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The search for what causes schizophrenia has been onerous. This research has included

extensive assessment of a variety of genetic and environmental factors using ever

emerging high-resolution technologies and traditional understanding of the biology of

the brain. These efforts have identified a large number of schizophrenia-associated

genes, some of which are altered by mutational and epi-mutational mechanisms in a

threshold liability model of schizophrenia development. The results, however, have limited

predictability and the actual cause of the disease remains unknown. This current state

asks for conceptualizing the problem differently in light of novel insights into the nature

of mutations, the biology of the brain and the fine precision and resolution of emerging

technologies. There is mounting evidence that mutations acquired during postzygotic

development are more common than germline mutations. Also, the postzygotic somatic

mutations including epimutations (PZMs), which often lead to somatic mosaicism,

are relatively common in the mammalian brain in comparison to most other tissues

and PZMs are more common in patients with neurodevelopmental mental disorders,

including schizophrenia. Further, previously inaccessible, detection of PZMs is becoming

feasible with the advent of novel technologies that include single-cell genomics and

epigenomics and the use of exquisite experimental designs including use of monozygotic

twins discordant for the disease. These developments allow us to propose a working

hypothesis and expand the threshold liability model of schizophrenia that already

encompasses familial genetic, epigenetic and environmental factors to include somatic

de novo PZMs. Further, we offer a test for this expanded model using currently

available genome sequences and methylome data on monozygotic twins discordant for

schizophrenia (MZD) and their parents. The results of this analysis argue that PZMs play a

significant role in the development of schizophrenia and explain extensive heterogeneity

seen across patients. It also offers the potential to convincingly link PZMs to both nervous

system health and disease, an area that has remained challenging to study and relatively

under explored.
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INTRODUCTION

Mutations provide the foundation for individual genetic
differences. They also play a critical role in health and disease
as their effect on an individual may range from being lethal
to beneficial. Although most genetic variations in populations
and families are passed on from generation to generation, some
may be acquired de novo. Traditionally, de novo mutations
of interest to diseases have been identified by the genomic
difference between parents and the progeny with the disease.
The assumption is that the mutation causing the disease in
the progeny must have arisen in one of the parental gametes
used to generate the zygote and the resulting progeny. Such
de novo germ line mutations may become part of the familial
gene pool. The occurrence of de novo mutations however is
not restricted to the germ line, only. Most represent errors in
DNA replication that may follow meiosis to generate gametes
or mitosis to increase the number of somatic cells during
development and differentiation of the zygote. Theoretically,
postzygotic de novo mutations may originate at any time during
development, from the early two-cell dividing embryo to any
stage of an individual’s prenatal and postnatal development. Also,
cells carrying de novo postzygotic mutations may become part
of an individual’s heterogeneous genomic composition. As such,
they have been difficult, even daunting to identify and appraise.
Improved technologies and innovative experimental designs,
such as single-cell genome sequencing, have revolutionized this
research. For the first time it is possible to identify postzygotic
mutations, with increasing sensitivity using ongoing revolutions
in genomic technologies (1–7).

Postzygotic somatic mutations may contribute to mosaicism
and add another layer of genetic variation across individuals,
potentially affecting physiology, function and phenotype.
Although it was once assumed that such mutations are
rare and inconsequential they may be almost two orders
of magnitude more frequent than germline mutations (8).

Yet, the degree and consequences of mosaicism resulting

from somatic mutations have not been adequately assessed,
primarily due to inaccessibility of needed samples and lack of
necessary technologies. As such, somatic mutations represent
the latest addition to measures of biological diversity, an area

of research that until recently relied almost exclusively on
germline mutations. Generally, postzygotic development has
been characterized by an increase in cell number via mitosis
and strictly regulated dynamics in gene expression. The cells
produced by mitosis during ontogeny have long-since been
considered primarily genomic clones of the zygote. Although
mutations representing DNA sequence changesmay theoretically
arise with every cycle of mitosis (9), the fate of cells carrying
such mutations is not assured. If a mutation occurs very early in
development, the new mutation may be incorporated in most
tissues of the progeny. However, if the mutation occurs later
in development, fewer cells will carry the mutation, and the
mutation-carrying cells may be confined to a given tissue and/or
cell type. Additionally, cells carrying new mutation(s) may be
selected against during development, while others may have
mutations that result in little to no phenotypic effect (low-level

