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Streptococcus pneumoniae, also known as pneumococcus, is a Gram-positive
diplococcus and a major human pathogen. This bacterium is a leading cause of
bacterial pneumonia, otitis media, meningitis, and septicemia, and is a major cause of
morbidity and mortality worldwide. To date, studies on S. pneumoniae have mainly
focused on the role of its virulence factors including toxins, cell surface proteins, and
capsules. However, accumulating evidence indicates that in addition to these studies,
knowledge of host factors and host-pathogen interactions is essential for understanding
the pathogenesis of pneumococcal diseases. Recent studies have demonstrated that
neutrophil accumulation, which is generally considered to play a critical role in host
defense during bacterial infections, can significantly contribute to lung injury and immune
subversion, leading to pneumococcal invasion of the bloodstream. Here, we review
bacterial and host factors, focusing on the role of neutrophils and their elastase, which
contribute to the progression of pneumococcal pneumonia.

Keywords: innate immunity, neutrophil, pneumonia, pneumolysin, neutrophil elastase, Streptococcus pneumoniae,
virulence factor
INTRODUCTION

Pneumonia is a common and serious infectious disease and has been a significant cause of morbidity
and mortality worldwide, accounting for approximately three million deaths annually. The World
Health Organization (WHO) placed lower respiratory infections as the fourth most common cause
of death in 2016. Among a number of infectious agents, Streptococcus pneumoniae, also known as
pneumococcus, is the most common cause of pneumonia in all age groups. In addition to localized
infections such as pneumonia and otitis media, pneumococcus may cause invasive diseases,
including meningitis and septicemia. Furthermore, an increase in antimicrobial resistance among
pneumococci has raised concerns about the effectiveness of empiric antimicrobial therapy for
pneumococcal pneumonia (Feldman, 2004; Ferrara, 2005; Nagai et al., 2019).

S. pneumoniae is a Gram-positive diplococcus that colonizes the mucosal surfaces of the human
nasopharynx. Nasopharyngeal aerosolization of S. pneumoniae is considered to be the primary mode of
population transmission. The molecular interaction of pneumococcal virulence factors and host proteins
with respect to nasopharyngeal colonization has been thoroughly reviewed elsewhere (Kadioglu et al.,
2008; Weiser et al., 2018). It has been reported that 18–92% of children are carriers of S. pneumoniae (Le
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Polain de Waroux et al., 2014); thus, they are considered the main
reservoirs and transmission vectors of pneumonia (Smith et al.,
2019). The aspiration of nasopharyngeal secretions leads to the
invasion and propagation of S. pneumoniae in the lung parenchyma
at the alveolar level, which leads to pulmonary infection (Liu et al.,
2015). It has been reported that bacterial virulence factors directly
damage human tissues or cause malfunctioning of the human
immune system, resulting in an excessive inflammatory response.
This excessive or inappropriate host inflammatory response is
considered to result in the clinical syndrome of pneumonia. In
this review, we discuss the bacterial and host factors that contribute
to the progression of pneumococcal pneumonia, specifically
focusing on the role of neutrophils and their elastase.
RECOGNITION OF S. PNEUMONIAE BY
THE INNATE IMMUNE SYSTEM
OF THE HOST

