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Abstract

Background: Serotonin transporter knockout mice have been a powerful tool in understanding the role played by the
serotonin transporter in modulating physiological function and behavior. However, little work has examined brain function
in this mouse model. We tested the hypothesis that male knockout mice show exaggerated limbic activation during
exposure to an emotional stressor, similar to human subjects with genetically reduced transcription of the serotonin
transporter.

Methodology/Principal Findings: Functional brain mapping using [14C]-iodoantipyrine was performed during recall of a
fear conditioned tone. Regional cerebral blood flow was analyzed by statistical parametric mapping from autoradiographs
of the three-dimensionally reconstructed brains. During recall, knockout mice compared to wild-type mice showed
increased freezing, increased regional cerebral blood flow of the amygdala, insula, and barrel field somatosensory cortex,
decreased regional cerebral blood flow of the ventral hippocampus, and conditioning-dependent alterations in regional
cerebral blood flow in the medial prefrontal cortex (prelimbic, infralimbic, and cingulate). Anxiety tests relying on
sensorimotor exploration showed a small (open field) or paradoxical effect (marble burying) of loss of the serotonin
transporter on anxiety behavior, which may reflect known abnormalities in the knockout animal’s sensory system.
Experiments evaluating whisker function showed that knockout mice displayed impaired whisker sensation in the
spontaneous gap crossing task and appetitive gap cross training.

Conclusions: This study is the first to demonstrate altered functional activation in the serotonin transporter knockout mice
of critical nodes of the fear conditioning circuit. Alterations in whisker sensation and functional activation of barrel field
somatosensory cortex extend earlier reports of barrel field abnormalities, which may confound behavioral measures relying
on sensorimotor exploration.

Citation: Pang RD, Wang Z, Klosinski LP, Guo Y, Herman DH, et al. (2011) Mapping Functional Brain Activation Using [14C]-Iodoantipyrine in Male Serotonin
Transporter Knockout Mice. PLoS ONE 6(8): e23869. doi:10.1371/journal.pone.0023869

Editor: Doo-Sup Choi, Mayo Clinic College of Medicine, United States of America

Received May 2, 2011; Accepted July 27, 2011; Published August 23, 2011

Copyright: � 2011 Pang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: NARSAD: The Brain & Behavior Research Fund. The funders had no role in the study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: holschne@usc.edu

Introduction

In humans, a polymorphism in the serotonin transporter (5-

HTT) promoter region (5-HTTLPR) affects the transcriptional

efficiency of the transporter gene. Individuals carrying the low

expressing form of the 5-HTTLPR polymorphism (the ‘s’ or ‘LG’

allele), which is associated with reduced transcription of 5-HTT and

reduced serotonin (5-HT) uptake [1,2], appear to have increased

susceptibility to anxiety [1,3] and mood symptoms in the face of

environmental adversity [4] for review see [5], but not all studies

find an effect [6,7]. Because the effect of genes on behavior is often

subtle, neuroimaging studies have provided new insight into the

effects of the 5-HTTLPR polymorphism. Several neuroimaging

studies have found that ‘s’ carriers of the 5-HTTLPR polymorphism

display amygdala hyperactivation [8,9,10], which may be a result of

abnormal functional connectivity between the prefrontal cortex

(PFC) and the amygdala [11,12].

5-HTT knockout mice (KO) offer a promising model for

psychiatric research as parallels exist between the human

polymorphism and the mouse model at the levels of serotonergic

profile, behavior, physiological function, and stress hormone

response [13,14,15,16,17] for review see [18]. Though 5-HTT

KO animals lack high-affinity cellular uptake of 5-HT, 5-HT can

be transported intracellularly with low efficiency (low affinity and

selectivity) by the dopamine transporter [19] and polyspecific

organic cation transporters [20], the latter of which have been
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shown to be upregulated in 5-HTT KO mice [20]. Thus, the 5-

HTT KO mice have reduced, but not absent 5-HT clearance, an

observation similar, though not analogous, to findings in the

human 5-HTTLPR polymorphism.

The current study provides a detailed three-dimensional (3-D)

map of functional brain activation during fear conditioned recall

in the 5-HTT KO mouse, thereby exploring the possibility of

reverse translation of brain functional responses in rodents.

Specifically, we test the hypothesis that 5-HTT KO mice show

an exaggerated limbic activation during a fear conditioned recall.

Brain mapping is performed using an autoradiographic method

[21,22]. Perfusion autoradiography fills a gap in the current

armamentarium of imaging tools in that it can deliver a 3-D

assessment of functional activation of the awake, nonrestrained

animal, with a temporal resolution of ,5–10 seconds and a spatial

resolution of 100 mm [23,24]. This distinguishes it from other

histological methods such as c-fos or cytochrome oxidase, which

integrate brain responses over a duration of hours to days, or

electrophysiological recordings, which typically only target very

limited regions of the brain, or functional magnetic resonance

imaging (fMRI) or positron emission tomography (microPET),

which provide whole brain analysis, but require sedation of the

animal. In addition, we perform experiments on whisker function

to test the hypothesis that the exclusive use of anxiety tests reliant

on sensory exploration cannot adequately access the anxiety

phenotype in this model.

Results

Functional brain mapping during fear conditioned recall
Fear conditioning training and recall. During the training

phase (day 1) conditioning significantly increased percent time

freezing (conditioning: F1, 49 = 175.73; p,0.001) in a time

dependent manner (time 6 conditioning: F4, 195 = 74.7;

p,0.001). There was no significant genotypic difference in

percent time freezing (genotype: F1, 49 = 2.63, p = 0.11), nor a

significant interaction between genotype and conditioning

(genotype 6 conditioning: F1, 49 = 0.08, p = 0.78; Figure 1a).