or micro-mosaicism). Alternatively, some such mutations can
have a positive effect on cell proliferation and subsequently
drive the accumulation of mutant cells. These driver mutations
may result in significant mosaicism with potential to affect
the phenotype. Additionally, somatic mutations can arise as
random events, programmed events, or as the product of an
inherited genotype as in the case of a mutator phenotype (10).
A long-term consequence of ongoing somatic mutations may
be that some/most non-germ cells (soma) will differ in their
genomes and thus in theory no two somatic cells may harbor
100% identical genomes (11–13). The consequence is that
every individual will embody a composite mosaic of genetically
distinct cells. The contributions of somatic mutations and
somatic mosaicism were previously not considered biologically
significant, and the phenomenon of postzygotic mutation has
remained largely underexplored due to the biological complexity
of mutagenesis, mosaicism, access of required cells and tissues
for evaluation and the technical challenges of single-cell “omics.”
Despite these hurdles, the potential of postzygotic mutations
has been implicated in a number of diseases [see review, (14)].
Specifically and most relevant to this discussion they have
been implicated in a number of mental disorders [see recent
review, (15)]. In this overview, rather than offering yet another
extensive review on the subject, we offer a measured perspective
on the phenomenon of developmental postzygotic mutations
relevant to mental disorders and specifically expand upon the
threshold model of schizophrenia, a devastating life-changing
neurodevelopmental disorder of poorly understood etiology
despite the increasing appreciation of the contribution of
postzygotic events in complex diseases (reviewed elsewhere).

SOMATIC MUTATIONS ARE
HETEROGENEOUS AND ACCUMULATE
OVER TIME WITH EFFECTS ON
NEUROLOGICAL PHENOTYPES

Empirically, somatic mutations leading to mosaics with different
genotypes within an individual have been recognized over the
decades (16), but the nature and extent of the mosaicism
is almost never known (2). Rare studies that have begun to
characterize the origin, nature, and consequence of somatic
mutations and mosaicism show that the rate of de novo
somatic mutations leading to mosaicism differs with age and
across tissues, individuals, and families (2, 4, 17–20). Also,
somatic mutations may arise as single-nucleotide substitutions,
transpositions, insertions, deletions (including copy number
change), and aneuploidies. These events appear at random
and are likely caused by a variety of mutational mechanisms.
Some of the mutational mechanisms may be development-
specific while others may constantly add new mutations
throughout life in a clock-like manner (9). The rate and
propensity of somatic mutations may also differ across genes
and gene sequences (20). Interestingly, despite the assumption
that such mutations are stochastic, there is emerging evidence
that some somatic mutations may be programmed, as in
the case of somatic hypermutation involving immunoglobulin
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genes (21–25). Developmental windows for sensitivity to
mutational events have also been demonstrated in mouse
neuronal cells (26). Such results allow us to hypothesize
that postzygotic somatic mutations have the potential to
contribute to a broad spectrum of neurological phenotypes
from health to disease but remain unexplored. To this end,
the better understood dominant role of somatic mutations
in cancer could be used as a working model that can be
applied to the involvement of PZMs in neurological phenotypes
and disorders.

