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Abstract There exist a large number of cohort studies that have been used to identify genetic and biological
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risk factors for developing Alzheimer’s disease (AD). However, there is a disagreement between
studies as to how strongly these risk factors affect the rate of progression through diagnostic groups
toward AD. We have calculated the probability of transitioning through diagnostic groups in six
studies and considered how uncertainty around the strength of the effect of these risk factors affects
estimates of the distribution of individuals in each diagnostic group in an AD clinical trial simulator.
In this work, we identify the optimal choice of widely collected variables for comparing data sets and
calculating probabilities of progression toward AD. We use the estimated transition probabilities to
inform stochastic simulations of AD progression that are based on a Markov model and compare
predicted incidence rates to those in a community-based study, the Cardiovascular Health Study.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Alzheimer’s disease (AD) is a progressive, neurodegener-
ative disease that is characterized clinically by a progressive
decline in cognitive function. To date, clinical trials of AD
therapies have been largely unsuccessful [1]. Several factors
are thought to contribute to these failures, including incorrect
target selection and poor trial design [1,2]. As AD is a
condition associated with the aging population, disease-
modifying treatments aimed at slowing the rate of progression
toward AD would have considerable impact in reducing the
social and economic burden of this disease worldwide.

Mathematical and statistical models of AD progression are
increasingly focused on modeling the disease as a continuum
of cognitive states toward AD [3–6]. We have previously
presented a 3-state model that describes disease progression
from cognitively normal (CN) to a mild cognitively impaired
(MCI) state and anADstate [7]. In addition, othermodels have
been developed to include substates of mild, moderate, or
severe AD and also those that focus on biomarker [8] or
cognitive and functional states [4,5]. Most of these models
have been developed to describe progression rates using
transition probabilities that have been derived from a single
data set using a range of different statistical and
epidemiological methods. However, there remains a need
for convincing results, which have been generated from
individual studies that are applicable to other data sets or to
a general population. A meta-analysis by Neu et al. [9]
compared the odds ratios for the risk of developing disease
with the risk factors such as age, sex, and apolipoprotein E4
(APOE ε4) from 27 independent research studies and found
wide differences in the estimates for developing MCI and
AD. Furthermore, a study by Qian et al. [10] which compared
risk estimates for the incidence of MCI or dementia among
cognitively unimpaired individuals stratified by APOE ε4
and age found that, while the effect of age and APOE ε4
was consistent between studies, there were differences in the
cumulative incidence of AD between the data sets.

In this study, we calculate and compare transition proba-
bilities from six data sets namely the Australian Imaging,
Biomarkers and Lifestyle study (AIBL), AddNeuroMed, Alz-
heimer’s Disease NeuroImaging study (ADNI), BIOCARD:
Predictors of Cognitive Decline Among Normal Individuals
(BIOCARD), the Framingham Heart Study (FHS), and
National Alzheimer’s Coordinating Center (NACC), which
represent 22,993 individuals with 2639 reported cases of
dementia when combined. We use these probabilities to
inform stochastic simulations of AD progression that are
based on a Markov model. In particular, we simulate the
progression from CN to AD in an artificial population and
compare the results to a subset of the Cardiovascular Heart
Study (CHS) cohort. The key strength of this work is the
calculation of transition probabilities from a large number
of data sets using identical data analysis protocols. This
allows us to eliminate heterogeneity in results that arise as a
result of using different statistical methods between data sets.
2. Methods

2.1. Data sets used
2.1.1. Alzheimer’s Disease NeuroImaging study
The ADNI was launched in 2003 with the goal of testing

whether serial magnetic response imaging (MRI), positron
emission tomography, other biological markers, and clinical
and neuropsychological assessment can be combined to
measure the progression to the disease states MCI and AD.
The study data available in this analysis consist of 1737
individuals with data acquired at multiple sites across the
United States and Canada and are composed of three stages
of recruitment: ADNI1, ADNIGO, and ADNI2. One of the
primary goals of the ongoing development of the ADNI
database is to enable investigators to define the progression
of AD for individuals at risk with a lack of cognitive or
functional concerns. The data used in this study were
downloaded on October 31, 2016.

2.1.2. National Alzheimer’s Coordinating Center
The NACC database was set up in 1999 and is based out

of approximately 39 Alzheimer’s Disease Centers across the
United States. Participant-enrollment methods at Alz-
heimer’s Disease Centers include but are not limited to clinic
samples, public recruitment methods, participant referrals,
other ongoing studies, and, occasionally, population-based
samples. Data are available for 9927 individuals and were
collected in a cumulative database across a range of mea-
sures including clinical assessments, MRI scans, and other
markers of neuropathology [11]. The present study is based
on data that have been recorded between September 2005
and June 2016.