Upon pneumococcal colonization or infection, the respiratory
epithelium controls the bacterium through antimicrobial
peptides, such as LL-37 and defensins (Bals and Hiemstra,
2004). However, S. pneumoniae can survive by removing its
capsule from the surface (also see section 4) (Kietzman et al.,
2016), which allows the organism to adhere to and invade the
epithelium (Hammerschmidt et al., 2005). Pneumococcal
interactions with other innate immune molecules, such as
complements and surfactant protein-D, have been reviewed
elsewhere (Kadioglu and Andrew, 2004). Following invasion of
epithelial cells, the host innate immune system, which includes
respiratory epithelial cells, alveolar macrophages, and dendritic
cells, recognizes invading S. pneumoniae using pattern
recognition receptors (PRRs) (Hartl et al., 2018). Different
classes of PRRs include toll-like receptors (TLRs), nucleotide-
binding oligomerization domain (NOD)-like receptors (NLRs),
retinoic acid-inducible gene I-like receptors, and C-type lectin
receptors (Takeuchi and Akira, 2010). These receptors are
activated by conserved microbial molecules and bacterial
virulence factors. Among the various TLRs, TLR2 recognizes
several components of the pneumococcal cell wall, such as
lipoteichoic acid, lipoproteins, and peptidoglycan (Yoshimura
et al., 1999; Tomlinson et al., 2014), whereas TLR9 recognizes
pneumococcal genomic DNA (Mogensen et al., 2006). Although
TLR4 is known for its ability to detect lipopolysaccharide (LPS)
from Gram-negative bacteria, it has been suggested that TLR4
might additionally recognize pneumolysin (Ply) (Malley et al.,
2003), a pneumococcal pore-forming toxin. Additionally, we
have demonstrated that pneumococcal cytosolic components,
such as the chaperone protein DnaK, elongation factor Tu, and
glyceraldehyde-3-phosphate dehydrogenase induce the
production of proinflammatory cytokines via TLR4 (Nagai et
al., 2018). NOD2 recognizes lysosome-digested peptidoglycan
fragments of phagocytized S. pneumoniae (Davis et al., 2011).
Additionally, Ply activates the NLRP3 inflammasome and
promotes proinflammatory cytokine secretion by dendritic cells
(McNeela et al., 2010). Intracellular signaling cascades triggered
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by PRRs lead to the transcriptional activation of inflammatory
mediators, such as proinflammatory cytokines and chemokines.
These mediators stimulate neighboring immune and non‐
immune cells, activate the acute‐phase response, and recruit
neutrophils (Koppe et al., 2012) (Figure 1).
NEUTROPHIL-MEDIATED KILLING OF
S. PNEUMONIAE

When infectious agents invade the respiratory tract, immune cells
and epithelial cells secrete chemokines and cytokines, as described
above, promoting neutrophil migration into the lung through the
pulmonary capillary walls (Maas et al., 2018). Neutrophils
phagocytose and kill infectious agents with the help of reactive
oxygen species, antimicrobial proteins, and serine proteases (Teng
et al., 2017). An in vitro study demonstrated that neutrophils
degrade phagocytized S. pneumoniae via serine proteases such as
neutrophil elastase (NE) and cathepsin G (CG), which are stored in
azurophilic granules (Standish and Weiser, 2009). NE- and CG-
FIGURE 1 | Recognition of S. pneumoniae by the innate immune system and
neutrophil migration. Pneumococcal cell wall components such as lipoteichoic
acids, lipoproteins, and peptidoglycan are recognized by TLR2. Following
bacterial uptake by phagocytes and their degradation in phagosomes,
pneumococcal peptidoglycan is recognized by NOD2. Pattern recognition
receptors (PRRs) also sense pneumococcal intracellular molecules such as
pneumolysin, genomic DNA, the chaperone protein DnaK, elongation factor
Tu (EF-Tu), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). DNA
is recognized by TLR9 within endosomes, whereas pneumolysin, DnaK, EF-
Tu, and GAPDH are recognized by TLR4. Additionally, pneumolysin activates
the NLRP3 inflammasome. The activation of PRR signaling leads to the
transcriptional activation of cytokines and chemokines, which subsequently
augments neutrophil migration.
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deficient mice exhibit impaired antibacterial defense against S.
pneumoniae and decrease murine survival without affecting
neutrophil recruitment (Hahn et al., 2011). Furthermore,
neutrophil depletion results in profound defects in the clearance
of S. pneumoniae in a murine model of pneumonia (Garvy and
Harmsen, 1996). This converging evidence indicates that phagocytic
function and phagolysosomal degradation of bacteria by neutrophils
are crucial strategies for controlling pneumococcal infection.