POSTZYGOTIC SOMATIC MUTATIONS
CONTRIBUTE TO DISEASE: THE CANCER
MODEL

Initiation and progression of different forms of cancer represent
two of the most explored areas of de novo genetic changes in
somatic cells over the last few decades (27, 28). This extensive
research has identified a long list of critical genes that are
reported to undergo somatic changes in variety of cancers (http://
cancer.sanger.ac.uk). The results offer a comprehensive resource
for exploring the impact of gene-specific somatic mutations,
both individually and in combination, across different forms
of cancers. Follow-up comprehensive studies on such genes
have provided the precise role of these mutations in oncogenic
transformations. Some of these insights have been possible via
increased resolution involving studies on single cells that include
single-cell sequencing (29) and single-cell multiomics (30). The
results of these studies have assisted in uncovering molecular
insights relevant to the initiation and progression of different
types of cancers (31–33). Of special interest to this discussion
is the role of de novo mutations acting as the “second hit”
that may initiate and subsequently serve as the “driving force”
behind unchecked proliferation and progression of different
cancer phenotypes (34), including metastasis (35). Also, de novo
mutations have been observed to increase at a constant rate with
each genome replication in mutator phenotypes (36) or increase
sporadically with transient hypermutability (31, 32) in different
forms and stages of cancer (37–39). These results have allowed
characterization of subtypes of cancers based on signatures of de
novo mutations and identification of critical players at different
stages in carcinogenesis (40). Translationally, such insights have
helped to redefine cancer from an untreatable, poorly understood
disease to one that can be classified, diagnosed, treated, and in
some cases, cured (40), thus adding new hope to what would
otherwise be a bleak diagnosis just a few years ago. We note
that neurological aberrations are currently poorly understood but
may involve postzygotic somatic mutations that can be detected
and classified. As in the case of cancer, they may provide a
valuable starting point toward gaining insight into the etiology of
specific neurological disorders. It may lead to the characterization
of gene specific changes including somatic mosaicism that may
translate to treatment successes for neurological disorders as
exemplified by the cancer model.

POSTZYGOTIC SOMATIC MUTATIONS
OFTEN ARISE DURING
NEURODEVELOPMENT

Often it has been assumed that all cells in the brain have
identical genomes. However, postzygotic somatic mutations
arising during the development of the brain have the potential
to affect large and small clonal lineages depending upon
the developmental timing of the mutation and the resultant
cell populations carrying the de novo mutation (41). They
may generate differences between the neuronal structures of
monozygotic twins that started life as a single zygote (Figure 1).
Also, they could contribute to the complex spectrum of brain
phenotypes across individuals in the population including some
disease phenotypes (Figure 2). Heterogeneous PZMs are often
reported in the brain (41–43), but it is not known whether
they arise through a random process, if they are inherently
directed, or if they occur in response to environmental cues.
What is understood, however, is that new mutations are somatic,
present in the brain and are not directly transmitted to the
next generation. PZMs however, may ensure that neuronal
genomes in an individual are not singular, homogeneous, or
static, but instead establish mosaic, heterogeneous and dynamic
populations of neural genomes, with new neurons arising
throughout life (42). Among other processes, neurons are known
to undergo de novo long interspersed nuclear element (LINE-
1/L1) retrotransposition (44), as has been reported in adult
neurons (45, 46) and during embryonic development (43, 47,
48). Interestingly, the number of retrotranspositions has been
reported as significantly higher in brain than non-brain tissue
samples (49). Researchers have argued that every cell in the
human brain may contain a number of somatic insertions and
that retrotransposition may play an important role in reshaping
the genetic circuitry (50). This phenomenon can lead to neuron-
to-neuron variation, a neuron-specific transcriptome, and a
neurobiological phenotype (51–53). Besides retrotranspositions,
neuronal variations may also arise from additional genetic
alterations in whole chromosome numbers (54), rearrangement
of mobile elements (50), insertions/deletions (55), and single
nucleotide variants (SNVs) (18). Theoretically, there is no limit to
the kind and amount of genomic variation within an individual,
and therefore every gene in the human neural genome may
be mutated in some neurons (56). The potential exists to
uniquely define nearly 100 billion neurons and over 100 trillion
neuronal connections. In this context, PZMs will add an extra
level of variation for plasticity, adaptability, and resilience to
the dynamics of environmental change and insults, which is
specifically operational and sensitive in the brain (53). Such
results argue that PZMs may be key contributors to intra-
individual variability that may affect neuronal phenotypes. In
doing so, they also provide a novel and unique insight in the
biology of the brain, each representing a unique composite
of mosaics that has remained unexplored. What is being
realized is that postzygotic transposition events are higher in
some mental disorders (49). These events preferentially affect
genes associated with neuronal functions, and an uncontrolled
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retrotransposition may increase the risk of mutations leading
to disorders. Indeed, pre-existing retrotransposons may act as
“lightning rods” for novel insertions, which may modulate
gene expression (49). Specifically, de novo PZMs have been
reported in a number of neurodegenerative (57, 58) as well as
neurodevelopmental diseases (59–61). Of special interest to this
discussion is the high frequency of de novomutations reported in
patients for neurodevelopmental disorders such as autism (62)
and schizophrenia (63–66). Here, we will specifically focus on
schizophrenia as a model of neurodevelopmental disorders in
assessing the involvement of PZMs in brain disorders.

