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Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, is among 
the top 10 leading causes of death worldwide. The treatment course for TB is challenging; 
it requires antibiotic administration for at least 6 months, and bacterial drug resistance 
makes treatment even more difficult. Understanding the mechanisms of resistance is 
important for improving treatment. To investigate new mechanisms of isoniazid (INH) 
resistance, we obtained three INH-resistant (INH-R) M. tuberculosis clinical isolates 
collected by the Taiwan Centers for Disease Control (TCDC) and sequenced genes known 
to harbor INH resistance-conferring mutations. Then, the relationship between the 
mutations and INH resistance of these three INH-R isolates was investigated. Sequencing 
of the INH-R isolates identified three novel katG mutations resulting in R146P, W341R, 
and L398P KatG proteins, respectively. To investigate the correlation between the observed 
INH-R phenotypes of the clinical isolates and these katG mutations, wild-type katG from 
H37Rv was expressed on a plasmid (pMN437-katG) in the isolates, and their susceptibilities 
to INH were determined. The plasmid expressing H37Rv katG restored INH susceptibility 
in the two INH-R isolates encoding the W341R KatG and L398P KatG proteins. In contrast, 
no phenotypic change was observed in the KatG R146P isolate harboring pMN437-katG. 
H37Rv isogenic mutant with W341R KatG or L398P KatG was further generated. Both 
showed resistant to INH. In conclusion, W341R KatG and L398P KatG conferred resistance 
to INH in M. tuberculosis, whereas R146P KatG did not affect the INH susceptibility of 
M. tuberculosis.
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INTRODUCTION

According to the Global Tuberculosis Report published by the World Health Organization 
(WHO), tuberculosis (TB), the airborne infectious disease caused by Mycobacterium tuberculosis 
(Cambau and Drancourt, 2014), is one of the top  10 causes of death worldwide, and thus 
remains a major global public health problem (WHO, 2019). The emergence of drug-resistant 
TB has made the need for improvements in diagnostic accuracy and successful treatment even 
more urgent, as both are major challenges in TB control and key causes of its high mortality 
rate (Nguyen et  al., 2019).
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Since the 1940s, several drugs have been developed for the 
treatment of TB (Sotgiu et  al., 2015; Kurz et  al., 2016). These 
drugs can be  classified as first-line anti-TB drugs, including 
the isoniazid (INH), rifampicin, pyrazinamide, and ethambutol, 
as well as other second-line drugs, which are used in cases 
of treatment failure (Rendon et al., 2016). The first-line anti-TB 
drug, INH, which was initially shown to have anti-TB activity 
in 1952 (Fox, 1952), is suitable for treatment when M. tuberculosis 
is replicating (Chakraborty and Rhee, 2015). INH is a prodrug 
that is activated by the catalase-peroxidase KatG. The metabolites 
produced then react with nicotinamide adenine dinucleotide 
(NAD+), and binding of the INH-NAD adduct to the 
NADH-dependent enoyl-ACP reductase InhA. InhA inhibits 
mycolic acid formation and cell wall synthesis in M. tuberculosis, 
leading to cell death (Vilchèze and Jacobs, 2014; Chakraborty 
and Rhee, 2015; Islam et  al., 2017).

Most INH-resistant (INH-R) strains harbor mutations in genes 
associated with cell wall synthesis, the katG gene (Somoskovi 
et  al., 2001; Laurenzo and Mousa, 2011), the inhA gene and  
its promoter (Zhang et  al., 1992; Nguyen et  al., 2019), or the 
oxyR-ahpC region (Sreevatsan et al., 1997; Lempens et al., 2018). 
Articles suggest that katG deletion mutants have higher INH 
resistance than strains with mutations in inhA or its promoter 
(Somoskovi et  al., 2001; Lempens et  al., 2018). In addition, 
upregulation of INH inactivators or efflux pumps was involved 
in INH resistance (Vilchèze and Jacobs, 2014; Unissa et al., 2016).

In this work, three INH-R clinical isolates with minimum 
inhibitory concentrations (MICs) ≥64  mg/L were found to 
have novel katG mutations that were not previously reported 
to confer INH resistance. The aim of this study was to examine 
whether the amino acid changes encoded by the katG mutations 
in these high-level INH-R clinical isolates are determinants of 
INH resistance. We  compared the INH susceptibility of these 
isolates to those of isolates expressing the H37Rv KatG protein, 
and then recreated these point mutations in H37Rv to confirm 
the relationship between the katG mutations and INH resistance.

