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The circadian clock and homeostatic processes are fundamental mechanisms that regulate
sleep. Surprisingly, despite decades of research, we still do not know why we sleep.
Intriguing hypotheses suggest that sleep regulates synaptic plasticity and consequently
has a beneficial role in learning and memory. However, direct evidence is still limited and
the molecular regulatory mechanisms remain unclear. The zebrafish provides a powerful
vertebrate model system that enables simple genetic manipulation, imaging of neuronal
circuits and synapses in living animals, and the monitoring of behavioral performance
during day and night. Thus, the zebrafish has become an attractive model to study circadian
and homeostatic processes that regulate sleep. Zebrafish clock- and sleep-related genes
have been cloned, neuronal circuits that exhibit circadian rhythms of activity and synaptic
plasticity have been studied, and rhythmic behavioral outputs have been characterized.
Integration of this data could lead to a better understanding of sleep regulation. Here, we
review the progress of circadian clock and sleep studies in zebrafish with special emphasis
on the genetic and neuroendocrine mechanisms that regulate rhythms of melatonin
secretion, structural synaptic plasticity, locomotor activity and sleep.
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INTRODUCTION
All organisms demonstrate a wide variety of physiological, bio-
chemical and behavioral daily rhythms that are driven by a
highly conserved endogenous timing mechanism, the circadian
clock. The maintenance and synchronization of this clock and
the concurrent rhythms constitute an adaptive advantage, and
its disruption in humans has been associated with physiologi-
cal and mental disorders. A well-studied output of the circadian
clock is the sleep-wake cycle. Sleep is a highly conserved process
(Hartse, 2011) although its function remains one of the biggest
mysteries in science (Cirelli and Tononi, 2008; Mignot, 2008).
Theories that attempt to explain the role of sleep range from
ecological considerations and energy conservation to synaptic
plasticity and memory consolidation (Saper et al., 2005; Siegel,
2005; Nishino and Sakurai, 2006; Tononi and Cirelli, 2006; Cirelli,
2009; Sehgal and Mignot, 2011; Wang et al., 2011). The sleep state
is associated with cycles of electroencephalograph (EEG) patterns
(primarily in mammals), a species-specific sleep posture, a period
of reversible quiescence, and decreased levels of sensory aware-
ness to external stimuli. Sleep is regulated both by the circadian
clock, which sets the timing of sleep, and by homeostatic mech-
anisms, as indicated by a compensatory increase in the intensity
and duration of sleep after sleep deprivation (SD).

In mammals, including humans, sleep and other circadian
rhythms are driven by a master oscillator that resides in the
suprachiasmatic nucleus (SCN) of the hypothalamus (Reppert
et al., 1981; Granados-Fuentes and Herzog, 2012). Among the

many targets that are controlled by the mammalian SCN are
hormonal and neuronal circuits that, in turn, feedback on the
master oscillator and influence sleep/wake cycles. These include
the rhythmic production of melatonin in the pineal gland and
rhythmic secretion of neuropeptides and monoamines in the
brain (Morris et al., 2012). Melatonin is secreted only during
the night in all vertebrates. It affects the activity of the SCN,
where the expression of melatonin receptors is enriched, and in
diurnal birds and fish, it is a strong sleep-promoting hormone
(Zhdanova, 2005). Another sleep/wake regulatory factor is the
hypothalamic neuropeptide hypocretin/orexin (HCRT). Loss of
HCRT neurons is associated with the sleep disorder narcolepsy,
which is characterized by excessive daytime sleepiness, fragmen-
tation of sleep during the night and cataplexy (brief loss of muscle
tone triggered by emotional stimuli) (Lin et al., 1999; Nishino and
Sakurai, 2006; Adamantidis and De Lecea, 2008).

