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Abstract In most animals, the brain controls the body via a set of descending neurons (DNs)

that traverse the neck. DN activity activates, maintains or modulates locomotion and other

behaviors. Individual DNs have been well-studied in species from insects to primates, but little is

known about overall connectivity patterns across the DN population. We systematically

investigated DN anatomy in Drosophila melanogaster and created over 100 transgenic lines

targeting individual cell types. We identified roughly half of all Drosophila DNs and

comprehensively map connectivity between sensory and motor neuropils in the brain and nerve

cord, respectively. We find the nerve cord is a layered system of neuropils reflecting the fly’s

capability for two largely independent means of locomotion – walking and flight – using distinct

sets of appendages. Our results reveal the basic functional map of descending pathways in flies

and provide tools for systematic interrogation of neural circuits.

DOI: https://doi.org/10.7554/eLife.34272.001

Introduction
The evolution of nervous systems is dominated by the process of cephalization, in which anterior

ganglia fuse to create a brain that integrates information from a number of specialized sensory

organs (Bullock and Horridge, 1965). In most animals, this large cephalic structure communicates

with motor centers via a diverse population of descending neurons (DNs), with axons that run in con-

nectives, or tracts, to more posterior ganglia. As the sole conduits of information from the brain to

the posterior ganglia within the nerve cord, the DNs play a key role in behavior. Their activity ini-

tiates or modifies central pattern generators in the nerve cord, thereby controlling locomotion with-

out necessarily conveying the details of motor actions (Lemon, 2008; Heinrich, 2002). Activation of

some individual DNs is sufficient to elicit quite specific coordinated actions (Kien and Altman, 1984;

Nolen and Hoy, 1984; Kohatsu et al., 2011; von Philipsborn et al., 2011; Bidaye et al., 2014;

von Reyn et al., 2014).

Because the number of DNs is several orders of magnitude smaller than the number of neurons in

either the brain or posterior ganglia, this class of cells represents a critical bottleneck in the flow of

information from sensory systems to motor circuits. The DNs are thus a strategic target for investi-

gating sensory-motor processing, and a wiring diagram of their connectivity is critical to understand-

ing how the nervous system controls behavior (Burrows, 1996; Drew et al., 2004). Although

previous studies have revealed the broad organization of descending pathways in a range of species

(Breidbach, 1990; Kanzaki et al., 1994; Staudacher, 1998; Okada et al., 2003; Cardona et al.,

2009; Hsu and Bhandawat, 2016; Severina et al., 2016; Kien and Altman, 1984; Strausfeld et al.,

1984; Strausfeld, 2012; Lemon, 2008), uncovering the sensory-motor mapping represented by the

DNs requires analysis of inputs and outputs with single-cell resolution. The genetic model organism,

Drosophila melanogaster, offers an opportunity to pursue such a systematic analysis. Flies are
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capable of complex behaviors, yet possess a tractable number of DNs, most of which can be individ-

ually identified across animals. Estimates for the total number of DNs in insects range from 200 to

500 bilateral pairs (Gronenberg and Strausfeld, 1990; Okada et al., 2003; Staudacher, 1998;

Gal and Libersat, 2006; Cardona et al., 2009), with a recent study suggesting Drosophila may be

at the top of this range (Hsu and Bhandawat, 2016). Yet, even this largest estimate is substantially

less than the approximately 100,000 cells that descend from the brain to the spinal cord in mice

(Liang et al., 2011).

Recent combinatorial genetic techniques (Luan et al., 2006) make it possible to target individual

neurons in the fly nervous system for visualization and manipulation (Aso et al., 2014; Wolff et al.,

2015; Wu et al., 2016). Here, we applied these techniques to identify individual DNs in Drosophila

and create a large collection of selective driver lines that will facilitate their future study. This collec-

tion enabled us to systematically map the coarse input and output patterns of the DN population.

Our results suggest that DNs in Drosophila and other insects are organized into three broad path-

ways. Two direct pathways link specific regions in the brain to motor centers controlling the wings

and legs, respectively. A third, convergent pathway couples a broad array of brain neuropils to a

large integrative region between wing and leg neuropil that may control both sets of appendages.

This organization thus likely reflects both the function of each pathway’s member cells and the evolu-

tionary history of winged insects.

Results

Identification of individual DNs
Several thousand neurons run through the cervical connective of flies (Coggshall et al., 1973),

including both descending neurons (DNs) and ascending neurons (ANs). To estimate the number of

DNs, we expressed photoactivatable-GFP (PA-GFP; Patterson and Lippincott-Schwartz, 2002)

under a pan-neuronal promotor (nsyb-LexA, Jenett et al., 2012, Suver et al., 2016), labeled the

neurons by illuminating the neck connective (Figure 1A,B), and then counted cell bodies in the

brain. For convenience, we operationally define a DN as a cell with a process in the neck connective

and a soma in the brain, without a strict requirement forthe direction of information flow. We

observed a similar pattern of labeling in four animals and estimated the total number of DNs

at ~350 on each side of the brain (~700 total) based on the maximum cell body count among prepa-

rations (max = 356 cells, mean ± S.D.=321 ± 23 cells, N = 4; Figure 1C,D).