2.1.3. Framingham Heart Study
The FHS was established as a prospective cohort study in

1948 with an original cohort of 5209 individuals that were
sampled randomly to be representative of the community.
These individuals have undergone up to 32 examinations
that include physical examinations and laboratory testings
[12]. Two further cohorts were sampled in 1971 and 2002,
which recruited 5124 offspring and spouses of offspring of
the original cohort, as well as the children of the offspring
cohort. Surveillance for dementia began in 1975, and
individuals were seen at regular intervals of between 2 to
4 years, details of which are published elsewhere [13,14].
The data/analyses presented in the current publication are
based on the use of study data downloaded from the
dbGaP Web site, under phs000007.v30.p1 (https://www.

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000007.v30.p1
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ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id5
phs000007.v30.p1).
2.1.4. BIOCARD
The BIOCARD study was conceptualized to investigate

the predictors of cognitive decline among normal individ-
uals. The study was designed to investigate variables that
could predict future progression to AD among CN individ-
uals [15]. With this end, extensive neuropsychological,
MRI, cerebrospinal fluid, and blood markers were recorded
longitudinally for 349 individuals. The study has been
underway since 1995 and is currently being led by
investigators at John Hopkins University after a break in
funding between 2005 and 2009. By design, the cohort is
middle-aged, and approximately three quarters of
individuals had a family history of dementia at enrollment.

2.1.5. Australian Imaging, Biomarkers and Lifestyle study
The AIBL study follows a prospective Australian cohort

of more than 1000 individuals living in Melbourne and Perth
while collecting extensive neuropsychological, imaging
(both MRI and positron emission tomography), and
biological markers of AD over more than 126 months [16].
The aim of this study is to identify the predictive value of
biomarkers, cognitive variables, and lifestyle factors for
future progression to AD with a focus on early detection
and building toward lifestyle interventions. Data were
collected by the AIBL study group. AIBL study
methodology has been reported previously [16].

2.1.6. AddNeuroMed
The AddNeuroMed study was established in 2006 and

enrolled 781 individuals at baseline. The primary goal of Add-
NeuroMedhas been to assess longitudinalMRI changes inAD,
MCI, and healthy controls using image-acquisition protocols
compatiblewith those used inADNI [17]. To do so, individuals
are followed up and diagnosed as CN/MCI/AD longitudinally
at 3- to 12-month intervals at centers across 6 European coun-
tries—Finland, Italy, Greece, Poland, France, and the UK [18].
2.1.7. Cardiovascular Heart Study
The CHS is a prospective study that was designed primar-

ily to investigate and quantify the association between previ-
ously known and hypothesized risk factors, with coronary
heart disease and stroke in community-dwelling adults
aged 65 years and older in the United States [19]. Individuals
included in the CHS were randomly sampled from medical
records in the US cities of Pittsburgh, Sacramento, Hagers-
town, and Winston-Salem. The cohort consists of 5888
individuals of which 687 comprise the cohort of African-
Americans who were recruited in 1992–1993. At baseline,
clinical examinations and in-person interviews in the home
using a series of standard questionnaires were conducted.
The status of dementia was assessed from the completion
of a cranial MRI and The Modified Mini-Mental State
(3MS) Examination assessment in 1992–1994 onwards
[20]. Participants were followed up annually at clinic visits
and semiannually with telephone interviews thereafter, up
to and including year 11 of the study (1998–1999). A further
wave of follow-up took place in year 18 as part of the ancil-
lary All Stars study of the remaining 1677 survivors of the
CHS cohort which was designed to assess risk factors asso-
ciated with healthy physical and cognitive aging.
2.2. Estimation of transition probabilities and odds ratios

Transition probabilities and odds ratios of the likelihood
of transitioning to a more severe diagnostic state were calcu-
lated, taking account of three key confounding variables
namely gender, APOE ε4 carrier status, and age. We used
a generalized linear mixed model (GLMM) with a logit
link function to estimate the odds ratios associated with pro-
gressing to a more severe disease state with which we were
able to calculate the probabilities of doing so (transition
probabilities). The model took the form
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where pij is the probability of participant j transitioning
backwards at observation i; b0 is the mean intercept and bk
is the log odds ratio associated with a one unit increase in
variable xk; u0j w Nð0; s2u0Þ represents a specific deviance
from b0 for individual j which accounts for the variability
in the likelihood of transitioning between individuals;
vij w Nð0; s2v0Þ represents the random error that accounts
for the variability within individuals. Hence, parameters
s2u0 and s2v0 represent the variance between and within indi-
viduals, respectively.