During recall testing (day 2), mice that were conditioned to the

tone (CF) froze significantly more than control (CON) mice

(conditioning: F1, 49 = 182.97, p,0.001) in a time dependent

manner (time 6 conditioning: (F1, 49 = 198.81, p,0.001). 5-HTT

KO mice froze significantly more than WT mice (genotype:

F1, 49 = 51.39, p,0.001), with a significant interaction between

genotype and conditioning (genotype 6 conditioning: F1, 49 = 5.7,

p,0.001; Figure 1b). Genotypic differences in freezing response

were significantly increased during tone exposure compared to the

baseline condition (genotype 6 conditioning 6 time: F1,49 = 5.01,

p = 0.03; Figure 1b).

Functional brain activation. During fear conditioning

recall, the effects of conditioning and genotype on regional

cerebral blood flow (rCBF) were assessed.

Factorial Analysis (Table 1, Figure 2). Significant main

effects of conditioning and of genotype were seen in several

neocortical regions (frontal association cortex, FrA, primary, M1,

and secondary, M2, motor cortex, primary, S1, including the

barrel field, S1BF, and secondary, S2, somatosensory cortex), the

amygdala (basolateral amygdala, BL, basomedial amygdala, BM,

central amygdala, Ce, and lateral amygdala, La), the ventral

hippocampus, the superior colliculi (SC), the raphe (dorsal, DR,

and median, MnR), and midline cerebellum (Cb). In addition, a

significant effect of conditioning was noted in the presubiculum

(PrS), and a significant effect of genotype was noted in the

cingulate cortex, insula, lateral orbital cortex (LO), retrosplenial

cortex (RS), anterior amygdala area (AA), Postsubiculum (Post),

parasubiculum (PaS), nucleus accumbens (Acb), caudate putamen

(CPu, dorsal medial and ventral lateral), and inferior colliculus

(IC). There was significant interaction between genotype and

conditioning in the medial prefrontal cortex (prelimbic,

infralimbic, and cingulate), medial orbital cortex (MO), M2, La,

POST, PaS, Acb, CPu (dorsal medial and ventral lateral), midline

thalamus, DR, and midline Cb.
Effect of fear conditioning (WT: CF vs. CON and KO:CF

vs. CON; Table 1, Figure 3). Somatosensory and

somatomotor cortex: Conditioned mice compared to controls in

both genotypes showed a significant decrease in rCBF in M1, M2,

S1, including S1BF, S2 somatosensory cortex, as well as in FrA.

Medial prefrontal-orbitofrontal and insular cortex:

In WT mice only, conditioned animals compared to controls

showed significantly decreased rCBF in the medial prefrontal

cortex (prelimbic, infralimbic, and cingulate). WT mice also

Figure 1. Fear Conditioning. 5-HTT KO mice exhibit increased
freezing specific to recall in a fear conditioning paradigm A) Training:
WT and KO animals show similar freezing levels during training of fear
conditioning. Time on the x-axis is labeled as ‘B’ for the entire two-
minute baseline and each ‘T’ represents the thirty second tone and the
following one-minute quiet period. The y-axis represents percent time
freezing during the specific time point. B) Recall: KO mice compared to
WT mice show significantly increased freezing during baseline and
recall of a tone previously associated with foot shock. Time on the x-axis
is represented in 30-second bins with ‘B’ for baseline and ‘T’ for tone
exposure. The y-axis represents percent time freezing during the
specific time bin. The arrow indicates time of radiotracer injection for
the imaging data. Error bars represent standard error of the mean
(shown only unilaterally for graphical clarity).
doi:10.1371/journal.pone.0023869.g001
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showed significant decreases in the orbital cortex (MO, LO, and

ventral, VO), and significant increases in insular and RS. In KO

mice, conditioned mice compared to controls resulted in increased

rCBF in the MO, IL and PrL and decreased rCBF in the LO.

Amygdalar nuclei:

In both WT and KO mice, conditioning resulted in increased

rCBF in the amygdala (BL, BM, and La). These results were

confirmed after small volume correction of the amygdala (La, BL,

BM), where conditioning significantly increased rCBF in condi-

tioned compared to control animals in both genotypes (WT

p,0.05, KO p,0.01). In KO mice only, conditioning also

increased rCBF of the Ce. Hippocampal region: In both

genotypes, conditioning resulted in increased rCBF of the ventral

hippocampus and PrS. Post and PaS showed increased rCBF in

KO mice only. Conditioning did not change rCBF in the dorsal

hippocampus in either genotype. Cerebral nuclei: In WT mice

only, conditioning increased rCBF in the ventral lateral CPu and

decreased rCBF in the dorsal medial CPu, midline thalamus, and

the Acb. In KO mice, conditioning resulted in increased rCBF in

the Acb. Brainstem and cerebellum: Regardless of genotype,

conditioning resulted in decreased rCBF of the SC. In WT mice

only, conditioning increased rCBF in the IC, and decreased rCBF

Table 1. Significant changes in rCBF in the cortex and subcortex in the left and right hemispheres (L/R).

WT KO CF CON Main Effect Main Effect

CF
vs
CON

CF
vs
CON

KO
vs
WT

KO
vs
WT CF KO

CF
x
KO

Cortex

Cingulate (Cg) Q/- -/- -/- Q/Q -/- #/# #/-

Frontal association (FrA) Q*/Q Q*/Q q/q q/q #/# #/# -/-

Infralimbic (IL) Q/- q/q q/q -/- -/- -/- #/#

Insula (I) -/q* -/- q*/q q*/q* -/- #/# -/-

Motor: primary (M1) Q/Q* Q/Q q/q q/q #/# #/# -/-

secondary (M2) Q/Q* Q*/Q q/q q/q #/# #/# #/-

Orbital: lateral (LO) Q/Q Q/- q/q q/q -/- #/# -/-

medial (MO) Q/Q q/q q/q -/- -/- -/- #/#

ventral (VO) Q/Q -/- q/q -/- -/- -/- -/-

Prelimbic (PrL) Q/- q/q q/q -/- -/- -/- #/#

Retrosplenial (RS) q/- -/- Q*/Q Q*/Q -/- #/# -/-

Somatosensory: barrel field (S1BF) -/Q Q/- q/q q/q #/- #/# -/-

primary (S1, non barrel field) -/Q Q/- -/q q/q #/# #/# -/-

secondary (S2, non barrel field) -/Q Q/Q -/q q/q #/# #/# -/-

Subcortex

Accumbens nucleus (Acb) Q*/Q q*/q q/q Q/Q* -/- #/# #/#

Amygdala:

anterior amygdaloid area (AA) -/- -/- -/q q/q -/- #/# -/-

basolateral amygdaloid nucleus (BL) q*/q q*/q* q/q q/q #/# #/# -/-

basomedial amygdaloid nucleus (BM) q*/q q*/q* q/q q/q #/# #/# -/-

central amygdaloid nucleus (Ce) -/- q*/q* q/q q/q #/- #/# -/-

lateral amygdaloid nucleus (La) q*/- q*/q* q/q -/- #/# #/# #/-

Cerebellum, midline (Cb) Q q* q* Q # # #

Colliculi: inferior (IC) q*/- -/- Q*/Q* Q/Q -/- #/# -/-

superior (SC) -/Q Q*/Q Q*/Q* Q/Q #/# #/# -/-

Hippocampus: ventral (vHPC) q/q q/q Q*/Q* Q/Q* #/# #/# -/-

Raphe: dorsal, median (DR, MnR) Q - - Q # # #

Striatum:

dorsal medial caudate putamen (CPu) Q/Q -/- Q/Q Q/Q -/- #/# #/#

ventral lateral CPu -/q -/- q/q q/q -/- #/# #/#

Subiculum: post (Post) & para (PaS) -/- q*/q Q*/- Q/Q* -/- #/# #/#

presubiculum (PrS) q/q q*/q -/Q -/- #/# -/- -/-

Thalamus: midline Q - q Q - - #

Arrows (q, Q) indicate the direction of rCBF change in the particular area and (-) indicates no significant change was noted. Areas significant after correction for
multiple comparisons at the cluster level are marked with an *p,0.05. In addition, significance of the main effects of conditioning (CF) and genotype (KO), as well as
their interaction on the ANOVA are noted as (#, p,0.05).
doi:10.1371/journal.pone.0023869.t001
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in the raphe (DR, and MnR). Conditioning resulted in differential

activation patterns of the midline Cb (WT decrease rCBF, KO

increase rCBF).

Effects of genotype (CF: KO vs. WT and CON: KO vs. WT;

Table 1, Figure 3). Somatosensory and somatomotor cortex:

During recall, conditioned and control KO mice compared to

their WT counterparts showed increased rCBF of the

somatosensory and somatomotor cortical areas, including FrA,

M1, M2, S1 (including S1BF), and S2. Medial prefrontal-

orbitofrontal insular cortical areas: During recall KO compared

to WT mice showed increased rCBF in the insular cortex and LO

and decreased rCBF in the RS regardless of conditioning. In

conditioned animals only, KO compared to WT mice showed

increased rCBF of the infralimbic, prelimbic, MO, and VO. In

control animals only, KO compared to WT mice showed a

decreased rCBF in the cingulate. Amygdala and hippocampal

region: KO mice in comparison to WT mice, regardless of

conditioning status, showed increased rCBF in the amygdala (AA,

BL, BM, Ce). In conditioned animals only, KO compared to WT

mice showed increased rCBF in the La. After small volume

correction, lack of 5-HTT significantly increased rCBF in the

amygdala (p,0.01) in CF, but not in CON animals. KO

compared to WT mice, regardless of conditioning status, showed

decreased rCBF in the ventral hippocampus, Post and PaS. In

conditioned animals only, KO compared to WT mice showed

decreased rCBF in the PrS. There were no genotypic changes in

the dorsal hippocampus for conditioned or control. Cerebral

nuclei: KO compared to WT, regardless of conditioning status,

resulted in increased rCBF in the ventral lateral CPu and

decreased rCBF in the dorsal medial CPu. In both the Acb and

midline thalamus, genotypic differences depended on the

conditioning status (increase rCBF in CF, decrease rCBF in

Figure 2. Factorial analysis examining the effect of genotype, conditioning or the interaction. Depicted are select coronal slices (anterior-
posterior coordinates relative to bregma) of the template brain. Colored overlays show statistically significant effects of genotype or conditioning or
their interaction, but do not reflect the direction of the effect. Abbreviations are from Franklin and Paxinos mouse atlas [67]: BL (basolateral
amygdaloid nucleus), BM (basomedial amygdaloid nucleus), Ce (central amygdala), I (insular cortex), La (lateral amygdaloid nucleus), M1 (primary
motor cortex), M2 (secondary motor cortex), MO (medial orbital cortex), PrL (prelimbic cortex), RS (retrosplenial cortex). Mouse brain atlas figures
were reproduced from the mouse brain atlas [67] with modification and with permission from Elsevier.
doi:10.1371/journal.pone.0023869.g002
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CON). Brainstem and cerebellum: KO compared to WT,

regardless of conditioning status, resulted in decreased rCBF in

the IC and SC. In control animals only, KO compared to WT

resulted in decreased activation of the raphe (DR, MnR). In the

midline Cb, genotypic differences depended on conditioning status

(increased rCBF in CF, decreased rCBF in CON).

Correlation of functional activation with freezing scores

(Table 2). In CF animals of both genotypes, increased freezing

scores were correlated with increased rCBF in the BL, the BM and

the La and decreased rCBF in S1. In WT mice, increased freezing

was also correlated with decreased rCBF in the M1, S2 and the

dorsal hippocampus. In KO mice, increased freezing was

correlated with decreased rCBF in the RS and increased rCBF

in the dorsal hippocampus.

Anxiety tests reliant on sensorimotor exploration
Decreased exploration in 5-HTT KO mice in the novel

open field. Locomotor activity in the open field decreased over

time (time: F5.7, 292.6 = 4.95, p,0.001; Figure 4a). KO compared

to WT mice showed significantly decreased exploratory locomotor

activity in a novel open field (genotype: F1, 51 = 5.2, p,0.05;

Figure 4a). Although there was an increase in latency to enter the

center zone in the KO mice, this was not significant (p = 0.09;

Figure 4b). There were no differences in other measurements

traditionally used as a measure of anxiety: frequency of entry into

center zone (p = 0.54; Figure 4c) and time in center zone (p = 0.46;

Figure 4d).