POSTZYGOTIC MUTATIONS ARE
CANDIDATE CONTRIBUTORS TO
SCHIZOPHRENIA

Schizophrenia is a complex neurodevelopmental disorder that
is present worldwide at a relatively stable frequency (∼1%).
The disease is heterogeneous, often expresses in early adulthood
and difficult to early diagnose in absence of any biological
test. It has high heritability (80%), as well as high discordance
in monozygotic twins (50%) (67). The search for genes and
inherited factors causing schizophrenia has been long and
exhaustive but the identification of causal gene(s) has been
elusive. However, this meticulous and long research has identified
a large number of schizophrenia-associated single nucleotide
polymorphisms (SNPs) and copy number variations (CNVs)
in hundreds of genes and non-coding loci (http://www.szdb.
org). As it stands, most of the findings reported in this
database have been difficult to replicate and are not unique
to this disease (68). Some of these genes and mutations could
provide predisposition diagnostic information including clinical
spectrum for schizophrenia and other related disorders. Further,
an assessment of results by the Schizophrenia Working Group
of the Psychiatric Genomics Consortium (2014) has identified
108 of the most common gene variants that have met a high
degree of significance but explain a small fraction of the disease
risk. Yet additional analysis has led to the prioritization of
145 most common schizophrenia variants that may serve as a
foundation for patient specific genetic liability for this disease
(69). These variants may directly or indirectly contribute to a
disease threshold that could be achieved by inherited variants
in concert with still-uncharacterized random events, including
the effect of the environment. Indeed, most research on the
development of schizophrenia is compatible with this long-
standing threshold model (70, 71).

Of the random events reported in schizophrenia, two
biological features appear noteworthy. The first involves de novo
DNA sequence changes including CNVs reported in the brain
(72) and blood (73–75). These often affect synaptic genes, and
associated CNVs tend to occur in genome regions that are prone
to recurrent mutations (76) and are implicated in schizophrenia
(77, 78). The second random feature implicated in schizophrenia
is epimutations, particularly changes in DNA methylation (79).
They may undergo such changes randomly or in response
to external exposures and be passed on through succeeding

mitotic cycles (9, 16). Epimutations, that often affect gene
expression may complicate familial tendencies with random and
environmentally-responsive events. Additionally, there may be
a role for epigenetically-regulated human endogenous retroviral
HERV and related sequences (80). HERVs are retroviruses that
have the potential to transpose and facilitate copy number
changes. They may also affect epigenetic features (80). Such
sequences have been uniquely isolated from the genomes of
the affected members of the monozygotic twin pairs discordant
for schizophrenia (MZD) (81). Additionally, HERV-related
DNA/RNA sequences that were detected in the genomes of the
affected members of MZD for schizophrenia have been reported
to be elevated in schizophrenia patients (82). These sequences
may represent copy number changes and/or increased expression
with potential to increase transposition. Additionally, the HERV-
associated C4 locus within the major histocompatibility complex
on chromosome 6 may affect C4 expression, which is involved
in the pruning of the dendritic spine in schizophrenia (83).
These results support the hypothesis that schizophrenia may
involve mutations representing DNA sequence changes as well
as changes representing any epigenetic modifications that may
affect gene expression. Together, they may function as the sum
total of postzygotic somatic modifications (PZMs) that may
contribute to the development of schizophrenia. Some of these
modifications may be hereditary and transmitted through the
parent(s), while others may represent postzygotic changes that
are now technologically identifiable (using exceptional methods)
and allow for proposition of an expansion of the threshold-
liability model for schizophrenia.