Models were based on three factors that were recorded (in
a comparable manner) between the six data sets; age (contin-
uous, centered at 50 years and scaled by a factor of 100),
gender, APOE ε4 carrier status (defined dichotomously as
homozygous/heterozygous). Additional terms were
included in the model to account for the current diagnostic
state to differentiate between CN . MCI and MCI . AD
transition probabilities using the same model and the time
between visits (centered at 12 months) that we normalized
to 12 months when calculating the transition probabilities
from odds ratios. The R package R2MLwiN was used to es-
timate the model parameters using Monte-Carlo Markov
Chains and goodness of fit statistics [21]. To identify the
combination of variables that fits best across data sets, we
explored a number of models (Table 1) and based the
model-selection procedure on the deviance information cri-
terion. The model with the smallest deviance information

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000007.v30.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000007.v30.p1


Table 1

Model inclusion table

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

TBV � � � � � �
DX � � � � � �
APOE ε4 � � � � �
Gender � � � � �
Age � � �
Agê2 � � �
Agê3 � �
Age:DX � � �
Agê2:DX � � �
Agê3:DX � �
NOTE. Variables included in each of the six models.

Abbreviations: APOE, apolipoprotein E; TBV, time between consecutive

visits; DX, current diagnostic group, interaction between two variables.
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criterion was selected and used to calculate transition prob-
abilities [22].
2.3. Incorporation of transition probabilities in a
stochastic individual–based model of AD

We developed a stochastic individual-based model of AD
from an existing Markov model of disease progression
described in the study by Hadjichrysanthou et al. [7]. In
the model presented here, the transition probabilities are up-
dated at every time step (time step t was set at t5 0.001 yrs)
and are calculated by application of the inverse logit function
to the estimated odds ratios, which themselves are based on
age, gender, current diagnostic state, and APOE ε4 carrier
status. On initialization, a random intercept term is drawn
from an Nð0; s2u0Þ distribution for each patient, where s2u0
is the variance of the random intercept term in the fitted
mixed-effects model. The full repertoire of b coefficients
in the mixed-effect model was sampled 200 times from the
stable Monte-Carlo Markov Chain estimates for each data
set, and 500 simulations were performed with each param-
eter set to eliminate aleatory uncertainty. Simulations were
performed using 1000 simulated patients for a total of
15 years (Fig. 1). In each simulation, patient demographics
1) Sample parameter values from the 
MCMC chains generated during 
es�ma�on

2) Sample the characteris�cs of the 
baseline popula�on based on pre-
specified demographic distribu�ons

3) Ran
interc
assign
to eac
individ

Fig. 1. Steps toward the development of a clinical trial simulator for AD. Abbre
were drawn from the distributions of the baseline population
of the CHS study.
3. Results

3.1. Comparing risk estimates and predicting the rate of
progression through clinical states toward AD in multiple
data sets

We identified eight risk factors for AD that had previously
been used in other studies to calculate the rates of progres-
sion to be considered in our analysis. These variables were
time between visits, age, Agê2, Agê3, APOE ε4 carrier sta-
tus, gender, and current diagnostic group (CN or MCI). We
used GLMMs to estimate the odds ratios for progression to
the next (more severe disease) state within the data sets using
six distinct combinations of the available variables (Table 1)
and estimating their parameters using each of the six data
sets (Supplementary Table 1). Although it is widely consid-
ered to be a modifier of risk, education was excluded from
our study due to inconsistencies in data availability and
methodology of measuring level of education within the
different data sets. However, of the five data sets in which ed-
ucation could be compared, no significant association was
found with the rate of transition (Supplementary Table 2).
We used the model deviance to select the model that was
the best universal fit to the data sets. For data sets AIBL,
AddNeuroMed, BIOCARD, and FHS, the model with the
lowest deviance contained time between visits, gender, diag-
nostic group, agê2, and the interaction between agê2 and
diagnostic group (Supplementary Table 1, Model 3). For
ADNI and NACC, the best fitting model contained time be-
tween visits, gender, diagnostic group, age, and the interac-
tion between age and the diagnostic group (Supplementary
Table 1, Model 2). For ADNI and NACC, the relative differ-
ence in deviance between model 2 and model 3 was minimal
compared with the other data sets. Thus, to preserve homo-
geneity between analysis methods, we determined that
model 3 was the most appropriate model for calculating
dom 
ept –
 a value 
h 
ual

4) Run simula�on for fixed sample 
of individuals, and parameters

5) Repeat steps 2 – 4 to compute 
the means under a single 
parameter set

6) Repeat steps 1 – 5 for the 
desired number of parameter sets

viations: AD, Alzheimer’s disease; MCMC, Monte-Carlo Markov Chains.
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the 12-month probability of transitioning toward AD, in the
multiple data sets that were examined. It should be noted that
deviances could not be statistically compared since the
models were not nested.