The zebrafish offers many advantages for studying the circa-
dian clock and the regulation of sleep. It is amenable to high
throughput genetic and behavioral experiments, and its early
developmental stages are transparent, enabling neuronal imaging
in vivo. The complex neuro-regulatory mechanisms and sleep reg-
ulating nuclei underlying sleep/wake cycles in mammals are con-
served, but much simpler in zebrafish. For example, the zebrafish
HCRT neuronal circuits are similar in function and anatomy to
mammals (Panula, 2010), but are represented by small num-
ber of neurons in the zebrafish brain (Faraco et al., 2006). The
pineal gland in zebrafish develops remarkably early (Vatine et al.,

Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 9 | 1

NEURAL CIRCUITS

http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/about
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/Neural_Circuits/10.3389/fncir.2013.00009/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=IdanElbaz&UID=74774
http://community.frontiersin.org/people/YoavGothilf/19698
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=LiorAppelbaum&UID=54552
mailto:lior.appelbaum@biu.ac.il
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Elbaz et al. Circadian rhythms and sleep in zebrafish

2011), is photoreceptive and contains an intrinsic circadian oscil-
lator that directs melatonin rhythms. Thus, the pineal gland is
considered a central circadian pacemaker that conveys circadian
timing information to physiological and behavioral processes. In
this review, we describe the progress of circadian and sleep stud-
ies in zebrafish with special emphasis on their neuroendocrine
regulation.

THE CIRCADIAN CLOCK SYSTEM IN ZEBRAFISH
One of the most studied outputs of the circadian clock in ver-
tebrates is the melatonin rhythm. The zebrafish pineal gland
drives rhythms of melatonin-independent of any neuronal input
or other master clock structures (Cahill, 1996; Noche et al., 2011).
The aralkylamine-N-acetyltransferase (aanat) gene encodes the
key enzyme of melatonin synthesis. Zebrafish aanat2 expression
and melatonin synthesis begin remarkably early, within 1 day
post fertilization (dpf), and exhibit circadian clock-controlled
rhythms at 2 dpf (Gothilf et al., 1999; Kazimi and Cahill, 1999).
Genetic investigations of the pineal circadian clock mechanisms
and its functional development have revealed that light and
light-induced genes are required for the onset of the core molec-
ular oscillator in the pineal gland (Ziv et al., 2005; Vuilleumier
et al., 2006; Vatine et al., 2011). Extensive studies performed by
Zhdanova and co-workers on the role of melatonin in zebrafish
indicate that melatonin is a sleep-promoting agent (Zhdanova,
2011). Melatonin was also shown to affect memory acquisition
(Rawashdeh et al., 2007), and to schedule the timing of reproduc-
tion (Carnevali et al., 2011) and feeding (Piccinetti et al., 2010).

Another important feature of the zebrafish circadian clock
system is that light-entrainable circadian oscillators exist in all
organs and even in cell cultures (Whitmore et al., 2000; Pando
et al., 2001). Zebrafish cell lines have been used to study the role
of the different clock genes within the core oscillator (Vallone
et al., 2004, 2005) revealing that similar mechanisms constitute
the core molecular oscillator in central and peripheral clocks.
Current and future studies combining functional analysis of
clock genes in living animals and in the light-entrainable, clock-
containing zebrafish cell lines will enhance our understanding of
the molecular mechanisms underlying the circadian clock and its
entrainment (Tamai et al., 2005, 2007; Carr et al., 2006; Vatine
et al., 2009).

Monitoring rhythms of locomotor activity is very frequently
used to measure circadian clock output. Being a diurnal species,
adult zebrafish demonstrate locomotor activity that peaks during
the day (Hurd et al., 1998). The larvae start to exhibit a stable
diurnal rhythm of locomotor activity at 4 dpf (Hurd and Cahill,
2002). An important hallmark of a circadian clock-driven rhythm
is that it persists under constant photic conditions. Indeed, adult
zebrafish also exhibit rhythmic activity and increase activity dur-
ing the subjective day under constant dark (DD) conditions
(Cahill et al., 1998; Hurd et al., 1998). Similarly, zebrafish larvae
are rhythmic under DD (Hurd and Cahill, 2002) or constant dim
light (Appelbaum et al., 2009, 2010; Tovin et al., 2012). It should
be noted, however, that zebrafish are directly influenced by the
photic conditions, which promote constant activity; i.e., “mask-
ing effects.” Thus, while robust rhythms of locomotor activity
are detected under light/dark cycles (LD), under constant light