AN EXPANDED-THRESHOLD-LIABILITY
MODEL FOR SCHIZOPHRENIA MAY
INCLUDE POSTZYGOTIC EVENTS

There is mounting evidence that every brain is a unique
mosaic representing a composite of genetically distinct cells
[see review (83)]. It may apply to a “normal” brain as well
as a brain from an individual with a neurological disorder,
including schizophrenia (56). Here, the brain from a patient may
carry many more mutations/modifications affecting pathway(s)
defective in schizophrenia. Also, given extensive heterogeneity,
the number and type of genes affected may be unique across
all/most patients with schizophrenia. Brains from different
patients will be expected to carry heterogeneous sets of
mutations/epimutations and these differences may account for
the highly variable disease manifestation across patients. In some
patients, the set of causal mutations/modifications needed for
disease manifestation may all be inherited from parents, while in
others they may represent inherited plus somatic de novo events
that may include DNA sequence changes and/or epimutations
(Figure 3). Here, the de novo events may or may not be needed
to raise the liability and eventually to cross the threshold of
liability for the manifestation of the disease (84, 85). Naturally,
the acquired de novo neuronal mutations and epimutations will
not be transmitted to the next generation even though any
predisposition for such mutation(s), if present, may follow a
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FIGURE 1 | A hypothetical model for the generation of genetic differences between brains of monozygotic twins by postzygotic mutations (PZM). The timing, genes

affected, clonality, and brain region(s) affected may cause the twins to develop discordance for neurodevelopmental diseases, including schizophrenia.

familial transmission. The inclusion of such postzygotic events
adds a novel and acquired somatic genetic/epigenetic change
during the life of the individual to the causation of the disease.

The expanded-threshold-liability model for schizophrenia

that includes postzygotic mutations and epimutations (PZMs)
is compatible with a number of unusual features of this
disease. These include high discordance (∼50%) of the disease

among monozygotic twins, adult onset of the disease, high
heterogeneity, and a spectrum of manifestations including
overlapping endophenotypes involving different diagnostic
entities. For the first time, this model also provides the
most logical biological explanation for a comparable risk of
transmission of schizophrenia by the members of a monozygotic
twin pair discordant for the disease (MZD) (86, 87). The
model argues that the affected and unaffected members of
the MZD pair would inherit a comparable level of genetic
predisposition and pass it on to their respective offspring. This
level of inherited liability is expected to be below the disease
threshold. However, the addition of de novo somatic PZMs (by
chance alone) in the disease twin will lead to the development
of disease (Figure 4) while maintaining a comparable risk of
transmission to the next generation by both members of the
MZD twin pair. Here, the risk of transmission of the disease by
the ill twin will not be any higher than the risk of transmission
by the well (unaffected) twin. Also, this expanded-threshold-
liability model being presented for schizophrenia will be
applicable to most neurological disorders with high discordance
in monozygotic twins. It will be particularly relevant in
disorders with neurodegeneration and neurodevelopmental
manifestation. Although logical, the expanded model
remains a theoretical concept and needs to be tested and
established experimentally.

TESTING THE
EXPANDED-THRESHOLD-LIABILITY
MODEL FOR SCHIZOPHRENIA

Testing the proposed expanded-threshold-liability model in
schizophrenia that incorporates de novo neuronal postzygotic
mutations and epimutations, acquired during the life of an
individual will be challenging for two reasons. First, the somatic
de novo events that add to the threshold for the disease will
not be transmitted to the next generation; they are acquired by
an individual during his/her lifetime and are eliminated from
the population with their death. Second, the somatic nature of
de novo mutations will generate complex mosaicism, making
every brain genetically heterogeneous, different and unique (41).
This cellular heterogeneity will present a special challenge in any
attempt of characterization as it will require assessment of cell-
specific, rather than brain-specific, features. To this end, a variety
of evolving methods and experimental designs including single
cell genomic and multiomics (61, 90) may offer novel strategies
and resolution to this complexity. Indeed, it will be challenging to
identify and obtain desirable cells for such studies. Taking just any
cell from any individual or brain will not be satisfactory. There
will be a need to compare the neuronal zygotic and postzygotic
genome that is not always practical or ethically acceptable.
Although the use of multiple tissues is a practical way to identify
postzygotic DNA sequence changes, others including epigenetic
changes and transpositions may present problems as they are
expected to be tissue specific. The challenges in ascertaining the
extent and nature of acquired liability will also relate to the timing
of mutation, the size of mutant clones, the accessibility of the
mutant cells, the cell types affected, and the positional localization
of the mutant cells. Additionally, it will be challenging to
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FIGURE 2 | Potential for variable mosaicism in an individual brain based on differences in postzygotic somatic de novo mutations during development. The outcome

will make every brain unique, some below (A–C), and others above (D) a genomic threshold for the development of a mental disease.