In addition to their phagocytic function, previous studies have
reported that neutrophils release chromatin DNA decorated with
granule-derived antimicrobial peptides and enzymes, including NE,
CG, a-defensins, and myeloperoxidase (Brinkmann et al., 2004;
Papayannopoulos, 2018). These chromatin structures are termed
neutrophil extracellular traps (NETs), which degrade virulence
factors and kill multiple microbial genera (Brinkmann et al.,
2004). The trapping of microbes by NETs may provide several
benefits, including reducing the spread of infection by concentrating
host antimicrobial agents at infection sites. In bacterial pneumonia,
animal and human studies have indicated that NETs are increased
in alveolar spaces (Lefrançais et al., 2018; Mikacenic et al., 2018).
Furthermore, an in vitro study demonstrated that NETs exhibit
significant antibacterial activity against S. pneumoniae (Mori et al.,
2012). These findings suggest the functional importance of NETs in
pneumococcal pneumonia. However, higher concentrations of
NETs have been reported to be associated with reduced hazards
of clinical stability and increased mortality in pneumonia (Ebrahimi
et al., 2018). In this context, excess NETs released by activated
neutrophils have been implicated in promoting tissue damage,
including sepsis (Czaikoski et al., 2016), and lung injury
(Narasaraju et al., 2011). The mechanisms responsible for NET-
induced tissue damage involve NET components such as NE and
other proteases that induce cell death in multiple cell types (Yang
et al., 1996; Hou et al., 2014; Grechowa et al., 2017; Daniel et al.,
2019; Hiyoshi et al., 2019).
PNEUMOCOCCAL VIRULENCE FACTORS
CONTRIBUTE TO EVASION FROM
PHAGOCYTOSIS AND INDUCE
NEUTROPHIL DEATH

A variety of pneumococcal virulence factors have been identified
(Brooks and Mias, 2018; Feldman and Anderson, 2020). In the
present review, we discuss the virulence factors associated with
immune evasion.

The autolytic enzyme, autolysin, is known to be responsible
for the characteristic autolytic behavior associated with
pneumococci. The major autolysin of S. pneumoniae is N-
acetylmuramyl-L-alanine amidase (LytA), which breaks down
peptidoglycan (Höltje and Tomasz, 1976). Although the exact in
vivo function of autolysis in pneumococcal pathogenesis is
unclear, animal studies have demonstrated that pneumococcal
strains deficient in LytA are less virulent than wild-type
pneumococci (Berry et al., 1989a; Hirst et al., 2008). Recently,
Kietzman et al. identified a novel physiological function of LytA.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
This enzyme was shown to drive rapid capsule shedding in
response to antimicrobial peptides in the initial phases of
infection (Kietzman et al., 2016). This response increases
bacterial resistance to peptides, as well as invasion of the
alveolar epithelium. LytA may also contribute to pneumococcal
pathogenesis by catalyzing the release of the intracellular toxin
Ply (Martner et al., 2008; Domon et al., 2016; Domon et al.,
2018a), cell wall degradation products (Tuomanen et al., 1985),
and cytosolic proteins (Nagai et al., 2018), which induce immune
responses. Additionally, fragments from autolyzed bacteria
inhibit phagocytosis of intact bacteria by peripheral blood
mononuclear cells (Martner et al., 2009).

Ply is a potent intracellular toxin possessing multiple functions
that augment pneumococcal virulence. Ply-deficient mutant
strains of S. pneumoniae showed a significant reduction in
virulence related to both intranasal and systemic infection
(Berry et al., 1989b). Ply toxicity is mainly associated with its
ability to induce ring-shaped pores in cholesterol-containing
membranes (Tilley et al., 2005). In this regard, Ply has cytotoxic
effects on various cell types, including alveolar epithelial cells
(Rubins et al., 1993), microvascular endothelial cells (Zysk et al.,
2001), and monocytes (Hirst et al., 2002). Thus, the direct
cytotoxicity of Ply towards lung tissue is considered to play a
primary role in lung injury in pneumococcal pneumonia.
However, several studies have demonstrated that in vivo lung
injury could be due to inflammation and microvascular leakage
caused by Ply, rather than its cytotoxic activity (Witzenrath et al.,
2006; Garcıá-Suárez et al., 2007; Witzenrath et al., 2007). Although
neutrophils are required for the clearance of S. pneumoniae,
intranasal or intratracheal infection of mice with wild-type S.
pneumoniae demonstrated an increased neutrophil recruitment,
increased bacterial burden in the lungs, and a higher prevalence of
bacteremia compared to infection with Ply-negative mutant
strains (Rubins et al., 1995; Kadioglu et al., 2000). Therefore, the
proinflammatory interactions between Ply and neutrophils are
considered to play a role in the aggravation of pneumococcal
pneumonia. Indeed, Ply is cytotoxic to neutrophils (Cockeran
et al., 2001). We demonstrated that Ply induces neutrophil cell
death through specific interactions with the P2X7 receptor;
whereas Ply is less cytotoxic against P2X7 receptor-negative
alveolar epithelial cells and macrophages. This suggests that
neutrophils are the primary target cells of Ply (Domon et al.,
2016). The subsequent leakage of NE from dead neutrophils
disrupts the pulmonary epithelial barrier. Another study
demonstrated that Ply induces NET formation, which contains
high levels of NE (Nel et al., 2016). Several others have reported
pneumococcal evasion of NETs. Pneumococcal surface protein A
plays a role in the resistance to NET-mediated killing (Martinez
et al., 2019). Meanwhile pneumococcal endonucleases, EndA and
TatD, allow the bacterium to degrade the DNA scaffolds of NETs
and escape, followed by the release of NE from the NETs (Beiter
et al., 2006; Jhelum et al., 2018).