MATERIALS AND METHODS

Ethics Statement
According to the Taiwan Communicable Disease Control Act, 
TB is one of the notifiable diseases, and specimen collection 
for laboratory testing is mandatory. This study did not require 
ethics approval, and participant consent was not required.

Bacterial Strains and Culture Conditions
The bacterial strains used in this study are listed in 
Supplementary Table S1. All the experiments for M. tuberculosis 
strains were carried out at a BSL-3 laboratory in National 
Taiwan University College of Medicine, Taiwan, following 

institutional biosafety procedures. The INH-R M. tuberculosis 
isolates identified by clinical TB laboratories of Taiwan were 
sent to the Reference laboratory of Mycobacteriology at the 
Taiwan Centers for Disease Control (TCDC) for confirmation. 
Reference strain M. tuberculosis H37Rv, H37Rv-derived isogenic 
mutants, and the clinical INH-R isolates were grown in 
Middlebrook 7H9 liquid medium (BD Difco, Sparks, MD, USA) 
containing 10% oleic acid/albumin/dextrose/catalase (OADC; 
BD Difco, Sparks, MD, USA), 0.5% glycerol, and 0.05% Tween-80 
or Middlebrook 7H11 solid agar (BD Difco, Sparks, MD, USA) 
containing 10% OADC and 0.5% glycerol at 37°C. Escherichia 
coli DH10B, for plasmid construction, was grown in Luria-Bertani 
(LB) medium (Bio Basic, Toronto, Canada) at 37°C. The following 
were added to medium as needed for selection: 50  mg/L 
hygromycin (BioShop, Ontario, Canada), 100  mg/L X-gal, and 
4% sucrose for M. tuberculosis and 100  mg/L hygromycin 
(BioShop, Ontario, Canada) for E. coli.

Screening and Sequencing of INH-R 
Clinical Isolates
The MIC of INH-R M. tuberculosis isolates was screened and 
determined using the Sensititre™ MYCOTB MIC Plate (Trek 
Diagnostic Systems, OH, USA) according to the manufacturer’s 
instructions. The ranges of drug concentrations were 0.03–4 mg/L 
for INH. The bacterial solution was adjusted to turbidity at 
a McFarland standard of 0.5 and then added to the Sensititre™ 
MYCOTB MIC Plate before the plate was covered with the 
adhesive plastic seal. After incubation at 37°C for 14 or 21 days, 
the results were recorded using the Sensititre™ Vizion™ Digital 
MIC Viewing System.

The primers used to sequences katG, inhA, oxyR, and aphC 
are listed in Supplementary Table S2. The polymerase chain 
reaction (PCR) cycling conditions were previously described 
(Jou et al., 2019). The sequences of katG in INH-R strains CDC-A, 
CDC-B, and CDC-C had been submitted to NCBI (GenBank 
accession numbers: MT572851, MT572852, and MT572853).

KatG Expression Constructs
The primer and plasmids used in this study are listed in 
Supplementary Tables S2, S3. To express wild-type katG in the 
INH-R clinical strains, a katG expression plasmid, pMN437-katG, 
was generated by ligating the katG gene from M. tuberculosis 
H37Rv to pMN437 (Song et  al., 2008; Steinhauer et  al., 2010), 
which was linearized via reverse PCR to remove the gfp gene. 
The pMN437 and pMN437-katG plasmids were transformed 
into competent M. tuberculosis cells by electroporation at 2,500 V, 
1,000 Ω, and 25 μF as previously described (Larsen et al., 2007).

Mutagenesis of katG in H37Rv
To replace the katG gene in H37Rv with the mutant genes 
in the INH-R clinical isolates, fragments of the mutated katG 
genes in clinical strains CDC-A and CDC-B were amplified 
and ligated into the pGOAL19 plasmid at the ScaI site. The 
primers used are listed in Supplementary Table S2. The 
pGOAL19 plasmid is a suicide plasmid that lacks a mycobacterial 
origin for plasmid replication (Parish and Stoker, 2000).  

Nomenclature: TB, Tuberculosis; INH, Isoniazid; INH-R, INH-resistant;  
WHO, World Health Organization; NAD+, Nicotinamide adenine dinucleotide; 
MICs, Minimum inhibitory concentrations; TCDC, Taiwan Centers for Disease 
Control; OADC, Oleic acid/albumin/dextrose/catalase; LB, Luria-Bertani; PCR, 
Polymerase chain reaction.
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When the pGOAL19 recombinant plasmid (pGOAL19-katG 
W341R R463L or pGOAL19-katG L398P R463L) was transformed 
to the H37Rv strain, a two-step homologous recombination 
has occurred between the plasmid and the genome results in 
replacement of the H37Rv gene with the mutant gene. The 
H37Rv isogenic mutants were confirmed by PCR and sequencing.