(LL) most individuals are constantly active, which also leads to
a complete loss of their rhythms. Likewise, under DD, locomo-
tor activity is reduced to the point in which rhythms are lost
in some individuals, therefore, constant dim light has been used
(Tovin et al., 2012). Rhythmic locomotor activity clearly reflects
an integration of environmental effects and regulation by intrin-
sic central and peripheral circadian clocks. As sleep/wake cycles
are a key output of the circadian clock, the extent to which rhyth-
mic locomotor activity reflects sleep and wakefulness was studied
in larvae and adults.

SLEEP IN ZEBRAFISH
USING BEHAVIORAL CRITERIA TO MEASURE THE SLEEP STATE
IN ZEBRAFISH
Sleep has been examined in various fish species either in the
natural environment or in laboratory conditions. During sleep,
fish exhibit place preference, reduced heart and respiratory rates,
typical sleep-postures and reduced sensitivity to external stim-
uli such as food, electric current or mechanical contact (Tauber
et al., 1969; Shapiro and Hepburn, 1976; Campbell and Tobler,
1984; Tobler and Borbely, 1985; Goldshmid et al., 2004). The
zebrafish has been established as a promising model for sleep and
sleep disorder research (Zhdanova et al., 2001; Prober et al., 2006;
Yokogawa et al., 2007; Appelbaum et al., 2009; Rihel et al., 2010;
Sigurgeirsson et al., 2011; Elbaz et al., 2012). Since its small size
and the water habitat preclude EEG measurements, behavioral
criteria are used to distinguish sleep and wake states in zebrafish.
Notably, in infant mammals, before the differentiation of EEG
(when sleep state-dependent neocortical activity is absent), sleep
is reliably characterized by the presence of tonic and phasic mus-
cle tone (Karlsson and Blumberg, 2005; Karlsson et al., 2005).
Therefore, as determined for other small non-mammalian species
(Hendricks et al., 2000; Raizen et al., 2008), the key behavioral
criteria for sleep are: (1) a period of immobility that is associ-
ated with a specific posture; (2) quick reversibility to wakefulness
(distinguishes sleep from coma or hibernation); (3) increased
arousal threshold to external stimuli (indication of low level of
sensory awareness); (4) sleep-rebound after SD (indication of
homeostatic regulation), and (5) preference for nocturnal or diur-
nal sleep (indication of circadian regulation) (Zimmerman et al.,
2008). These behavioral criteria were used to show that a mini-
mum of 1 min of immobility is associated with elevated arousal
threshold and a sleep-like state in 5–7 dpf larvae (Prober et al.,
2006; Elbaz et al., 2012). In these studies, arousal was stimulated
by pulses of light, a procedure which may not be ideal because
retinal responsiveness is reduced at night (Emran et al., 2010).
However, responsiveness to changes in light intensity is also medi-
ated by extra-retinal photoreceptors (Fernandes et al., 2012). In
adults, an electrical stimulus, rather than light, was used to set
the arousal threshold and define sleep as a minimum of 6 sec
of immobility (Yokogawa et al., 2007). Thus, as in the fly where
5 min of immobility was defined as a sleep-like state (Hendricks
et al., 2000), an array of behavioral experiments was used to
define sleep in zebrafish. However, since EEG is not applicable
in zebrafish, additional techniques should be applied to differ-
entiate rest from sleep. For example, sleep in zebrafish was also
studied using c-fos expression (Appelbaum et al., 2010; Elbaz
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et al., 2012), a well-established marker for wakefulness (Cirelli
and Tononi, 2000). Recently developed techniques for measur-
ing neuron activity via genetically encoded calcium sensors in
the whole brain of live larvae (Ahrens et al., 2012) or by rapid
bioluminescent signals in genetically specified neurons of free
swimming zebrafish (Naumann et al., 2010) promise to provide
a causal link between neural activity and the state of sleep or
wakefulness.