Marble burying. KO mice buried significantly fewer

marbles than WT mice (Figure 5), which has been previously

reported in 5-HTT KO mice [25,26].

Testing of whisker deficits
Impaired whisker function in 5-HTT KO mice. 5-HTT

deletion impaired whisker sensation. On the spontaneous gap-

crossing task (sGC), KO mice failed to locate the target object

when the object was placed at whisker distances, 4.5–7.5 cm

(Figure 6a). Moreover at shorter distances (3 cm , 6 ,4.5 cm)

KO animals failed significantly more often than WT mice (WT

0.6660.13, KO 0.1960.11, values are mean 6 SEM, p,0.01).

This impairment was not due to lack of sensory exploration

(Figure 6c) although KO mice explored the gap for shorter periods

than WT mice independent from whether they ultimately located

the target (p,0.01) or failed to do so (p,0.001). Longer duration

of sensory exploration in those trials that KO mice failed to locate

the target, compared to successful trials, suggest that duration of

exploration was not the cause of the failures. The sensory deficit

was not due to lack of motivation as KO mice spent more time

performing the task (Figure 6d; all trials combined, WT 20.261.0

seconds, n: 2674, KO 79.062.2, n: 2036, p,0.001) and made as

many attempts, i.e. visits to the gap in a trial, to locate the target

(Figure 6e; All trials combined, WT 2.560.004, KO 1.860.03,

p.0.05). Number of attempts required to locate the target in

successful trials did not differ across the genotypes (p.0.05),

although during failures KO animals visited the gap significantly

less often than WT mice (Figure 6e, p,0.05). Although the

sensory deficit was not a reflection of a general lack of motor

activity on the task (see above), mobility of the KO mice was

significantly less than WT mice (Figure 6f; all trials combined, WT

7.760.2, KO 6.660.2, p,0.05).

Repeated rewarded training did not rescue the sensory

deficit in 5-HTT KOs. The sensory deficit in KO mice

persisted even when the animals were rewarded for gap-crossing

and trained on the task for 3 continuous weeks (Figure 6c). This

appetitive gap-cross training (GCt) increased the likelihood, for

both WT and KO animals, to locate the target object when it was

placed at whisker distances (WT: sGC 0.1560.09, GCt

0.3760.19, p,0.05; KO: sGC 060, GCt 0.0260.01) or closer

(WT: sGC 0.6860.12, GCt 0.9660.02, p,0.05; KO: sGC

0.1960.10, GCt 0.6260.11, p,0.01). Although KO animals

crossed significantly larger distances during GCt compared to sGC

(Figure 6a, b), their performance in the whisker distances was still

impaired (p,0.01). As in the case of sGC, KO mice explored the

gap for shorter periods than the WT mice (Figure 6c; p,0.01) and

had reduced number of visits to the gap, attempting to find the

target (Figure 6e; p,0.05). Furthermore KO mice were less

mobile on the task (Figure 6f; p,0.01). Increased duration of

mobility and sensory exploration during failures, compared to

successful trials, argue that the sensory deficit observed in KO

mice is not due to lack of sensory exploration, motivation or a

generalized motor deficit. Accordingly time it took for the KO

Table 2. Significant correlation of rCBF with behavioral
freezing scores in the left and right hemispheres (L/R).

CF: WT
(L/R)

CF: KO
(L/R)

Cortex

Motor (M1) -/Q -/-

Retrosplenial (RS) -/- Q/Q

Somatosensory: primary (S1) -/Q Q/-

secondary (S2) -/Q -/-

Subcortex

Amygdala:

basolateral (BL) q/- q/q*

basomedial (BM) q/- q/q*

lateral (La) q/- -/q

Hippocampus: dorsal Q/Q q*/-

Arrows (q, Q) indicate a positive or negative correlation of rCBF with the
behavioral freezing score. Areas significant after correction for multiple
comparisons are marked with an *p,0.05.
doi:10.1371/journal.pone.0023869.t002

Figure 3. Changes in functional brain activity in mice in response to a fear conditioned tone. Depicted are select coronal slices (anterior-
posterior coordinates relative to bregma) of the template brain. Colored overlays show statistically significant increased (red) and decreased (blue)
differences for each comparison. Intragroup comparison were examined for fear conditioning with respect to the different genotypes (WT: CF vs. CON
and KO: CF vs. CON) and genotype effects with respect to conditioning (CF: KO vs. WT and CON: KO vs. WT). Abbreviations are from Franklin and
Paxinos mouse atlas [67]: Acb (accumbens nucleus), BL (basolateral amygdaloid nucleus), BM (basomedial amygdaloid nucleus), Cg (cingulate cortex),
CPu (caudate putamen), DR (dorsal raphe nucleus), I (insular cortex), IC (inferior colliculus), La (lateral amygdaloid nucleus), M1 (primary motor cortex),
M2 (secondary motor cortex), MnR (median raphe nucleus), MO (medial orbital cortex), PaS (parasubiculum), PrL (prelimbic cortex), RS (retrosplenial
cortex), S1 (primary somatosensory cortex), S1BF (primary somatosensory, barrel field), S2 (secondary somatosensory cortex), ventral hippocampus
(vHPC). Mouse brain atlas figures were reproduced from the mouse brain atlas [67] with modification and with permission from Elsevier.
doi:10.1371/journal.pone.0023869.g003
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mice to complete successful trials were largely comparable to the

WT mice (Figure 6d; Successful trials: WT 41.861.4, KO

33.361.3, p.0.05; Failures: WT 84.664.6, KO 118.465.1,

p.0.05).