A comprehensive review of the capsule, including its
regulation in pathogenesis, capsule synthesis, and the genetic
basis for serotype differences, has been published elsewhere
(Paton and Trappetti, 2019). Accordingly, current mini reviews
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mainly focus on immune evasion related to virulence factors. The
capsule, which confers protection against phagocytosis, has been
extensively studied in the context of pneumococcal virulence
(Jonsson et al., 1985; Andre et al., 2017). The capsule impairs
bacterial opsonization with C3b/iC3b by the classical and
alternative complement pathways and also inhibits the
conversion of C3b, which bound to the bacterial surface, to
iC3b , thus resu l t ing in a profound inhib i t ion of
opsonophagocytosis by neutrophils (Hyams et al., 2010).
Additionally, the capsule plays a role in bacterial adherence,
colonization of the nasopharynx, and entry into alveolar
epithelial cells (Hammerschmidt et al., 2005). Although
capsules protect S. pneumoniae against trapping by NETs
(Wartha et al., 2007), it has recently been observed that
capsules of virulent pneumococcal serotypes enhance the
formation of NETs during pneumonia (Moorthy et al., 2016).
Moreover, NETs and neutrophil activity in the lungs generally
correspond to disease severity after pneumococcal infection
(Moorthy et al., 2016).
LEAKAGE OF NE CAUSES ACUTE LUNG
INJURY DURING PNEUMONIA

Neutrophil serine proteases, including NE, CG, and proteinase 3,
are critical for the effective functioning of neutrophils, and
contribute to immune protection (Pham, 2006). Among these
proteases, NE has been well studied in both basic and clinical
research. Although NE is a protease that degrades elastin (Janoff
and Scherer, 1968), the degradation of foreign organic molecules
phagocytosed by neutrophils is considered its main function
(Kawabata et al., 2002). NE degrades outer membrane protein
localized on the surface of Gram-negative bacteria to exert
antimicrobial effects (Belaaouaj et al., 2000). NE-deficient mice
are more susceptible to sepsis and death following infection with
Gram-negative Klebsiella pneumoniae and Escherichia coli
(Belaaouaj et al., 1998). However, the role of NE in Gram-
positive bacterial infections remains controversial. It has been
reported that NE does not contribute to neutrophil-mediated
killing of Gram-positive Staphylococcus aureus (Belaaouaj et al.,
1998). Specifically, in S. pneumoniae, NE plays an important role
in degrading pneumococcal cell wall-localized aminopeptidase N,
and mediates opsonophagocytic killing by neutrophils (Standish
and Weiser, 2009; Nganje et al., 2019). However, some
pneumococcal strains exhibit resistance to extracellular NE-
mediated killing (Van der Windt et al., 2012; Domon et al., 2016).