Our next goal was to characterize systematically the morphology of each DN and create a library

of split-GAL4 lines that targeted individual cell types. We discerned the morphology of individual

DNs using a large, publically available database of GAL4-driven expression patterns that covers

nearly all neurons in the fly central nervous system (Pfeiffer et al., 2008; Jenett et al., 2012;

Costa et al., 2016). We then crossed GAL4-lines of interest (N = 586 lines, see Materials and meth-

ods) to teashirt-GAL80 (Rubinstein et al., 2010), an operation that substantially reduced expression

of cells with a soma in the VNC, revealing DN axon terminals in the VNC (Figure 1E). Based on these

results, we selected pairs of driver lines that appeared to target the same DN cell type and made

these into ‘split half’ lines, using the relevant promoters to drive expression of either the activation

domain (AD) or the DNA-binding domain (DBD) of the split-GAL4 protein (Luan et al., 2006). We

then screened over two thousand AD/DBD combinations for expression restricted to single DN cell

types. About 10% of the combinations produced an expression pattern sparse enough to include in

our collection (Figure 1F). In some cases, an AD/DBD split-GAL4 combination drove expression in

more than one DN and we used the multi-color flip out technique (Nern et al., 2015) to stochasti-

cally label individual neurons. We identified a total of 190 bilateral pairs of DNs (out of our original

estimate of 350), representing at least 98 cell types (Figure 2, Figure 2—figure supplements 1–

13, Supplementary file 1). Estimated cell types are fewer in number than total cells identified

because some DN types comprise more than one bilateral pair (see below). We note the morpholog-

ical similarity of DNs we found to neurons previously reported in Drosophila and other insects in

Supplementary file 2.

Our original split-GAL4 library included ~200 lines, and we selected a subset of these to create a

final library of 133 of the sparsest split-GAL4 lines targeting 54 of the 98 identified DN types with lit-

tle-to-no background expression (Supplementary file 3). As a potential genetic control to be used
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in future functional studies, we include in this list one line, SS01062, which was made with the same

process as the other split-GAL4 lines, but had no expression in the CNS. While making DN split-

GAL4 lines, we also serendipitously created lines with sparse expression in VNC inter- and motor

neurons, and we list 10 of these in Supplementary file 4. These lines (Supplementary files 3 and

4) form the basis of our analysis in this paper. Although we did not analyze them in detail, we include

a listing of the more broadly expressing DN split-GAL4 lines in Supplementary file 5.

DN cell bodies are distributed widely across the brain surface (Figure 1C–D). We found 21 DNs

(19 types) with somata on the anterior surface, 46 DNs (37 types) on the posterior surface, and 121

DNs (41 types) on the surface of the gnathal ganglia, GNG, a region ventral to the cerebral ganglia,

which is separated from them in some insects. (Figure 1C,D). Based on somata counts from the PA-

GFP experiments, the 190 DNs we describe represent 67% (121/180) of all GNG DNs, 51% (22/41)

of anterior DNs, and 35% (46/131) of posterior DNs. The cell body of one neuron is located inside

the antenna and is likely the homolog of a previously described campaniform sensory neuron in

blowflies (Nässel et al., 1984). We developed a simple nomenclature for the DNs in which a prefix

identifies it as a descending neuron with a particular cell body position: DNa, anterior dorsal; DNb,

Figure 1. Strategy for identifying descending neurons. (A, B) The fly central nervous system includes the brain,

located in the fly’s head, and a ventral nerve cord (VNC), located in the fly’s thoracic cavity. These are connected

by a population of descending neurons (DNs, example in green), which have cell bodies in the brain. Arrow and

dark line indicate area of the neck connective illuminated to selectively label the populations of descending and

ascending neurons in a transgenic line pan-neuronally expressing photoactivatable GFP (PA-GFP). Dashed square

indicates field of view for imaging results in C, D. (C, D) Anterior and posterior views of PA-GFP-labeled DN cell

bodies. Black dotted circles represent location of identifiable brain neuropil structures, labeled bilaterally: antennal

lobes (AL) and calyx. Blue, light grey, and pink dotted lines enclose separate clusters of DN cell bodies labeled

unilaterally: A (anterior dorsal), B (anterior ventral), C (pars intercerebralis), D (outside anterior cluster), G (gnathal