Discussion

During recall of a previously conditioned tone, 5-HTT KO

mice in comparison to WT mice showed increased anxiety

behavior (freezing), increased rCBF in the amygdala, insula, and

barrel field cortex, decreased rCBF in the ventral hippocampus,

and conditioning dependent rCBF changes in the medial

prefrontal (mPFC) regions (prelimbic, infralimbic, and cingulate).

Anxiety tests relying on sensorimotor exploration of the

environment reproduced less clearly the anxious phenotype of

the KO mice shown in the conditioned fear paradigm. These

latter findings are consistent with the impaired whisker sensation

of the KO mice in the spontaneous and appetitive gap crossing

tasks.

Figure 4. Open Field. A) 5-HTT KO mice show significantly decreased distance traveled throughout the arena in a novel open field. This is seen
during the first 3 minutes of the test. B) KO mice show a non significant increase in latency to enter center zone C) There was no significant genotypic
differences in number of entries into the center zone D) There was no significant genotypic difference in time spent in the center zone. Error bars
represent standard error of the mean.
doi:10.1371/journal.pone.0023869.g004

Figure 5. Marble Burying. 5-HTT KO mice compared to WT mice
buried significantly less marbles placed in a novel cage; *p,0.001. Error
bars represent standard error of the mean.
doi:10.1371/journal.pone.0023869.g005
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Functional brain mapping during fear conditioned recall
During training, mice that were being conditioned to the tone

showed progressively increased freezing behavior during training.

Genotype did not have a significant effect on freezing behavior

during the training phase. This finding was noted previously by

Wellman et al [16] and is consistent with the reported absence of

genotypic differences in footshock sensitivity [17]. During recall,

mice that were conditioned to the tone showed significantly

increased freezing behavior to the tone. KO compared to WT

mice displayed increased freezing in the conditioned and the

control (no-footshock) groups, suggesting that KO animals were

sufficiently ‘sensitized’ to allow the tone by itself to elicit a partial

fear response.

The amygdala is believed to play an important role in

conditioned auditory perception [27]. The lateral amygdala (La)

relays information to the central amygdala (Ce), whose efferents

are critical to eliciting the behavioral, neurohumeral, and

sympathetic responses characterizing states of fear [27]. Functional

brain mapping during fear conditioned recall showed a main effect

of conditioning in the amygdala (La, BL, BM). Conditioned

animals compared to controls showed greater activation of the

amygdala, with amygdalar activation correlating positively with

freezing scores in both KO and WT mice. Genotype itself showed

a main effect in the amygdala (La, BL, BM, Ce), with KO mice

compared to WT mice showing increased amygdala activation

(KO . WT). There was an interaction between genotype and

conditioning in the La. Even in control mice, amygdala (BL, BM,

Ce) activation was greater in KO than WT mice, which is

consistent with their increased freezing behavior during fear

conditioned recall.

The mPFC, via modulation of amygdalar activation, is thought to

be necessary for the normal expression and extinction of

conditioned fear [28,29]. During recall, there was a genotype 6
conditioning interaction in activation of the ventral mPFC

(prelimbic and infralimbic), with the most significant changes in

activation in KO animals exposed to the footshock (KO-CF . KO-

CON, WT-CF). Because prelimbic and infralimbic activity are

thought to have opposing roles in the modulation of fear responses

[30], the exact interpretation of these results is unclear, but suggest

that 5-HTT deficits result in exaggerated activity of both regions to

stress. Its relationship to reported morphological abnormalities in

KO mice in this region remains to be clarified [16].

The anterior cingulate has been shown to modulate the

efficiency of fear related learning [29], while the role of the

retrosplenial (RS, posterior cingulate) in auditory fear conditioning

remains unresolved [31,32]. During recall, there was a genotype6
conditioning interaction in activation of the cingulate, with the

most significant changes in activation in control KO compared to

WT mice (KO-CON . WT-CON). KO controls compared to

WT controls showed deactivation of the cingulate and RS

alongside activation of the amygdala, and greater fear-related

behavioral immobility. This pattern of activation is consistent with

the concept of a decrease in cortical inhibitory effects on the

amygdala [33]. Fear conditioned KO compared to KO controls or

fear conditioned WT mice demonstrated no changes in the

cingulate, possibly due to a floor effect.

Figure 6. Impaired whisker function in 5-HTT KO mice. a) Top: Schematic view of the experimental set-up. Animals tried to locate a target
object (i.e. platform) placed after a gap [64]. Their mobility is tracked using motion sensors. Bottom: Probability of successful object localization and
subsequent gap-cross. 5-HTT deletion impairs tactile sensation (P,0.01, Kolmogorov-Smirnov test). b) Rewarded training for 3 weeks improves
performance but does not rescue the whisker deficit. Top: Experimental set-up is similar to Figure 6a with the addition of computer controlled reward
delivery ports. Bottom: Probability of gap-crossing (WT vs KO, P,0.01, Kolmogorov-Smirnov test). c) Duration of exploration, i.e. time spent at the
gap, d) time animals required to travel between the two ends of the platform during successful trials or the delay to return to the starting position
after sensory exploration at the gap during failures, e) number of attempts (i.e. visits to the gap) f) duration of mobility across genotypes and training
conditions. Please refer to the text for statistical comparisons. Error terms are standard errors of the means.
doi:10.1371/journal.pone.0023869.g006
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The insular cortex, which strongly innervates the amygdala, is

thought to play an integral role in providing the amygdala with

aversive sensory information [34], as well as in integration of

autonomic responses [35]. Our results showed that genotype,

rather than conditioning, was the dominant determinant of insular

activation (KO-CF, KO-CON . WT-CF . WT-CON), which

was confirmed by the factorial analysis. Hyperactivation of the

insula in KO mice is consistent with the idea that these mice may

focus more on aversive sensory signals that carry emotional

significance.

There is a general consensus that the ventral hippocampus plays

a role in the acquisition of tone conditioning [36,37,38], whereas

the dorsal hippocampus is required for contextual cues and spatial

navigation [38,39]. Regardless of genotype, conditioning resulted

in increased activation in ventral, but not dorsal, regions of the

hippocampus. KO compared to WT mice displayed decreased

activation of the ventral hippocampus regardless of conditioning.