Despite its fundamental importance in innate immunity,
excessive neutrophil activation causes the release of NE, which
contributes to tissue damage (Fox et al., 2013; Kovtun et al.,
2018). In general, NE exerts potent catalytic effects against a
broad array of host extracellular matrix components, including
elastin, proteoglycan, fibronectin, and several collagen types
(Janusz and Doherty, 1991; Taylor et al., 2018). The cross-
linking of collagen and elastin imparts stability and
functionality to the lung extracellular matrix, which plays an
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
important role in the formation of alveolar gas exchange units
(Mižıḱová et al., 2015). Many studies have indicated that
increased NE activity in the lung is involved in the
pathogenesis of various lung diseases such as pneumonia, acute
lung injury, exacerbated chronic obstructive pulmonary disease,
and cystic fibrosis (Polverino et al., 2017). Indeed, it has been
reported that NE-deficient mice are protected to a significantly
greater extent from the development of emphysema than wild-
type mice (Shapiro et al., 2003). Additionally, N-formyl-
methionyl-leucyl-phenylalanine-induced neutrophil influx in
alveolar spaces results in decreased lung elastin content and
the development of emphysema in mice (Cavarra et al., 1996).
Moreover, instillation of NE into the lungs results in the
destruction of alveolar walls in animals (Campbell, 2000). One
possible mechanism could be that NE cleaves E-cadherin in
alveolar epithelial cells which interferes with cell-cell adhesion
(Boxio et al., 2016). As for bacterial infection, patients with
bacterial pneumonia exhibit increased levels of NE in
bronchoalveolar lavage fluid (BALF) (Boutten et al., 1996;
Wilkinson et al., 2012), which may result in excessive
proteolytic damage and worse clinical outcomes. Generally, NE
is inhibited by serum a1-antitrypsin. However, neutrophils also
release matrix metalloproteinases (MMPs) that inactivate a1-
antitrypsin (Michaelis et al., 1990). Thus, the proteinase
inhibitory capacity is decreased in the BALF in patients with
bacterial pneumonia compared to that of healthy controls
(Abrams et al., 1984).

In animal models, intratracheal pneumococcal infection
causes acute lung injury, characterized by an increase in
neutrophil accumulation and NE activity in the BALF
(Yanagihara et al., 2007; Hagio et al., 2008). Subsequently,
extracellular NE impairs the phagocytic activity of
macrophages (Domon et al., 2016). Furthermore, NE cleaves
extracellular matrix proteins, and proteins associated with the
host immune response. In a murine model of bacterial
pneumonia, NE, CG, and proteinase 3 cleave surfactant protein
D, reducing the ability of the protein to promote bacterial
aggregation (Hirche et al., 2004). NE also cleaves multiple cell
surface receptors such as TLR2, TLR4, CD14, tumor necrosis
factor receptor, and the C5a receptor, leading to an inhibition of
downstream signaling (Wiedow and Meyer-Hoffert, 2005; Van
den Berg et al., 2014; Domon et al., 2018b). Additionally,
multiple cytokines and chemokines, such as interleukin (IL)-
1b, IL-2, IL-6, IL-8, IL-12p40, IL-12p70, and tumor necrosis
factor, are degraded and inactivated by NE (Wiedow and Meyer-
Hoffert, 2005; Clancy et al., 2018; Domon et al., 2018b).
Furthermore, we recently reported that NE cleaves human
leukocyte antigen class II molecules in both cultured
macrophages and in vivo mouse models, indicating that NE
may disrupt antigen presentation and T-cell activation (Domon
et al., 2021). In contrast, NE cleaves and activates MMP-9, which
may also have a destructive role in lung diseases (Jackson et al.,
2010). Collectively, these data imply that NE cleaves a variety of
host immune proteins, induces lung injury, and may assist
pneumococci in evading the immune system during
pneumonia (Figure 2).
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EFFECT OF NE INHIBITORS ON
BACTERIAL PNEUMONIA

