Quantitative Analysis of CLIP Methods for Identifying Binding Sites of RNA-binding Proteins. *Nat Methods* (2011) 8(7):559–64. doi: 10.1038/ nmeth.1608
- 110. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, et al. Transcriptome-Wide Identification of RNA-binding Protein and microRNA Target Sites by PAR-CLIP. *Cell* (2010) 141(1):129–41. doi: 10.1016/j.cell.2010.03.009
- 111. Karginov FV, Hannon GJ. Remodeling of Ago2-mRNA Interactions Upon Cellular Stress Reflects miRNA Complementarity and Correlates With Altered Translation Rates. *Genes Dev* (2013) 27(14):1624–32. doi: 10.1101/ gad.215939.113
- 112. Xue Y, Ouyang K, Huang J, Zhou Y, Ouyang H, Li H, et al. Direct Conversion of Fibroblasts to Neurons by Reprogramming PTB-regulated microRNA Circuits. *Cell* (2013) 152(1–2):82–96. doi: 10.1016/j.cell.2012.11.045
- 113. Tang YT, Hu T, Arterburn M, Boyle B, Bright JM, Emtage PC, et al. PAQR Proteins: A Novel Membrane Receptor Family Defined by an Ancient 7-Transmembrane Pass Motif. J Mol Evol (2005) 61(3):372–80. doi: 10.1007/ s00239-004-0375-2

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Pedroza, Ramirez, Rajamanickam, Subramani, Margolis, Gurbuz, Estrada and Lakshmanaswamy. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.