INH Susceptibility Tests
To evaluate the effect of H37Rv KatG expression in INH-R 
isolates and the impact of KatG from the INH-R isolates in 
H37Rv isogenic mutants, the INH susceptibility was assessed 
by the agar dilution assay. Briefly, 5  μl of a 4  ×  106  CFU/ml 
bacterial suspension (equivalent to 2  ×  104  cfu) was spotted 
on Middlebrook 7H11 agar plates containing 10% OADC, 0.5% 
glycerol, and serial diluted INH (Sigma, St. Louis, MO, USA) 
concentrations of 0, 0.2, 1, 4, 16, and 64  mg/L and incubated 
at 37°C. The results were recorded after 3  weeks of incubation. 
Resistance was defined as colonies growing in the presence of 
the critical concentrations of 0.2  mg/L INH, according to the 
CLSI guidelines (Clinical and Laboratory Standards Institute, 
2011). All reported MICs were represented from three independent 
experiments. For the H37Rv KatG expression, H37Rv/pMN437 
was used as the control strain, and 50  mg/L hygromycin was 
added to the agar plates to maintain the transformed plasmids. 
To compare the INH susceptibility of KatG from the clinical 
isolates in H37Rv isogenic mutants, H37Rv was used as the control.

RESULTS

Three INH-R Clinical Isolates Harbor Novel 
Mutations in katG
Three INH-R strains, CDC-A, CDC-B, and CDC-C, were 
provided by TCDC. The MICs of the three INH-R isolates 
were all >4  mg/L, which were initially determined using the 
Sensititre™ MYCOTB MIC Plate. To identify the uncommon 
mutations that conferred INH resistance in these isolates, 
we  sequenced the frequent INH resistance hotspots of katG, 
inhA, and oxyR-aphC regions. The results demonstrated that 
the three isolates were carried wild-type inhA, oxyR, and aphC 
genes and had mutations in the katG gene resulting in the 
following amino acid changes: W341R (TGG/CGG), L398P 
(CTG/CCG), and R146P (CGG/CCG), respectively. All of them 
also harbored the R463L (CGG/CTG) change in KatG, and 
this residue change has been confirmed earlier as a polymorphism 
(Figure  1). Then, we  further confirm the INH susceptibilities 
of all three isolates and revealed those were >64  mg/L by the 
agar dilution assay (Figure  2). The results indicate that the 
three amino acid residues change in katG might result in INH 
resistance in our INH-R isolates.

H37Rv KatG-Complemented Clinical 
Strains Carrying W341R and L398P KatG 
Are More Susceptible to INH
To delineate the association of the W341R, L398P, and R146P 
KatG proteins with the INH resistance in the isolates CDC-A, 

CDC-B, and CDC-C, we  expressed the KatG protein from 
H37Rv in these INH-R strains using pMN437-katG. To examine 
whether expression of H37Rv KatG could restore INH resistance, 
INH susceptibility tests were conducted (Figure 3). The results 
showed that CDC-A/pMN437-katG was more susceptible to 
INH (MIC <4  mg/L) than the CDC-A carrying an empty 
vector (CDC-A/pMN437; MIC >64 mg/L). CDC-B/pMN437-katG 
was INH sensitive (MIC <0.2 mg/L), whereas CDC-B/pMN437 
was highly resistant (MIC >64  mg/L). In contrast, CDC-C/
pMN437-katG showed no difference in INH susceptibility  
when compared with CDC-C/pMN437 (Table  1). Therefore, 
we  concluded that KatG W341R and L398P are the resistance-
conferring amino acid changes in strains CDC-A and CDC-B, 
respectively. In contrast, KatG R146P is not the determinant 
for INH resistance of the CDC-C strain.

The W341R and L398P KatG Proteins 
Confer INH Resistance in M. tuberculosis
To directly confirm the contribution of the W341R and L398P 
KatG proteins on INH resistance, the katG gene of H37Rv 
was replaced with a segment of the DNA from the clinical 
isolates containing these katG mutations. The DNA sequencing 
of the H37Rv isogenic mutants H37Rv katG W341R and H37Rv 
katG L398P R463L showed that the katG of H37Rv was 
successfully substituted with the katG gene from CDC-A and 
CDC-B, respectively. The INH susceptibilities of the H37Rv 
isogenic mutants H37Rv katG W341R and H37Rv katG L398P 
R463L were measured by the agar dilution method (Figure  2), 
and revealed that, like CDC-A and CDC-B, both strains were 
resistant to the highest INH concentration tested (64  mg/L), 
indicating a MIC >64 mg/L and demonstrating that katG W341R 
and L398P confer INH resistance (Table  2).