HOMEOSTATIC AND CIRCADIAN REGULATION OF SLEEP IN ZEBRAFISH
Adult zebrafish sleep mainly during the night under both LD and
DD, indicating circadian clock regulation of the sleep/wake cycle.
In contrast, under LL, light seems to suppress sleep, and rhythms
of sleep/wake behavior disappear, reflecting the masking effect of
light. Indeed, in adults kept under LL, sleep-like behavior could
be noted only after 1 week (Yokogawa et al., 2007). Similarly,
zebrafish larvae also demonstrate a rhythmic sleep/wake cycle,
under LD (Elbaz et al., 2012). However, the sleep/wake cycle was
not examined in larvae under constant conditions. Here, we show
circadian rhythms of sleep/wake cycles under constant dim light,
indicating that sleep is regulated by the circadian clock in 6–8 dpf
larvae (Figure 1A).

The timing of sleep is mainly controlled by the circadian clock,
however, in all animals sleep is also regulated by a homeostatic
mechanism. SD is followed by sleep-rebound that is independent
of the circadian time. This has been revealed in studies of adult
zebrafish that were sleep deprived by electrical stimulation dur-
ing the 6 h of the dark prior to usual light onset, and then released
into the subjective day. Under the dark, a sleep-rebound was
observed, indicating homeostatic regulation of sleep (Yokogawa
et al., 2007). Homeostatic control of sleep in zebrafish larvae was
first demonstrated by Zhdanova and colleagues. Six hours of SD,
induced by constant vibration, increased sleep time during the
following subjective day (Zhdanova et al., 2001). More recently,
a similar but more moderate protocol was used to uncovered a
subtle behavioral phenotype in a zebrafish model for narcolepsy
(Elbaz et al., 2012).

NEURAL NETWORKS THAT REGULATE SLEEP AND WAKEFULNESS
IN ZEBRAFISH
Several networks regulate sleep and wakefulness in mammals
including aminergic, cholinergic, GABAergic and hypocretinergic
systems. The organization and role of these networks is conserved
in zebrafish (Panula et al., 2010). Furthermore, the zebrafish
offers many advantages for high throughput, whole animal phar-
macological screens since compounds can be delivered easily
by simply dissolving them into the culture water of individual
embryos (Rihel et al., 2010). Thus, the zebrafish larva emerges
as a promising model to dissect the neuronal networks that reg-
ulate sleep using chemical genetics and to search for putative
pharmacological sleep regulators.

The HCRT is an example of a neuronal network that has
been a subject of intense studies in zebrafish, primarily because
of its association with narcolepsy. Only 16–40 HCRT neurons,
located in the lateral hypothalamus, innervate wide areas within
the zebrafish brain (Kaslin et al., 2004; Faraco et al., 2006; Prober
et al., 2006; Yokogawa et al., 2007; Appelbaum et al., 2009).

To understand the role of HCRT in zebrafish, several genetic
strategies have been developed including inducible global HCRT
overexpression (Prober et al., 2006), mutation of the HCRT
receptor, HCRTR (Yokogawa et al., 2007), expression of the
Ca2+-sensitive photoprotein GFP-apoAequorin in HCRT neu-
rons (Naumann et al., 2010), and genetic ablation of HCRT
neurons (Elbaz et al., 2012). These studies have showed that
HCRT neurons regulate both wake and sleep and are most impor-
tant during sleep/wake transitions (Table 1). Interestingly, HCRT
neuron-ablated larvae increase sleep during the day and demon-
strate fragmented sleep during the night, consistent with the
results observed under HCRT overexpression and HCRTR muta-
tion, respectively (Table 1). This function may be mediated by
a hypothalamic-pineal gland circuit, which regulates HCRT and
melatonin secretion (Appelbaum et al., 2009).