ganglion, GNG, shown with dotted line). The uncircled cell bodies in (D) are all considered part of the large

posterior cluster (P). (E) Expression of VNC neurons is suppressed by expression of GAL80 under the teashirt

promotor. This operation facilitates analysis of DN axonal projection patterns. (F) Example of intersection method

used to generate split-GAL4 drivers for DNs. VT063736-GAL4 in attP2 (left) and R24A03-GAL4 in attP2 (center)

both show expression in DNp02, when crossed to pJFRC2-10XUAS-IVS-mCD8::GFP in attP2. The enhancer

fragments from these lines were used to generate the fly line JRC-SS01053 carrying both VT063736-p65ADZp in

attP40 and R24A03- ZpGAL4DBD in attP2 (right).

DOI: https://doi.org/10.7554/eLife.34272.002
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Figure 2. Reconstruction of identified descending neurons. Morphology of descending neurons identified in the present study. Neurons (black) and

neuropil regions of the brain and VNC are shown (transparent). A total of 98 different cell types are shown. Neurons on both sides of the brain are

shown in some cases (asterisk). Segmentation of neuron volume was performed using GAL4 lines with sparse expression and reconstructed with volume

rendering. Figure 2—figure supplements 1–13 shows confocal images masked for individual neurons.

Figure 2 continued on next page
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anterior ventral; DNc, pars intercerebralis; DNd, outside cell cluster on the anterior surface; DNg,

gnathal ganglion (GNG), DNp, posterior surface of the brain; DNx, outside the brain (see Figure 2,

Figure 2—figure supplements 1–13). Within each prefix designation, cell types are identified by a

unique two-digit number. Such a soma-based nomenclature has been adopted elsewhere (Yu et al.,

2010) and should be more straightforward than one based on the broad locations of either den-

drites or terminals, which would be quite byzantine.

Based on morphology, we identified two broad classes of DNs: unique DNs (78 bilateral cell

types; Figure 3A) that we could tentatively identify as unique bilateral pairs, and population DNs (20

types encompassing 112 cells; Figure 3B) that form small groups of cells with nearly identical arbors

(Figure 3—figure supplement 1). The GAL4 and split-GAL4 lines that targeted the population DNs

usually labeled multiple neurons with very similar morphology. We estimated the number of cells

within each population type by taking the largest number labeled in a single driver line. In general,

population DNs had smaller cell bodies and neurite diameters compared to the unique DNs, and

many had soma in the GNG. Populations of DNs with similar morphology and cell bodies in the sub-

oesophageal ganglion were previously observed in the blowfly (‘Parallel projecting DNs’,

Strausfeld et al., 1984). However, we cannot exclude the possibility that the DNs we have desig-

nated as ‘populations’ are actually composed of unique bilateral pairs whose morphological similari-

ties mask their individual genetic and functional identity. It is also possible that some of the DNs that

we have labeled as ‘unique’ exist as populations, but we have not yet identified other members of

the set. Thus, our classifications should be re-considered in the light of future studies.

Annotation of individual DN innervation in the brain and VNC
To analyze the coarse connectivity between the brain and VNC, we examined DN projections within

neuropils of the central nervous system. To annotate the innervation pattern for each DN

(Figure 4A–D), we used the recent nomenclature scheme proposed for 41 neuropil regions of the fly

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.34272.003

The following figure supplements are available for figure 2:

Figure supplement 1. Morphology of DNs, group a.

DOI: https://doi.org/10.7554/eLife.34272.004

Figure supplement 2. Morphology of DNs, group b.

DOI: https://doi.org/10.7554/eLife.34272.005

Figure supplement 3. Morphology of DNs, group c.

DOI: https://doi.org/10.7554/eLife.34272.006

Figure supplement 4. Morphology of DNs, group d.

DOI: https://doi.org/10.7554/eLife.34272.007

Figure supplement 5. Morphology of DNs, group p (DNp01-11).

DOI: https://doi.org/10.7554/eLife.34272.008

Figure supplement 6. Morphology of DNs, group p (DNp12-22).

DOI: https://doi.org/10.7554/eLife.34272.009

Figure supplement 7. Morphology of DNs, group p (DNp23-29).

DOI: https://doi.org/10.7554/eLife.34272.010

Figure supplement 8. Morphology of DNs, group p (DNp30-35).

DOI: https://doi.org/10.7554/eLife.34272.011

Figure supplement 9. Morphology of DNs, group g (DNg01-12)

DOI: https://doi.org/10.7554/eLife.34272.012

Figure supplement 10. Morphology of DNs, group g (DNg13-24).

DOI: https://doi.org/10.7554/eLife.34272.013

Figure supplement 11. Morphology of DNs, group g (DNg25-34).