Multiple studies have investigated the potential role of various NE
inhibitors, such as sivelestat (ONO-5046), AZD9668, EPI-hNE-4,
KRP-109, and pre-elafin in different lung diseases (Polverino et al.,
2017). In animal models of LPS- or chemical-induced non-
infectious acute lung injury, symptoms have been observed to be
ameliorated upon treatment with EPI-hNE-4 (Honoré et al.,
2004), sivelestat (Sakamaki et al., 1996; Inoue et al., 2005; Iba
et al., 2006), or pre-elafin (Vachon et al., 2002). Preclinical and
clinical studies have also demonstrated the efficacy of sivelestat
and AZD9668 in treating acute lung injury and bronchiectasis,
respectively (Tamakuma et al., 2004; Inoue et al., 2006; Fujii et al.,
2010; Aikawa et al., 2011; Stockley et al., 2013). In animal models
of pneumococcal pneumonia, the administration of sivelestat
resulted in higher survival rates and decreased bacterial counts
in the blood (Yanagihara et al., 2007; Domon et al., 2018b),
suggesting that NE-induced lung injury and immune subversion
cause bacterial invasion of the bloodstream followed by death.
Mice treated with KRP-109 showed lower neutrophil infiltration
and inflammation than control mice, with no effects on viable
pneumococcal numbers in the lungs (Yamada et al., 2011). These
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
findings suggest that NE contributes, at least in part, to the
pathogenesis of pneumococcal pneumonia. Although only a few
studies have investigated the effects of NE inhibitors in patients
with bacterial pneumonia, a retrospective study suggested that the
early administration of sivelestat improves patient survival rate
(Nakamura et al., 2008). Although this finding provides
convincing evidence of NE-induced tissue destruction in
pneumonia in humans, since neutrophils are the first phagocytic
cells recruited to the lung infection site, further randomized
controlled trials are required to examine the efficacy of NE
inhibitors against bacterial pneumonia.
CONCLUSION

Accumulating evidence indicates that both pneumococcal virulence
factors and host proteases, including NE, are major mediators of
lung injury during severe pneumococcal infections. Although the
activation of PRRs in response to pneumococcal stimuli, followed
by neutrophil infiltration, is key to the initiation of the innate
immune response, this host defense strategy can be exploited by
pneumococcus in lung tissues. S. pneumoniae targets infiltrated
neutrophils and promotes the formation of NETs and cell lysis by
FIGURE 2 | Overview of S. pneumoniae-induced immune subversion by the exploitation of neutrophils during pneumonia. Pneumococcal capsules and pneumolysin
enhance the formation of neutrophil extracellular traps (NETs), which are subsequently degraded by the pneumococcal endonucleases EndA and TatD. Pneumolysin
also exerts cytotoxicity against neutrophils. The subsequent leakage of neutrophil elastase induces the degradation of surfactant protein D, cell-cell adhesion
molecule E-cadherin, and extracellular matrix components, such as elastin, proteoglycan, fibronectin, and several collagen types. Additionally, neutrophil elastase
impairs the phagocytic activity of macrophages, induces the death of alveolar epithelial cells, and diminishes the pulmonary epithelial barrier. Furthermore, neutrophil
elastase cleaves multiple cell surface proteins, such as toll-like receptor (TLR)2, TLR4, CD14, tumor necrosis factor receptor (TNFR), the C5a receptor (C5aR), and
human leukocyte antigen class II (HLA-II); followed by the degradation of multiple cytokines and chemokines, such as interleukin (IL)-1b, IL-2, IL-6, IL-8, IL-12p40,
IL-12p70, and tumor necrosis factor, which eventually disrupts the pulmonary immune defense.
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utilizing Ply and other virulence factors, which in turn could
increase the local NE concentration (Mori et al., 2012; Domon
et al., 2016; Nel et al., 2016). Subsequently, elastase-induced
proteolysis of extracellular matrix components (Taylor et al.,
2018), cell-cell adhesion molecules (Boxio et al., 2016), and host
immunemolecules (Hirche et al., 2004;Wiedow andMeyer-Hoffert,
2005; Van den Berg et al., 2014; Clancy et al., 2018; Domon et al.,
2018b) results in disruption of the alveolar epithelial barrier, which
may allow pneumococci to invade the bloodstream. Additionally,
several host proteases, including MMPs (Davey et al., 2011), CG,
and proteinase 3 (Guyot et al., 2014), may contribute to lung injury.
Thus, further basic research is still needed to understand the
mechanisms of disease initiation, and to develop novel therapies
for lung injury during bacterial pneumonia.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
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