distinguish disease-relevant mutations from background de novo
variants necessitating interpretation using a tested statistical
framework (91). Under these circumstances, there is an imperfect
alternative that may help assess the feasibility of the expanded-
threshold-liability model in schizophrenia. Here, monozygotic
twin pairs discordant for schizophrenia (MZD) may be used
to represent an appropriate resource for testing the expanded-
threshold-liability model for schizophrenia (88, 89). Recall that
members of the MZD pair begin life as a single zygote but
develop independently as two different individuals (somas). They
share common familial predispositions and acquire independent
PZMs, making the two twins distinct (Figure 1). Here, the most
logical experiment involving a direct assessment of brain regions
potentially carrying different somatic mutations/epimutations
in the two brains will be difficult for a variety of reasons
including accessibility. However, any PZM that occurs very
“early” during embryonic development may be expected to be
maintained in neuronal as well as (some) non-neuronal cells
during ontogeny. As such, some of the easily accessible non-
neuronal cells (blood, cheek swabs, etc.) may serve as a proxy
for occurrence of “early” somatic mutations that may also be
present in neuronal cells. Indeed, DNA from the blood of MZD

twins has been shown to be not 100% identical (74, 89, 92). They
carry a variety of sequence differences, epigenetic and genetic,
that must result from postzygotic events. Here, any use of blood
DNA from MZD twins could overcome challenges faced by the
inaccessibility of live neuronal cells for evaluation, even though
such results will be limited and may miss out on “late” mutations
that may have occurred after the differentiation of a neuronal
lineage. Also, the genome of the unaffected twin may be used to
represent the zygotic genome that started the twomembers of the
MZD twin toward identification of any/all schizophrenia specific
postzygotic changes in the disease twin. This is by no means a
perfect experiment. However, the results will have the potential
to implicate involvement of somatic mutations in the genes that
are known to be involved in the disorder (69), particularly those
that occurred “early” during the independent development of the
two twins.

Interestingly, the complete DNA sequence and genome-wide
DNA methylation (88, 89) data on the blood DNA from two
MZ twin pairs discordant for schizophrenia and their parents
available in the literature allows us to assess any involvement
of PMZs in this disease. The analysis of these data has allowed
an assessment of a large number of disease associated mutations

Frontiers in Psychiatry | www.frontiersin.org 6 October 2020 | Volume 11 | Article 587162

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Singh et al. Postzygotic Somatic Mutations in Disease

FIGURE 3 | The genetic threshold required for the development of a neurodevelopmental disease may be met by (1) A major gene insult; (2) An adequate level of

polygenic mutations; or (3) A combination of inherited (a) plus acquired somatic mutations (b) and/or somatic epimutations (c).

FIGURE 4 | MZ twins as a model for assessing the genetic threshold liability hypothesis. Representation of three sets of twins [MZC well (monozygotic twins both

unaffected), MZC disease (monozygotic twins both diseased) and MZD (monozygotic twins discordant)] within the threshold liability hypothesis (unaffected = blue,

disease affected = red). In this model, the affected twin in the MZD pair must acquire somatic mutation/epimutation to cross the threshold and develop the disease.

Genomic and epigenomic assessment of these exceptional twin pairs will allow for identification of pair-specific postzygotic somatic event(s) [Adapted from Castellani

et al. (88, 89)].