The interpretation of this remains unclear, but may reflect

serotonergic effects on the morphofunctional development of the

hippocampus [40] and synaptic plasticity in the hippocampus

[41,42].

Conditioning reduced activity in the motor cortex (M1, M2)

and somatosensory cortex (S1, S1BF, S2). Freezing scores in tone-

conditioned animals were negatively correlated with activity in M1

and S2 of WT animals, and S1 in both genotypes, consistent with

increased motor immobility and possibly decreased somatosensory

processing in animals with the highest freezing. Additionally, our

results demonstrate increased functional activation of the S1BF in

KO compared to WT animals, which may reflect an attempt to

overcompensate for abnormalities in the KO’s anatomy and

electrophysiological function in the barrel field cortex [43,44].

5-HTT has been implicated in playing a role in blood pressure

and vascular reactivity [45]. A recent study has shown that awake,

nonanesthetized 5-HTT KO rats show no alterations in diurnal

mean arterial pressure and heart rates [46]. This likely is due to

the fact that lifelong abnormalities in 5-HTT results in

compensatory mechanisms in the vascular system. Acute applica-

tion of 5-HT to the aorta in-vitro elicited greater contractions in

KO than in WT animals [46], suggesting that acute vs. chronic

alterations in KO rats results in different effects. Small changes in

blood pressure, if they do occur, would likely have little effect on

changing CBF because of autoregulation. However, we cannot

rule out that, in theory, differences in rCBF might be a result of

general effects of 5-HT on the regulation of blood flow, rather

than specific effect of the paradigm.

Anxiety tests reliant on sensorimotor exploration
Anxiety tests reliant on whisker exploration (e.g. open field,

marble burying) may not adequately assess the anxious phenotype

in the 5-HTT KO mouse model, because of the known

abnormalities in the barrel field cortex of KO mice which maps

the whiskers [43,44]. These abnormalities, however, are unlikely

to directly affect behaviors that are relatively independent of

whisker function (e.g. fear conditioning).

Indeed, in the open field, an anxiety test reliant on

sensorimotor exploration, KO compared to WT mice showed

only a small increase in anxiety-like responses (i.e. reduced

exploratory behavior). Marble burying, a test of ‘defensive

behavior’ [47] that is reliant on burrowing [48], in fact showed

a ‘paradoxical’ (nonanxious) response in the KOs, a result which

has been previously reported [25,26]. However, anxiety in the

KO mouse was robustly represented during fear conditioned

recall.

Testing of whisker deficits
To further explore the behavioral effects of documented

abnormalities in the somatosensory cortex of 5-HTT KO mice,

an additional group of experimentally naı̈ve male mice were tested

on a learning task dependent on intact whisker function. In this

task, the mouse was placed on one of two platforms with a variable

gap-distance between the platforms. In the presence of white noise

and darkness, at distances where the mouse could not easily touch

with the paw or nose, the mouse had to rely on its whiskers to

successfully localize and cross to the opposing platform. Thus, this

task allowed for quantification of unrestrained whisker-based

tactile exploration. This study confirmed impaired whisker

sensation in 5-HTT KO mice, a result which extends earlier

anatomic and electrophysiologic reports of abnormalities in the

somatosensory system [43,44] for review [49].

The effects of the 5-HTT gene knockout on other somatosen-

sory systems (tactile, etc.) is an area of active investigation.

Relevant to this study, evaluation of footshock sensitivity has

revealed no genotypic differences [17]. This is consistent with our

observation and that of others [16] of no genotypic differences in

freezing behavior during the training phase where mice received

acute footshocks. This suggests that the KO animals are able to

adequately respond to the incoming footshock-related somatosen-

sory information; thus the increased freezing responses noted in

KO compared to WT mice during recall are not mediated by

altered perception in the mouse footpad. In any case, prior reports

of hypoalgesic responses to noxious stimulation in other sensory

modalities (visceral, temperature, mechanical, inflammatory)

[50,51,52] would be predicted to result in lesser, rather than the

increased fear responses seen during recall.

Conclusions
Recently there has been concern about the predictive validity of

current animal models of behavioral disorders [53]. Emphasis has

been placed on going beyond behavioral endpoints and decon-

structing psychiatric symptom - based syndromes into biological

endophenotypes [54,55]. The purpose of such endophenotypic

‘biomarkers’ is to divide behavioral symptoms into more stable

phenotypes with a clear genetic connection. Functional brain

mapping has been proposed as such an endophenotype. The

increased functional activation of the amygdala and altered patterns

of activation in the mPFC (infralimbic, prelimbic, cingulate) of KO

mice shown in this study parallels neuroimaging findings in humans

that are carriers of the low expressing form of 5-HTTLPR

[8,9,10,11,12]. While KOs do not fully reproduce the human 5-

HTTLPR polymorphism, they share the common biological effect

of diminished (but not wholly absent) 5-HT reuptake.

By providing a detailed 3-D map of functional brain activity in the

mouse involved in the regulation of emotional function, this study

provides evidence of the translation of human neuroimaging studies

to the animal model. This type of endophenotypic measurement is

essential for further understanding the validity of the 5-HTT KO

animal model, in which sensory deficits may confound results from

anxiety tests reliant on sensorimotor exploration. Furthermore, this

study extends our understanding of the effects of 5-HTT on

modulating central processing in several brain regions, which could

provide the basis for future directed molecular studies evaluating the

effect of 5-HTT on neural substrates.