CIRCADIAN AND HOMEOSTATIC SLEEP-DEPENDENT
CONTROL OF STRUCTURAL SYNAPTIC PLASTICITY
To synchronize physiology and behavior with the daily cycle, the
circadian clock acts at different levels, ranging from the control of
rhythmic gene expression, protein degradation and transporta-
tion, to the modification of the structure of neuronal circuits and
synapses. While circadian control of the expression of genes and
proteins has been studied extensively (Bass and Takahashi, 2010),
data on the circadian regulation of synaptic plasticity and how
this, in turn, controls circuit function and rhythmic behavior is
limited (Frenkel and Ceriani, 2011). Species with a simple ner-
vous system provide an ideal platform to study rhythmic struc-
tural synaptic plasticity that is associated with behavior (Wang
et al., 2011). “Structural” synaptic plasticity is defined here as
changes in the size, shape, orientation, and number of inhibitory
or excitatory synapses. In Drosophila, several studies have demon-
strated that the circadian clock controls daily changes in neuronal
and synaptic structure (Mehnert et al., 2007; Fernandez et al.,
2008; Pyza and Gorska-Andrzejak, 2008; Damulewicz and Pyza,
2011). It is imperative that findings in the fruit fly are extended to
assess the regulation and role of rhythmic structural synaptic plas-
ticity in vertebrate models where it is possible to monitor multiple
excitatory and inhibitory neuronal circuits in live animals. The
genetic and live imaging tools available for the zebrafish make this
model particularly attractive for this task. Indeed, using synaptic
fluorescence markers (Niell et al., 2004; Meyer and Smith, 2006)
and time-lapse two photon imaging, rhythmic synaptic plasticity
was monitored in live larvae. Visualizing synapses in transgenic
lines that express the pre-synaptic protein, synaptophysin (SYP),
fused to EGFP, revealed that the number of synapses along HCRT
axons follow a diurnal rhythm under both LD and DD conditions
(Appelbaum et al., 2010). This data suggest that the circadian
clock regulate structural synaptic plasticity, a hypothesis that can
be directly tested in zebrafish mutants for clock genes.

Although the data above indicate circadian control of struc-
tural synaptic plasticity, homeostatic sleep-dependent process
should also be considered as regulators of rhythmic neuronal
plasticity. In flies, brain-wide quantification of proteins that
are associated with synaptic potentiation and circuit-specific
imaging of synaptic terminals showed that the levels of synap-
tic components are high during wakefulness and low during
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FIGURE 1 | Circadian regulation of sleep in larvae. Circadian and

homeostatic (sleep-dependent) regulation of circuit-dependent

rhythmic structural synaptic plasticity. (A) Zebrafish larvae were kept
under LD for 6 days. At 6-8 dpf, sleep was monitored under constant dim
light for three consecutive days (gray and black bar represent subjective
day and night, respectively). Sleep was defined and monitored as
previously described (Elbaz et al., 2012). Sleep time was rhythmic and
peaked during the night (n = 55). (B,C) A proposed model demonstrating
circadian and sleep/wake regulation of structural synaptic plasticity in the
brain. Rhythmicity of synapse number, size and location is affected

by: (B) the circadian clock (C) homeostatic process (sleep and wake).
(B) While the number of synapses in a given circuit I increase during the
day, the circadian clock could drive, at the same time, a reduction in
synapse number in circuit II. (C) In parallel, homeostatic process controls
the number of synapses in both circuits I and II. These two processes may
be opposed or additive. Thus, the identity and role of a specific circuit
determines its relative regulation by the circadian and homeostatic
processes. (D) Imaging of synaptic fluorescence marker in live zebrafish
larvae. This technique enables monitoring of structural synaptic plasticity in
specific circuit during day and night, sleep and wakefulness.

sleep (Donlea et al., 2009; Gilestro et al., 2009). In zebrafish, two-
photon imaging of fluorescent synaptic markers revealed that
rhythms of structural synaptic plasticity in HCRT axons are
mainly regulated by the circadian clock. Nevertheless, a minor,
yet significant effect of SD on synapse number was also

demonstrated, indicating a homeostatic control of synaptic
density (Appelbaum et al., 2010). To further understand the
effect of sleep on brain plasticity, time-lapse imaging of several
circuits under sleep-promoting drugs or in genetically manip-
ulated sleep mutants, such as the HCRT neuron-ablated larvae
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Table 1 | HCRT neurons control behavioral sleep-wake transitions.