DOI: https://doi.org/10.7554/eLife.34272.014

Figure supplement 12. Morphology of DNs, group g (DNg35-41).

DOI: https://doi.org/10.7554/eLife.34272.015

Figure supplement 13. Morphology of DNs, group x.

DOI: https://doi.org/10.7554/eLife.34272.016
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brain (Ito et al., 2014). The complimentary analysis of DN innervation in the VNC was more chal-

lenging, because we lacked a similar standardized atlas for the VNC. Power (1948) provided a

description of VNC neuropils in Drosophila melanogaster; however, these regions have not been

defined based on modern molecular markers. Lacking a formal atlas, we defined VNC neuropil

region boundaries based on the following criteria (see also Court et al., 2017): (1) synaptic areas

delineated by nc82 antibody staining, (2) the location of motor neuron dendrites, sensory fiber termi-

nals and tracts, and (3) descriptive information from the literature. These compartmental boundaries

were then further refined based on the projection pattern of the DNs as discussed below. In all, we

defined 16 VNC neuropils with boundaries as illustrated in Figure 4E–F.

Our analysis of the VNC suggests that the tectulum, a neuropil near the dorsal surface associated

with flight and other wing-related behaviors (Power, 1948; Murphey et al., 1989; Shepherd et al.,

2016), stratifies into a dorsal layer that we propose retain the name ‘tectulum’ (Figure 4G, green)

and a more ventral layer we call the ‘lower tectulum’ (Figure 4G, red). This lower region encom-

passes an area defined by the projections of bristle afferents from macrochaetes on the notum

(Usui-Ishihara and Simpson, 2005). It is also likely homologous with the bristle neuropil in crickets

(Johnson and Murphey, 1985) and the anterior ventral association center in locusts (Tyrer and

Gregory, 1982). As shown below, the segregation of DN terminals in the VNC (e.g. DNp01, p04,

p29, p35, g29 and g40) supports the classification of tectulum and lower tectulum as separate func-

tional regions. The arborizations of motor neurons and interneurons within the VNC we identified

during the course of DN screening (Supplementary file 4) also supports this stratification. For exam-

ple, the neurites of wing motor neurons and interneurons rarely project below the ventral boundary

Figure 3. Unique and population descending neurons. (A) Three example morphologies of DNs that are uniquely

identifiable (DNa05, DNp25 and DNp06). Maximum intensity projection images for brain (top) and VNC (bottom)

are shown. (B) Three examples of population DNs, with individual neurons revealed by multicolor flip-out (DNp17,

DNg02 and DNg12). Each neuron of the same DN type shows similar morphology and we do not discriminate

individual DNs for these population types.

DOI: https://doi.org/10.7554/eLife.34272.017

The following figure supplement is available for figure 3:

Figure supplement 1. Further examples of population DNs.

DOI: https://doi.org/10.7554/eLife.34272.018

Namiki et al. eLife 2018;7:e34272. DOI: https://doi.org/10.7554/eLife.34272 6 of 50

Research article Neuroscience

https://doi.org/10.7554/eLife.34272.017
https://doi.org/10.7554/eLife.34272.018
https://doi.org/10.7554/eLife.34272


of the tectulum (Figure 4—figure supplement 1), whereas we identified new interneurons with

arbors that specifically targeted the lower tectulum (Figure 4—figure supplement 2).

Our analysis thus far was based on the standard 20x confocal imaging of expression patterns for

DN-containing GAL4 and split-GAL4 lines. We re-imaged a subset of these lines with higher magnifi-

cation (40x, 63x) to resolve finer details. At higher spatial resolution, we observed that DN neurites

were either smooth or varicose in appearance, suggesting post-synaptic dendrites and pre-synaptic

axonal terminals, respectively (Peters et al., 1986; Römer and Marquart, 1984). To provide more

rigorous molecular evidence for this classification, we examined DN polarity using a reporter

Figure 4. Anatomical compartments of the brain and VNC in Drosophila. (A–D) Identified brain neuropils labeled with different colors superimposed on

an aligned confocal image. Depth from the anterior surface is indicated in top-right of each image. The data is from Virtual Fly Brain, http://www.

virtualflybrain.org/. Neuropil names are from Ito et al., 2014 and name abbreviations are summarized in Supplementary file 6. (E, F) Sagittal view of

VNC confocal images through a lateral (E) and medial (F) plane. The colors represent our divisions of the recognized domains in the VNC: AMN

(accessory mesothoracic neuropil), AS (abdominal segment), mVAC (medial ventral association center), VAC (ventral association center). (G) Schematic

of the neuropils in the VNC. T1 (prothoracic segment), T2 (mesothoracic segment), T3 (metathoracic segment). (H) The axis and sections used to

describe VNC anatomy. The body axis is used.