Methods

Ethics Statement
All experimental protocols were approved by the Institutional

Animal Care and Use Committee of the University of Southern
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California (Animal Welfare Assurance # A3518-01, USC protocol

# 11093).

Animals
Mice were bred at the university vivarium from pairs obtained

from Taconic (Taconic, Hudson, NY). Mice had been backcrossed

onto a C57BL/6 background for greater than 15 generations from

an original mixed background [129/P1ReJ (ES cells), C57BL/6J

and CD-1] [56,57]. Male mice were weaned at 3 weeks, housed in

groups of 3–4 on a 12 hour light/dark cycle (lights on at 0600)

until 3 months of age with direct contact bedding and free access

to rodent chow (NIH #31M diet) and water. At the start of

behavioral testing, animals were individually housed. Genotyping

was performed by Transnetyx, Inc. (Cordova, TN) from tail snips

obtained post mortem with primer sequences obtained from

Taconic (m5-HTT-C: 59 TGA ATT CTC AGA AAG TGC TGT

C 39, m5-HTT-D: 59 CTT TTT GCT GAC TGG AGT ACA G

39, neo3a: 59 CAG CGC ATC GCC TTC TAT C 39). All

behavioral testing was conducted during the light phase of the

light/dark cycle (0930 to 1430).

Functional brain mapping during fear conditioned recall
Surgery. Surgery was initiated one week after Open Field

testing (described below). Animals were anesthetized with

isoflurane (2.0%). The ventral skin of the neck was aseptically

prepared and the right external jugular vein was catheterized with

a 1-French silastic catheter (SAI infusion, Chicago, IL), which was

advanced 1 cm into the superior vena cava. The catheter was

externalized through subcutaneous space to a dorsal percutaneous

port. The catheter was filled with 0.01 mL Taurolidine-Citrate

lock solution (SAI infusion, Chicago, IL) and was closed with a

stainless steel plug (SAI infusion, Chicago, IL).

Conditioned fear- training phase. Fear conditioning

experiments [58] were conducted at three days post surgery.

Animals were habituated to the experimental room for thirty

minutes in the home cage. Thereafter, mice were placed in a

Plexiglas box (22.5 cm 621 cm 618 cm) with a floor of stainless

steel rods. The chamber was illuminated with indirect ambient

fluorescent light from a ceiling panel (930 lx) and was subjected to

background ambient sound (65 dB). After a two minute baseline,

the animals were presented a tone six times (30 s, 70 dB,

1000 Hz/8000 Hz continuous, alternating sequence of 250 ms

pulses). Each tone was separated by a one minute quiet period. In

the conditioned fear (CF) groups (KO-CF: body weight

= 27 g60.6 g, age = 12.4 wks60.3 wks, n = 12; WT-CF: body

weight = 26 g60.5 g, age = 12.8 wks60.3 wks, n = 13) each tone

was immediately followed by a foot shock (0.5 mA, 1 s). Control

(CON) animals (KO-CON: body weight = 27 g60.4 g,

age = 12.4 wks60.2 wks, n = 13; WT-CON: body weight =

26 g60.3 g, age = 12.4 wks 60.2 wks, n = 11) received identical

exposure to the tone but without the foot shock. One minute

following the final tone, mice were returned to their home cages.

Functional neuroimaging during conditioned fear

recall. Twenty-four hours after the training session, animals

were placed in the experimental room for one hour in their home

cage. Thereafter, the animal’s percutaneous cannula was

connected to a tethered catheter containing the perfusion

radiotracer ([14C]-iodoantipyrine, 325 mCi/kg in 0.180 mL of

0.9% saline, American Radiolabelled Chemicals, St. Louis, MO)

and a syringe containing a euthanasia solution (50 mg/kg

pentobarbital, 3 M KCl). Animals were allowed to rest in a

transit cage for ten minutes prior to exposure to the behavioral

cage (a cylindrical, dimly lit (300 lx), Plexiglas cage with a flat,

Plexiglas floor). CF and CON animals received a two minute

exposure to the behavioral cage context followed by a one minute

continuous exposure to the conditioned tone. One minute after the

start of the tone exposure, the radiotracer was injected

intravenously at 1.0 mL/min using a mechanical infusion pump

(Harvard Apparatus, Holliston, MA), followed immediately by

injection of the euthanasia solution. This resulted in cardiac arrest

within 5–10 seconds, a precipitous fall of arterial blood pressure,

termination of brain perfusion, and death. Brains were rapidly

removed and flash frozen in methylbutane/dry ice.

Behavioral analysis of conditioned fear. Behaviors were

recorded using Windows Movie Makes (Microsoft) by a camera

placed in front of the cage. The duration of the animal’s freezing

response, defined as the absence of all visible movements of the

body and vibrissae aside from respiratory movement, served as the

behavioral measure of conditioned fear memory. Behaviors were

analyzed in a blinded fashion using the Observer 8.0 (Noldus Inc.,

Leesburg, VA). The freezing data were transformed to a

percentage of time spent freezing. Statistical comparison was

performed with a repeated measure analysis of variance (ANOVA)

using ‘‘genotype’’ and ‘‘conditioning’’ as between subject factors.

The repeated measure was ‘‘time’’ (time intervals during training

were 90 s, i.e. 30 s tone followed by a 1 minute quiet period, time

intervals during recall were baseline and tone).

Autoradiography. Brains were sliced in a cryostat at 220uC
in 20 mm sections, with an interslice spacing of 140 mm. Slices

were heat dried on glass slides and exposed to Kodak Ektascan

diagnostic film (Eastman Kodak, Rochester, NY USA) for 14 days

at room temperature along with twelve [14C] standards

(Amersham Biosciences, Piscataway, NJ). Autoradiographs were

then digitized on an 8-bit gray scale using a voltage stabilized light

box (Northern Lights Illuminator, InterFocus Ltd., England) and a

Retiga 4000R charge-coupled device monochrome camera

(Qimaging, Canada). Cerebral blood flow (CBF) related tissue

radioactivity was measured by the classic [14C]-iodoantipyrine

method [21,22]. In this method, there is a strict linear

proportionality between tissue radioactivity and CBF when the

data is captured within a brief interval (,10 seconds) after the

tracer injection [59,60].