Genetic manipulation Developmental stage Circadian time Sleep time Sleep/Wake transitions References

HCRT mRNA over-expression Larvae
Day

Prober et al., 2006
Night

HCRT receptor mutant Adult
Day n.e. n.e.

Yokogawa et al., 2007
Night

HCRT neuron-ablation Larvae
Day

Elbaz et al., 2012
Night n.e.

HCRT over-expression in larvae reduced sleep time and sleep-wake transitions both during the day and night (Prober et al., 2006). In the adult HCRT receptor mutant

(HCRTR−/−; Yokogawa et al., 2007), sleep time was reduced and fragmented during the night. However, during the day no effect (n.e.) on sleep was observed. In

both cases, genetic manipulation of the HCRT system altered sleep/wake transitions, and the apparent contradictory effect on sleep time may reflect larval vs. adult

behavior. In agreement with these observations, ablation of HCRT neurons increased sleep during the day, and increase sleep/wake transitions during day and night

(Elbaz et al., 2012). Thus, the most profound and consistent behavioral role of HCRT neurons is the regulation of behavioral sleep/wake state transitions. Indeed,

HCRT neurons are most active during the transition in locomotor activity (Naumann et al., 2010).

(that demonstrate fragmented sleep, Elbaz et al., 2012), could
provide significant data that link the sleep/wake cycle with circuit
modifications. Based on the current limited data, we proposed
a model for combined circadian and homeostatic regulation of
rhythmic structural synaptic plasticity. The balance between these
processes is expected to vary significantly among circuits and may
be opposed or additive, depending on the role of the specific cir-
cuit. For example, brain regions, such as the hypothalamus, that
regulate fundamental behavioral rhythms (such as feeding, sleep,
and wake activity) would exhibit mainly clock-controlled synaptic
plasticity with minor homeostatic effect (as for the HCRT axons,
Appelbaum et al., 2010). In contrast, brain regions that mediate
experience-dependent behavior (such as learning and memory)
would demonstrate mainly sleep-dependent structural synaptic
plasticity (Figures 1B–D). Thus, the brain undergoes significant
circuit and synaptic changes during the circadian cycle as well as
during sleep and wake episodes.

FUTURE DIRECTIONS AND CONCLUDING REMARKS
Clearly advances in genetic and imaging tools will play a key role
in the future application of zebrafish to study sleep and clock
regulation within the nervous system. Genetic bipartite methods
for refined neuronal gene targeting, such as the UAS/Gal4 sys-
tem, are routinely used in zebrafish (Scott et al., 2007; Asakawa
and Kawakami, 2008; Vatine et al., 2013). Application of this
technique to image synapses in many brain circuits will pro-
vide a powerful future approach. Real-time imaging of synaptic
markers in a specific circuit in the zebrafish brain during day
and night and after SD will shed light on how circadian and
homeostatic processes regulate synaptic plasticity. A limitation of

this approach is that anatomical changes of fluorescence synaptic
markers do not necessarily represent synaptic transmission and
neuronal activity. Monitoring structural synaptic plasticity in cor-
relation with behavior in the same individual fish can partially
overcome this limitation. Moreover, imaging of genetically mod-
ified calcium indicators fused to synaptic markers (Dreosti et al.,
2009) that can identify locations and activity of synapses, simulta-
neously, in the living animal, could provide a complete solution.

What is so important about sleep that warrants the risk of
being at a reduced state of awareness? To answer this funda-
mental question, a critical challenge is to visualize circadian-
and sleep-related circuits in the living brain, which contains an
incomprehensible, dense population of sleep and wake regulatory
neurons and their processes. The zebrafish is a vertebrate model,
which provides a unique opportunity to look into a relatively sim-
ple nervous system, which retains the fundamental sleep- and
clock-regulating circuits.
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