DOI: https://doi.org/10.7554/eLife.34272.019

The following figure supplements are available for figure 4:

Figure supplement 1. Morphology of interneurons innervating the wing neuropil.

DOI: https://doi.org/10.7554/eLife.34272.020

Figure supplement 2. Morphology of interneurons innervating the lower tectulum.

DOI: https://doi.org/10.7554/eLife.34272.021
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(pJFRC51-3xUAS-Syt::smGFP-HA in su(Hw)attPa) that localizes to presynaptic terminals by labeling

of synaptotagmin, a synaptic vesicle-specific protein (Figure 5A–E). Localization of the synaptic

marker was consistent across preparations (Figure 5—figure supplement 5). We analyzed 55 DN

types in this fashion and found all varicose terminals were positive for synaptotagmin and all smooth

processes were not, at least at the level of the light microscope. This functional interpretation of

neurite morphology was also recently validated in Drosophila larvae using electron microscopy data

(Cardona et al., 2010). We thus classified the processes of the remaining 43 DN types as either pre-

or post-synaptic, based on morphology alone (Figure 5F).

In general, DN arbors in the brain have smooth processes, whereas those in the VNC are varicose

(Figure 5F), a pattern consistent with a rostral-to-caudal flow of information. However, some DNs

possess arbors with varicosities in the brain, indicating that they contact post-synaptic targets before

descending to the VNC. It is noteworthy that 78% of the DN types (76/98) have output terminals in

the GNG (Figure 5F; examples, Figure 5—figure supplement 1), whereas 29% have inputs in this

region (Figure 5F). Although the GNG is fused to the brain in Drosophila, comparative and develop-

mental evidence indicates that it is the first member of the chain of segmental ganglia, and thus it is

not surprising that so many DNs target circuits in this region.

We observed 43 DN types that have presynaptic terminals (outputs) in the neuropils of the cere-

bral ganglia (i.e. the brain excluding the GNG) (Figure 5F). Six of these (DNp29, p32, g30, p27, c01,

and c02) possess extremely large arbors with both inputs and outputs distributed across the cerebral

ganglia (Figure 5—figure supplements 2 and 3). The remaining 37 DN types have much more spe-

cific targets in the cerebral ganglia (Figure 5—figure supplement 4). For example, the varicose pro-

cesses of DNp04 are mostly contained within a single optic glomerulus (Strausfeld et al., 2007)

(Figure 5—figure supplement 4A–B). In 7/37 of the DN types with targeted brain outputs (DNa05,

p02, g29, b01, b06, p09), the branches with output synapses appear to be small extensions of those

innervating the GNG (Figure 5—figure supplement 4C).

Drosophila transgenes, including those composing split-GAL4 driver lines, may express stochasti-

cally (Pfeiffer et al., 2010), Aso et al., 2014). We examined stochasticity in our DN split-GAL4 driver

lines by inspecting GFP expression in an average of four samples per line (range 2–8). For most of

the DN split-GAL4 lines, we did not observe any stochasticity in expression within the number of

samples. However, 19 out of 132 lines (14.4%) did show some stochastic expression (one line,

SS00735 was excluded from this analysis). Figure 5—figure supplement 6 shows expression pat-

terns from three samples of three examples lines. Note that for unique DN types, in which only one

neuron is targeted per hemisphere, stochastic expression can result in unilateral labeling (SS01558,

SS02299, SS02383, SS01061, SS02392, SS02382, SS02394, SS00865; Figure 5—figure supplement

6C), no expression (SS01080, SS02292, SS00730, SS01060, SS02278, SS01566, SS00726), or both

(SS01567, SS01543, SS01057). Lines in which we observed stochastic expression are marked in

Supplementary file 3. We note that expression patterns may also be affected by transgene location

and properties of the reporter to which the split-GAL4 driver lines are crossed and so should be veri-

fied for any particular experiment.

DN distribution throughout the CNS
Based on our assignment of inputs and outputs (Figure 5F), we compiled the number of DN types

with processes in each brain and VNC neuropil (Figure 6). DNs extend neurites into nearly every

neuropil of the brain, although the connectivity is far from uniform. By far, the region innervated by

the largest number of DNs is the GNG. As discussed above, DN arbors in the GNG are largely pre-

synaptic, representing a significant output area for descending information (Figure 6A, bottom

plot). Restricting the analysis to putative inputs, the largest number of DNs receive input in the infe-

rior posterior slope (IPS) (Figure 6A, top plot). Thirteen brain neuropils contained no DN process

from the 190 DN cells we identified. Between these two extremes, we found DN neurites in 28

defined neuropil regions, exhibiting a roughly exponential distribution (Figure 6A). We did not

observe DN dendrites in the central complex or mushroom bodies, suggesting no direct descending

output from these high-order, integrative regions.