3-D reconstruction of the digitized autoradiographs. 3-

D reconstruction has been described in our prior work [61]. In

short, regional CBF (rCBF) was analyzed on a whole-brain basis

using statistical parametric mapping (SPM, version SPM5,

Wellcome Centre for Neuroimaging, University College London,

London, UK). SPM, a software package was developed for

analysis of imaging data in humans [62], has recently been

adapted by us and others for use in brain autoradiographs

[61,63,64]. A 3-D reconstruction of each animal’s brain was

conducted using 69 serial coronal sections (starting at slice bregma

2.98 mm) and a voxel size of 40 mm 6140 mm 640 mm. Adjacent

sections were aligned both manually and using TurboReg, an

automated pixel-based registration algorithm [65]. After 3-D

reconstruction, all brains were smoothed with a Gaussian kernel

(FWHM = 120 mm 6420 mm 6120 mm). The smoothed brains

from all groups were then spatially normalized to the smoothed

reference brain (one ‘‘artifact free’’ brain). Following spatial

normalization, normalized images were averaged to create a mean

image, which was then smoothed to create the smoothed template.

Each smoothed original 3-D reconstructed brain was then spatially

normalized into the standard space defined by the smoothed

template [61].

SPM. An unbiased, voxel-by-voxel analysis of whole-brain

activation using SPM was used for detection of significant changes

in functional brain activation. Voxels for each brain failing to

reach a specified threshold (80% of the mean voxel value) were
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masked out to eliminate the background and ventricular spaces

without masking gray or white matter. Global differences in the

absolute amount of radiotracer delivered to the brain were

adjusted in SPM for each animal by scaling the voxel intensities so

that the mean intensity for each brain was the same (proportional

scaling). Using SPM, a factorial ANOVA was implemented at

each voxel testing the null hypothesis that there was no genotypic

or fear conditioning effect, as well as the interaction between

genotype and conditioning (F1, 44, p,0.05). After running the

factorial analysis, we implemented a Student’s t-test (unpaired) at

each voxel to determine directionality of significance. Significance

(p,0.05) was established at the cluster level (minimum cluster

extent of 100 contiguous voxels) with and without a correction for

multiple comparisons. Brain regions were identified using coronal,

sagittal and transverse views from the mouse brain atlas [66,67].

To increase power in the amygdala (combined La, BL, and BM) a

small volume correction was also performed. ROIs of the

amygdala (bilateral, combined La, BL, and BM), using 10 serial

slices starting at bregma 20.94) were manually drawn on the

template brain and a small volume correction was performed for

each of the comparisons (WT: CF vs. CON, KO: CF vs. CON,

CF: KO vs. WT, CON: KO vs. WT). Significance was set for

p,0.05 after correction for multiple comparisons by the SPM

software. To detect brain regions showing rCBF correlated with

fear responses, SPM analysis using freezing score as an individual

covariate was run for the CF mice of both genotypes. Significance

level was set at p,0.05 for Pearson’s correlation coefficient.

Anxiety tests reliant on sensorimotor exploration
Open field. Mice (KO n = 28, WT n = 25) were habituated

for 30 minutes to the behavioral room. They were then placed in

the bottom portion of a test chamber (a novel circular arena,

diameter 42.5 cm, height 11.5 cm), which was illuminated from

the ambient fluorescent light from the ceiling (558 lx), and allowed

to freely explore for 10 minutes. Latency to enter the center zone

(diameter 16.5 cm), time spent in the center zone, and frequency

of entries into the center zone was assessed for each animal from

the digitized video recordings using EthoVision 3.1 (Noldus, Inc.,

Leesburg, VA). Group averages were compared using a t-test (two

tailed, p,0.05). Path length traveled in each one minute interval

in the arena was calculated for each animal. A repeated ANOVA

was performed on path length using ‘‘genotype’’ as a between

subject factor and ‘‘time’’ as a within subject factor.
Marble burying. A separate group of male mice (n = 11/

group) were tested in a marble burying paradigm [68]. Each

mouse was placed in a novel cage filled with one inch of cozy

critter super shavin’s bedding (International Absorbants Inc.,

Ferndale, WA). Twenty-five small blue glass marbles (10–12 mm

diameter) were clustered in the center of the cage. Mice were

placed in the front of the cage facing the marbles and allowed to

explore for thirty minutes. Thereafter mice were returned to their

home cage and the number of marbles buried (.2/3 of the marble

buried with bedding) was counted. Group averages of marbles

buried were compared using a t-test (two tailed, p,0.05).

Testing of whisker deficits
Spontaneous gap crossing (sGC). The apparatus and

training procedures have been described before [69]. In short,

after initial habituation to the experimenter and the apparatus,

individual animals (n = 4/group) were placed on one of the two

elevated platforms separated from each other with randomly

varying gap-distance (range: 3–8 cm, step-size: 0.5 cm) and their

probability of successful object localization across gap-distances was

quantified. The training was performed under infrared light and

white noise; the platforms were cleaned using 70% isopropanol

between sessions. Animal mobility on the platforms was quantified

using custom-made infrared motion sensors placed at the two ends

and the middle of each platform. Trial duration, duration of sensory

exploration at the gap, number of attempts prior to successful gap-

crossing, and duration of mobility were quantified and genotypes

were compared using Student’s t-test. Animals had ad libitum access

to the food and water at all times, except when they were

performing the task (1 session/day for 7 days; session duration:

30 min). Animals were not baited for successful task execution.

Gap-Cross training (GCt). GCt [70] was similar to the sGC

with the exception that the animals were food deprived (to ,90% of

their free-feeding rate) throughout the training period and were

rewarded (1 pellet, 14 mg/pellet, BioServ, product #F05684) for

successful gap crossing on the task. Unlike in the sGC, with repeated

GCt animals increase their probability of successful object localization.

The training apparatus and quantification of the variables were as

described above. Each animal (n = 4/group) received 3 weeks of

training on the apparatus (1 session/day; 7 sessions/week; session

duration: 30 min). Tactile exploration of the animal onto the target

platform was recorded using a high-speed camera (Allied Vision

Technologies, Model: Pike) at 300 fps and a human observer

confirmed that animals performed the task using their whiskers.
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