DISCUSSIONS

INH is a first-line TB drug, and researchers have clarified 
various mechanisms of INH resistance by collecting INH-R 
strains and identifying the mutated genes. Studies have shown 
that 50–94% INH-R strains have at least one mutation in katG, 
10–35% INH-R strains carry at least one mutation in the inhA 

FIGURE 1 | The katG sequence results of three high INH resistance strains 
CDC-A, CDC-B, and CDC-C shows that all strains encode a mutation at 
R463L (CGG/CTG) and another mutation at W341R (TGG/CGG), L398P 
(CTG/ CCG), and R146P (CGG/CCG), respectively.
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promoter, and 10–40% INH-R strains carry at least one mutation 
in oxyR-ahpC region (Li et  al., 2015). The katG 315 mutation, 
which leads to high-level INH resistance and the inhA-15 
mutation, which leads to low-level INH resistance, are two of 
the most common mutations (Yao et al., 2010; Zenteno-Cuevas 
et  al., 2019). However, mutations in the oxyR-ahpC region 
have not yet been recorded to confer INH resistance directly 
(Kandler et  al., 2018). Studies reported that the expression 
level of alkylhydroperoxidase (AhpC) was different in INH-R 
strains with mutations in katG, indicating that AhpC were 
compensated for the loss of KatG activity and restored the 
anti-oxidative stress capacity (Ng et al., 2004; Nieto et al., 2016).

In this study, the KatG sequences of isolates CDC-A, CDC-B, 
and CDC-C revealed that each had a mutation at R463L (CGG/
CTG) and had another mutation, which have not been previously 
reported as INH resistance-conferring mutations at W341R (TGG/
CGG), L398P (CTG/CCG), and R146P (CGG/CCG), respectively. 
KatG R463L, was previously identified as a polymorphism, which 
is irrelevant to INH resistance (Johnsson et al., 1997; Ramaswamy 
et al., 2003; Lempens et al., 2018), and an epidemiological marker 
for Beijing strains (Tsolaki et  al., 2005).

There are three studies, which had mentioned the mutations 
at KatG W341  in INH-R M. tuberculosis. A genetic  
analysis by next-generation sequencing performed in Ukraine. 

FIGURE 2 | INH susceptibility testing of the control (H37Rv, spot 1), clinical isolates [CDC-A (spot 2), CDC-B (spot 4), and CDC-C (spot 6)] and H37Rv isogenic 
mutants [H37Rv katG W341R (spot 3), and H37Rv katG L398P R463L (spot 5)].

FIGURE 3 | Complementation of INH resistance in the clinical isolates. INH susceptibility testing of the control H37Rv carrying the empty vector pMN437 (H37Rv/
pMN437, spot 1); clinical isolate control strains carrying the empty vector pMN437 [CDC-A/pMN437 (spot 2), CDC-B/pMN437 (spot 4), and CDC-C/pMN437 (spot 6)]; 
and clinical isolates carrying wild-type katG expression plasmid [CDC-A/pMN437-katG (spot 3), CDC-B/pMN437-katG (spot 5), and CDC-C/pMN437-katG (spot 7)].
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Daum et  al. found a poly-resistant strain of M. tuberculosis 
containing the amino acid substitutions W341R and R463L in 
KatG (Daum et al., 2018), which are the same amino acid changes 
as strain CDC-A. A strain with MIC >1  mg/L found to have 
mutations at W341G and R463L by DNA sequencing (Brossier 
et  al., 2006); and a group in Brazil found a strain with an INH 
MIC >32  mg/L harbors KatG W341S (Cardoso et  al., 2004). In 
this study, the MIC of INH for H37Rv katG W341R confirmed 
that W341R is the INH resistance determinant in M. tuberculosis. 
Therefore, we  concluded that amino acid residue 341 of KatG 
could be  crucial for INH resistance in M. tuberculosis.

The INH resistance of strain CDC-C could not be  reversed 
by expression of H37Rv KatG. Therefore, we  concluded that 
the mechanism underlying INH resistance in the CDC-C strain 
may involve another INH-associated gene than those studied 
or other non-explored resistance mechanism.

The mutagenesis system described here could be  adapted 
in future studies of drug resistance mechanisms in M. tuberculosis 

to establish a more reliable genetic diagnosis. Once the resistance-
conferring mutation is identified, clinical institutions could 
shorten the time for drug susceptibility testing to facilitate the 
control and treatment of drug-resistant M. tuberculosis.
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