(http://www.szdb.org) reported in the blood DNA. Specifically,
it has allowed assessment of postzygotic changes in the 145
most common schizophrenia associated gene variants (69) in

the disease twin that is not present in his/her unaffected
counterpart. The family specific genome sequence results (89)
show that every member of the two families carried a subset of
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common schizophrenia-associated gene variants (69). Although
the majority of the schizophrenia-associated gene mutations
present in the twins are shared and present in one or the
other parent (inherited), the remainder are not seen in either
parent and are unique to only one member of the MZD twin
pair (89). The latter are most compatible with their postzygotic
origin. More important, they could have not originated in any
parental gamete that produced the zygote. The results also
show that although both members of the MDZ twin pairs
carry some disease-related mutations, the affected members have
acquired additional disease-associated mutations in glutamate
and dopamine pathway genes in both patients [see details
in (89)]. It is argued that such mutations will have the
potential to help cross the disease liability threshold and develop
schizophrenia in the diseased twin only (Figures 3, 4). It is
important to suggest that any dataset that is based on blood DNA
is limited to known schizophrenia-associated de novo events that
may have occurred “early” in development. As such, they may
not include de novo mutations that may have occurred “late”
in development, not apparent in the blood and would be/are
confined to the brain.

It is important to note that not all mutations that may
contribute to schizophrenia involve sequence changes. Some
other forms may involve epigenetic changes including DNA
methylation. The details of genome-wide methylation results on
the same two MZD pairs that were studied for genome sequence
difference reported in Castellani et al. also show methylation
aberrations in the blood DNA of the patient as compared
to the well member of the twin pair (88). The results show
that de novo events involving genome sequence and epigenetic
DNA methylation changes may be independent and add to
the disease liability in an expanded-liability-threshold model of
schizophrenia. To the best of our understanding such results
provide among the most comprehensive account of all/most gene
mutations and DNA methylation changes that may have led to
the development of schizophrenia in the two affected members
of the two unrelated MZD twins. They may represent a near
complete list of disease-causing mutation in individual patients
for the first time. It has been made possible by assessment of
the monozygotic twins discordant for schizophrenia, where the
genotype and epigenotype (methylation specificity) of the well-
twin is used to serve as the perfect-matched control. It allows
a reliable assessment of inherited as well as postzygotic somatic
changes during the independent development of the members of
the MZD twin pair that started life as a single zygote. Finally,
it is critical to note that these results are based on only two
patients. There is a need to replicate such results on a larger
sample size. We note that it will be challenging to find and study
such patients belonging to well-characterized MZD pairs. Indeed
access and availability of brain DNA from such MZD twins for
such studies will be most valuable. To this end, we recognize
the challenge and our inability to acquire a more comprehensive
result that includes all genetic and epigenetic variants, inherited,
acquired, and present in different regions of the disease brain.
Such results however, will be needed to fully define the nature
of genetic predisposition in individuals, including the unaffected
member of the MZD pair. Despite such concerns, the limited

results discussed offer potential involvement of PZMs (89) that
includes epimutations (88) in the development of schizophrenia.

It is important to point out that the PZMs implicated in
schizophrenia affect a relatively large number of genes, and
that not all patients will require postzygotic changes during
development in order to reach the disease threshold. In some
cases, all of the changes necessary for the manifestation of the
disorder will be acquired via familial transmission. This may be
the case in monozygotic twin pairs that are concordant (MZC-
disease) for the disease (Figure 4). The proposed expanded
model is testable using MZD twin pairs that have inherited
some, but not sufficient, genetic liability to reach the disease
threshold. Unlike the unaffected member of this MZD pair,
the affected MZD patient is shown to have acquired additional
PZMs leading to a threshold necessary for disease manifestation
(Figures 3, 4). The addition of de novo somatic mutations and
epimutations during early or late development (and present in
the brain) is a timely addition to the revised threshold-liability
model for schizophrenia. This expansion recognizes that almost
all neurodevelopmental disorders are multifactorial and have a
heterogeneous causation. These may include any of the three
options: major familial mutation(s), adequate inherited polygenic
mutations/epimutations, or a combination of inherited and
acquired de novo (early and/or late) mutations and epimutations
that help cross the liability threshold for the development of
schizophrenia. This expanded model should be applicable to
most disorders with complex genetic and epigenetic etiology and
involvement of postzygotic changes.