Most (64%) of the DNs descend within the neck connective ipsilateral to their cell body (121 DNs,

54 types vs. 69 DNs, 44 types, contralateral). Most brain neuropils and tracts contain both ipsi- and

contralateral DNs (Figure 6—figure supplement 1A–C). The neuropil with the largest asymmetry in

the number of ipsilateral and contralateral DNs is the inferior posterior slope (IPS), where a large
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Figure 5. Distinguishing DN inputs and outputs. (A) The morphology of DNp02. The DN neurites have a smooth appearance in the posterior ventral

lateral protocerebrum (PVLP) and anterior mechanosensory motor center (AMMC), and varicose processes in the gnathal ganglia (GNG) and the VNC.

Inset shows a magnified view of the DN innervation in the VNC prothoracic ganglia, which have varicose appearance. (B) The morphology of DNp02

with nc82 counter-staining. (C–E) We determined polarity of DNp02 by cell-specific co-expression of membrane-bound GFP (green) and the

presynaptic reporter synaptotagmin-smGFP-HA (magenta). Co-expression (white) is observed in the GNG and VNC, but not in the cerebral ganglion,

indicating the DN is post-synaptic in the brain and pre-synaptic in the GNG and VNC. (F) Innervation profile of DNs in the brain and VNC. In each row,

a filled pixel indicates innervation by the corresponding DN of the CNS neuropil corresponding to the filled column. Green indicates innervation by

smooth process, magenta indicates innervation by varicose processes, and black indicates the region receives both types of processes. Smooth and

varicose process of DNs are intermingle in the brain. The innervation in the gnathal ganglia (GNG) is mostly by varicose processes. Innervation into the

VNC shows varicose endings in all cases.

DOI: https://doi.org/10.7554/eLife.34272.022

The following figure supplements are available for figure 5:

Figure supplement 1. DN presynaptic terminals in the gnathal ganglion.

DOI: https://doi.org/10.7554/eLife.34272.023

Figure 5 continued on next page
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majority of DNs project ipsilaterally. Once in the VNC, the DNs run through eight different tracts,

seven of which are readily identifiable with nc82 staining (Figure 6B). We counted the largest num-

ber of the identified DN axons in the median and intermediate tracts of the dorsal cervical fasciculus

(MTD, ITD). Within the VNC, the majority of DNs terminate in the third thoracic segment (61 types,

120 DNs), and only a fraction of DNs extend to the abdominal ganglia (14 types, 16 DNs;

Figure 6C, Figure 6—figure supplement 1D). Overall, the average DN receives input from

2.7 ± 2.0 neuropil regions in the brain and outputs to 1.9 ± 3.6 neuropil regions in the VNC

(Figure 6D–F).

Organization of DN outputs
We applied hierarchical clustering to the data in Figure 5F to determine the degree to which DN

types segregate according to their projection pattern in the VNC (Figure 7A). The same data are

transformed in Figure 7B to visualize the correlations among neuropil regions that emerge from this

clustering analysis. With the exception of four DNs that send terminals to nearly every neuropil of

the VNC (DNc01, c02, d02 and d03; Figure 5—figure supplement 3; Figure 7—figure supplement

1), we found a high degree of specificity in which neuropils were targeted by individual DN types

(Figure 7B). The analysis supports the existence of two strong clusters, one consisting of cells target-

ing the three segmental pairs of leg neuromeres, and the other targeting the three dorsal neuropils

associated with the neck, wing, and halteres, residing in the first, second, and third thoracic seg-

ments, respectively. Only a few (<10%) of the DNs that project to the dorsal neuropils (Figure 7A,

blue), also have terminals in the ventral neuropils (Figure 7A, yellow), and vice versa. In fact, DNs

with axonal projections to both wing and leg neuropil were quite rare, representing only 6% of the

98 cells types described in our analysis. These include three of the broadly projecting cells described

above and three neurons with sparser projections (DNp18, b01, and g17, see Figure 7—figure sup-

plement 2). This obvious separation between DNs with axon terminals in the dorsal and ventral VNC

neuropil layers suggests independent descending control of wing and leg motor circuits.

Outside of the ~2/3 of DN types that target wing or leg neuropil, most of the remaining third (32/

98) selectively targeted one or both of the intermediate neuropil layers, the tectulum and lower tect-

ulum (Figure 7A). Six of these DNs targeted the abdominal segment as well (DNp29, p13, d01, g33,

p27, and g30). We found only two DNs that terminated exclusively in the smaller association centers:

DNg20, which targets the AMN and VAC (Figure 7—figure supplement 3), and DNg23, which tar-

gets mVAC. These three small neuropils receive input from sensory afferents (Power, 1948;

Boerner and Duch, 2010). We also found one very unique neuron, DNg28, that did not innervate

any VNC neuropil but instead sent branching processes along its surface (Figure 7—figure supple-

ment 4).