Subsequently, we calculated transition probabilities for
rates of progression toward AD using model 3. In this
model, the term representing time between visits signifi-
cantly increased the likelihood of transitioning to a more
severe diagnostic state in the data sets that had a longer
average time span between visits (i.e., in ADNI, BIO-
CARD, FHS, and NACC [P , .001]). The odds ratio for
an increase of one year in the time-between-visits variable
in these four data sets ranged from 1.24 in FHS to 1.87 in
ADNI (Supplementary Table 1). The probability of pro-
gressing toward AD increased with Agê2, and as ex-
pected, the highest odds ratio in all data sets was
associated with the Agê2 term; however, this was signifi-
cantly reduced in individuals who were already diagnosed
with MCI. In other words, individuals are more likely to
transition from MCI to AD than they are from CN to
MCI (i.e., acceleration of disease progression clinically).
This effect appears to be less pronounced as individuals
enter the oldest ages. APOE ε4 carriage (heterozygous
or homozygous) confers significantly increased risk in
every data set, except for AIBL where the odds ratio is
positive but nonsignificant (odds ratio [OR], 1.138;
P 5 .741). Only NACC demonstrated an effect of gender,
with females less likely to transition to a more severe state
(OR, 0.820; P , .001). The transition probabilities are dis-
played graphically in Fig. 2.
3.2. Comparing cumulative incidence of AD incidence
between data sets using simulations of a standardized
population of individuals

We used our clinical trial simulator to explore how inci-
dence rates predicted in each data set differed in a standard-
ized population. We first created a virtual population by
sampling demographic variables using the baseline distribu-
tion from those in the CHS study who were CN at baseline
and remained in the study for 6 years. This study was not
included in our estimation of transition probabilities
(Supplementary Table 3). Following this, we calculated
12-month transition probabilities, adjusting for the known
risk factors that were shared between the cohorts, and the re-
sults are presented in Supplementary Table 1. The 10-year
cumulative AD incidence rates in the simulations range
from 15.4% using AIBL-derived probabilities to 32.0% us-
ing probabilities derived from AddNeuroMed. The biggest
variation in incidence rate predictions came from AddNeur-
oMed and BIOCARD, and the smallest came from AIBL,
FHS, and NACC (Fig. 3A).
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Wethencompared these results to the actual incidence rates
in the CHS population fromwhich the baseline demographics
were derived (Fig. 3B).We found that the predictionsmadeus-
ing theAddNeuroMed-derived transition probabilities overes-
timated the incidence rate in a generalized population. The
best predictions were made using ADNI-, BIOCARD-, and
FHS-derived transition probabilities, with NACC and AIBL
both underestimating the incidence rate.
4. Discussion

In this study, we have presented a comparison of the odds
ratios and the rate of transitioning through the cognitive
decline spectrum in AD for multiple data sets, using a stan-
dardized analysis method. Our results highlight the vast dif-
ferences in odds ratios and 12-month transition probabilities
determined from six major AD cohorts. However, it provides
a tool or platform that can be used to further understand the
reasons behind these differences.

We acknowledge that the studies considered here differ
greatly in design especially in the criteria for subject recruit-
ment.We, therefore, accept that methods that may be ideal for
one study may be not optimal for another. However, the pur-
pose of the present studywas not tomodel transition probabil-
ities as accurately as possible within specific studies but to
begin eliminating the variability that is introduced using
different methods for their calculation. Moreover, standard-
ized analyses also highlight which design aspects and data
characteristics of cohort studies should be considered when
conducting more detailed analyses on a single study basis.

Qian et al. [10] have previously identified differences in
odds ratios and cumulative incidence rates between studies
through meta-analyses. However, the study could only esti-
mate lifetime incidence for individuals that had a maximum
age within the 80–85 years age band and only for two data
sets. From the calculation of transition probabilities using
continuous age as a risk factor, we found that the probability
of developing AD increases substantially from age 80 in the
three largest data sets, all of which had a large number of pa-
tients from individuals older than 80 years (Supplementary
Fig. 1). We considered age (Age, Agê2, and Agê3), current
diagnostic state (CN or MCI), APOE ε4 carrier status (pos-
itive for at least one allele or negative), and gender as poten-
tial risk factors for developing AD. These were based on
measures that were shared between the data sets, and as ex-
pected, we identified age as the most significant risk factor.
Combinations of Age, Agê2, and Agê3 were significantly
associated with an increase in the risk of transitioning
from CN to MCI in all data sets. However, the effect of
age on the transition from MCI to AD is unclear because
the interaction between age and diagnosis had differential ef-
fects, both between models and data sets under the same
model. An important extension of this work would be to
perform the same analysis using a well-defined metric of
biological age such as those proposed by Belsky et al.,
Gott et al., and Petkovich et al. [23–25] in place of age. If
the variables required for predicting biological age were
measured in a variety of data sets, combined with
exploring differential clinical endpoints, it should be
possible to define suitable endpoints that could be agreed
upon within the Alzheimer’s research field.