One of the major challenges in neurologic disease research
is the accessibility of appropriate target biological sample and
use of perfectly matched control. Such samples are particularly
critical for characterizing neurological disorders, including
schizophrenia. These disorders involve a large number of genes,
where each gene itself contributes relatively small effects. Most
of the genes involved are expected to be polymorphic in the
population, and many of the genes may undergo postzygotic
genetic and/or epigenetic changes, particularly in the brain.
This extensive polygenicity and inherited and non-inherited
heterogeneity makes the investigation of the etiology of
neurological disorders one of the next great challenges in
biomedical science. Of special concern is the complex genetic
and epigenetic somatic mosaicism being increasingly reported
in the brain. Although logical and timely, research on de novo
mutations and epimutations will demand novel approaches and
high-resolution technologies, clever experiments, exceptional
patients, precious and ethically sensitive biological samples,
ample time and resources. Additionally, many of the specific
PZMs reported to date have not yet been replicated, cataloged
and curated. Here, the proposed Brain Somatic Mosaicism
Network (93) has the potential to open novel avenues that have
remained unexplored. This initiative will include refinement
of technologies (94) that will permit characterization of every
neuronal type (95) and its connectivity with other neurons
in the mammalian brain (96). The anticipated results will
be revolutionary and provide a long-awaited breakthrough
for the field of precision medicine in neurodevelopmental
disorders, and in particular, schizophrenia. Among the
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most immediate application of precision corrections may
include in vivo neuroepigenome editing for treating brain
pathology (97).

CONCLUDING REMARKS

The mammalian brain is a dynamic organ with a high degree of
mosaicism likely caused by postzygotic genetic and epigenetic
alterations that may contribute to most multifactorial and
complex neurological disorders. Traditionally, researchers have
used an established threshold-liability model that incorporated
the sum total of all inherited mutations in combination with
environmental factors to define a liability scale sufficient for
the development of disease (Figure 4). As it stands, this model
was postulated before there was any realization of any role
for postzygotic genomic/epigenomic changes and mosaicism.
The timely revision of this model included in this discussion
incorporates two observations. First, postzygotic changes are
rather widespread and make every brain a unique genetic mosaic
(Figures 1, 2). Second, depending on the number and type
of genes affected, the postzygotic changes may contribute to
the liability scale toward the threshold of the development of
a disorder like schizophrenia (Figure 3). The occurrence of
differential postzygotic changes (both DNA methylation and
DNA sequence) has been demonstrated in the MZD twin
blood DNA (88, 89). It may serve as a proxy for their
differential presence in the brain. The observed PZMs seen
in the blood of MZD pairs are expected to have occurred
“early” during development and differentiation but this must be
shown empirically.

The results discussed here are compatible with the
involvement of postzygotic somatic changes in schizophrenia.
A comprehensive assessment of this phenomenon will only be
possible if all early, late, and ongoing postzygotic alterations
present in the brain are identified. Further studies will require
the assessment of postmortem or surgery-derived samples of
brain regions relevant to the disorder. Some of these may become
feasible given the need for relatively small number of cells needed
for this assessment as future experimental work must use more
refined methods including single-cell multiomics at the neuronal
level. An informative experiment may involve single-cell neurons
from monozygotic twins discordant for the disease. Also, there

may be a need to add the genomic location, cells representing
relevant brain region(s), and the genetic background of the
individual to this the “expanded-threshold-liability model.”
Finally, the revised model explains the extensive variability
in brain phenotypes in the general population and the high
discordance of monozygotic twins (MZD) including the fact
that both members of the MZD pair have comparable risk of
passing on the predisposition to their progeny. Experimental
validation, although logical, timely and promising, continues
to be challenging. The results, however, will bring about a
long-awaited revolution in the understanding of neurological
disorders, and their management, prevention and treatment
that may include in vivo neuroepigenome editing (97). There
is every reason to envision that the outcomes of the expanded
research direction on schizophrenia will be comparable and even
surpass the revolution of precision medicine being realized in
the treatment of different forms of cancers. There are major
challenges with neurological disorders, but breakthroughs are
possible with the right ideas.
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