As noted above, many DNs have presynaptic terminals in the brain, most commonly in the GNG.

Although to date no cohesive sub-compartmental organization within the GNG has been formalized

(Ito et al., 2014), the high density of projections there allowed us to test whether this region is struc-

tured according to the pattern of DN terminals. We used the nc82 neuropil stain to align to standard

templates the confocal images of brain and VNC expression patterns for each of our split-GAL4

driver lines. For the brain, we used the JFRC2013 template, as described previously (Aso et al.,

2014; Peng et al., 2011). For the VNC, we used a VNC template derived from a female CantonS fly

Figure 5 continued

Figure supplement 2. DN presynaptic terminals in the brain.

DOI: https://doi.org/10.7554/eLife.34272.024

Figure supplement 3. DNs in the pars intercerebralis.

DOI: https://doi.org/10.7554/eLife.34272.025

Figure supplement 4. DN presynaptic terminals in the brain.

DOI: https://doi.org/10.7554/eLife.34272.026

Figure supplement 5. Determining polarity of DNa05 by cell-specific co-expression of a membrane-bound GFP (green) and thepresynaptic reporter

synaptotagmin-smGFP-HA (magenta).

DOI: https://doi.org/10.7554/eLife.34272.027

Figure supplement 6. Reproducibility of neuronal labeling in Split-Gal4 lines.

DOI: https://doi.org/10.7554/eLife.34272.028
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Figure 6. The number of identified DNs and their neurite distribution. (A) The number of DNs innervating

individual brain regions with smooth process (top) and varicose process (bottom). The inset is a heat map of DN

innervation in the brain: sagittal and frontal views show brain neuropils in which the number of DNs with processes

in each compartment are represented with pseudo-color. Polarity was determined based on their terminal

morphology, and confirmed by synaptotamin expression in 55 cell types (see Figure 5). Neuropils of the caudal

part of the brain, including the superior and inferior posterior slope (SPS, IPS) and GNG, contain smooth

processes from the largest number of DNs. The GNG contains varicose processes from the largest number of

DNs. The IPS and inferior bridge (IB) also contain varicose processes of many DNs. (B) The distribution of DNs

Figure 6 continued on next page
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and performed alignment as described in Jefferis et al. (2007). We then overlaid aligned images of

DNs and colored them according to whether they projected to the wing, lower tectulum, or leg

layers of the VNC (Figure 7C–E). In Figure 7F, we overlaid the varicose projections of these same

DNs within the GNG, again colored according to their target pattern in the VNC. Our analysis shows

that the three classes of DNs target different regions of the GNG and that this pattern recapitulates

the dorsal to ventral ordering in the VNC. This analysis suggests that the GNG may be further

divided into functional sub-regions, with possible correlation to distinct motor functions that echo

those in the VNC.

Organization of DN inputs
As a complement to our analysis of the DNs based on their outputs in the VNC (Figure 7), we also

applied hierarchical clustering to the brain neuropils where the cells receive input (see Figure 5F).

Figure 8 shows the resulting table of DN types, sorted according to their putative input regions in

the brain, along with a resulting matrix of correlation values among the brain neuropils. The analysis

suggests the existence of some DN groups and associated clusters of brain neuropils, although the

presence of distinct groupings are not as obvious as they were in the analysis of DN outputs in the

VNC. One broad cluster consisted of cells with input dendrites in a set of posterior neuropils includ-

ing the PLP, SPS, IPS, EPA, EPA, VES, and LAL. The two most densely innervated of these regions,

SPS and IPS, receive input from visual projection neurons of the lobula plate. PLP also receives input

from the lobula plate and contains several optic glomeruli (Panser et al., 2016). In contrast, the LAL

receives projections from the central complex. Another cluster consisted of cells that innervate the

PVLP, WED, GOR, and AVLP. The most densely innervated of these regions, the PVLP, contains the

bulk of the optic glomeruli associated with visual projections from the lobula (Otsuna and Ito, 2006;

Strausfeld and Okamura, 2007; Wu et al., 2016). The remaining clusters are less obvious, and in

general, few coherent patterns emerged from the analysis. For example, it is noteworthy that DNs

with dendrites in the GNG tend not to have inputs in other neuropils. For this reason, the GNG does

not contribute to an obvious cluster of brain regions. This observation underscores an intrinsic limita-

tion of a cluster analysis. Despite the density of innervation, the importance of a particular brain

region will be undervalued if it is associated with DNs that do not receive input from other regions

as well. We conclude that DN clustering based on VNC outputs results in groupings that are more

distinct from one another (have less overlap) than DN clustering based on their brain inputs.