The results presented here also demonstrate which of the six
data sets analyzedare suitable for combining inapooled analysis
to increase sample size and therefore the robustnessof inferences
drawn from analyses. For example, ADNI, BIOCARD, and
NACC have similar transition probabilities with respect to age.

By using simulation to extend these results, we found
that the cumulative incidence of AD in a standardized pop-
ulation differed with a magnitude greater than the vari-
ability within cohort data sets (Fig. 3B). Of considerable
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interest is the observation that the probabilities generated
from ADNI, a so-called “convenience cohort”, better pre-
dicted incidence in a standardized population than
community-based studies such as FHS. A possible reason
for this is that factors such as education and biomarker
values that were not included in the model could be
more similar between ADNI and CHS than between FHS
and CHS; however, both data sets provide an adequate
job estimate of the CHS probabilities. Furthermore,
because we are using only individuals that are retained
for 16 years in CHS rather than the full population, it is
possible that the incidence rates reported are increased
from what would be expected in a general population.
Additionally, from the transition probabilities recorded in
Fig. 2, it appears that individuals in the convenience cohort
transition more quickly than individuals in FHS at younger
ages but slower at older ages. Thus, it is plausible that the
incidence rates in ADNI and FHS are similar because of a
balance between the two sets of probabilities over time.

The statistical approach in using GLMMs rather than
observed transition rates stratified by confounding factors in-
creases sample size and allows for the inclusion of multiple
risk factors both independently and combined. This approach
also allows us to consider the population-level effects as well
as quantify variance at the individual level. While we also
acknowledge significant limitations to using diagnostic state
as an endpoint for our analysis, it is important to note that
there is no currently agreed upon gold standard endpoint in
the AD field to use in its place as yet.

These results have important implications for both clin-
ical trial design and public health policies. First, they high-
light the degree to which incidence varies between
seemingly similar populations. All the data sets included
in this study comprised of individuals in the United States
and Canada, demographic factors of which were accounted
for in the calculation of the transition probabilities. Further-
more, this study highlights the considerable increase in the
probability of developing AD in individuals older than
80 years compared with younger individuals. Another
important conclusion arising from this work is that when
predicting how interventions might impact the general pop-
ulation, a variety of data sets should be used to produce more
reliable results of what is the background likelihood of tran-
sitioning between disease states in the control untreated
group. For example, the work by Davis et al. [4] predicted
that a 20% reduction in the number of MCI cases due to
AD would translate to a 5% difference in AD cases in
NACC. However, it is unclear if this would still be the
case in a population such as FHS or ADNI where the rate
of developing MCI was generally higher, but the rate of con-
verting from MCI to AD was lower in older age groups.

An important future extension to this work would be to
repeat this analysis with a wider range of data sets, incorpo-
rating some of the developing cohort studies from non-US
sites such as Chariot-Pro (UK), the Gothenburg Study, and
the Rotterdam cohort study [26].
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RESEARCH IN CONTEXT

1. Systematic review: The authors searched PubMed to
identify previous research articles calculating or
comparing incidence and prevalence of Alzheimer’s
Disease (AD) between Aging US cohorts.

2. Interpretation: We have calculated the probability of
transitioning toward AD in six studies and consid-
ered how the uncertainty around strength of these
risk factors affects estimates of the distribution of in-
dividuals in each diagnostic group in an AD clinical
trial simulator. We identify the optimal choice of
widely collected variables for comparing data sets
and calculating probabilities of progression toward
AD and compare predicted incidence rates to those
in a community-based study. This study highlights
the degree to which incidence varies between seem-
ingly similar populations and implies that when pre-
dicting how interventions might impact the general
population, a variety of datasets should be used to
produce more reliable results of what is the back-
ground likelihood of transitioning between disease
states in the control untreated group.

3. Future directions: An important future extension to
this work would be to repeat this analysis with a
wider range of datasets, incorporating some of the
developing cohort studies from non-US sites such
as Chariot-Pro (UK), the Gothenburg Study, and
the Rotterdam cohort study.
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