Three prominent descending pathways
Our cluster analysis in Figures 7 and 8 sought an organization of the DNs based on their output and

input regions, respectively. However, the relatively ordered pattern of DN projections into motor

neuropils associated with specific appendages provides the opportunity to assign putative functions

to the brain areas that provide their input. Thus, an alternative strategy - akin to a traditional retro-

grade backfill - is to visualize the regions of the brain that are innervated by cells targeting specific

regions of the VNC (or vice versa, which would represent a orthograde fill). Figure 9A shows maps

of the number of DNs in the brain targeting each of the eight major neuropils of the VNC.

Figure 6 continued

running through different descending tracts. Inset shows the heat map. The majority of DNs run through either the

median tract of the dorsal cervical fasciculus (MTD) or the intermediate tract of the dorsal cervical fasciculus (ITD).

The segmented image is modified from Boerner and Duch, 2010. Anatomical detail including the position and

name for individual tracts are shown in Figure 3—figure supplement 1. (C) The distribution of DNs innervating

individual VNC regions with varicose process. Inset shows the heat map. The number of DNs is greater for the

dorsal side than ventral side in the VNC. The tectulum receive the largest descending input. (D–F) A histogram of

the number of brain (D–E) and VNC (F) regions innervated by different DN types. Note that panels A-C quantify

DN neurons individually, including the number of DNs in a given population type, whereas D-F count DN types,

not individual neurons.

DOI: https://doi.org/10.7554/eLife.34272.029

The following figure supplement is available for figure 6:

Figure supplement 1. Laterality and extent of DNs axonal projections.

DOI: https://doi.org/10.7554/eLife.34272.030

Namiki et al. eLife 2018;7:e34272. DOI: https://doi.org/10.7554/eLife.34272 12 of 50

Research article Neuroscience

https://doi.org/10.7554/eLife.34272.029
https://doi.org/10.7554/eLife.34272.030
https://doi.org/10.7554/eLife.34272


Figure 9B shows the complimentary analysis, in which we show the number of DNs in the VNC that

originate from five of the most densely innervated regions in the brain. The complete data set, from

which these maps are derived, is presented in Figure 9C.

The pattern that emerged in this analysis supports the presence of three major pathways linking

the brain to the VNC. Two of the pathways directly connect specific regions in the brain to one each

of the two motor neuropils associated with the different forms of adult fly locomotion: flying and

Figure 7. DNs differentially address wing/neck/haltere and leg motor systems. (A) Clustering of VNC neuropils based on patterns of innervation by

each DN. Filled pixels indicate that we observed varicose processes in the neuropil represented by the corresponding row, for the DN in the

corresponding column. Pixel color indicates VNC compartment grouping: Dorsal neuropils (blue), tectulum (green), lower tectulum (red), leg neuropils

(yellow), or other regions (AMN, AS, VAC, mVAC; gray). (B) Autocorrelation matrix of innervation pattern in the VNC. For each pair of VNC

compartments, the Pearson’s correlation coefficient between DN innervation profiles was calculated. The strongest correlation was amongst

compartments within the same grouping (see colors above) but in different segments. (C–F) Examination of DN varicose processes in the brain gnathal

ganglia. (C) Three example DNs from different split-GAL4 lines aligned to a standard brain template and overlaid. Neurons are colored according to

which VNC compartments they innervate (wing neuropil, blue; leg neuropils, yellow; lower tectulum, red). (D) Sagittal view of axonal projectons within

the VNC of a subset of the DN population. (E) Transverse view of DN terminals in the different VNC segments: metathoracic (E1), mesothoracic (E2) and

prothoracic (E3). (F) Horizontal view of DN innervation in the GNG. Magnified view of dashed box in C, shows images of the three example DNs (left). A

group of 15 DNs for which aligned VNC data were available are also shown in the same view (right). The varicose processes of DNs targeting the same

compartments in the VNC also form separate clusters in the GNG.

DOI: https://doi.org/10.7554/eLife.34272.031

The following figure supplements are available for figure 7:

Figure supplement 1. Putative octopaminergic DNs.

DOI: https://doi.org/10.7554/eLife.34272.032

Figure supplement 2. DN projecting to both wing and leg neuropil.

DOI: https://doi.org/10.7554/eLife.34272.033

Figure supplement 3. DN projecting to the ventral association center.

DOI: https://doi.org/10.7554/eLife.34272.034

Figure supplement 4. DN projecting outside the VNC.

DOI: https://doi.org/10.7554/eLife.34272.035
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walking. The first of these is a large number of DNs connecting neuropils of the posterior slope (IPS

and SPS) to the dorsal neuropils of the VNC (neck/wing/haltere neuropil and the tectulum). The exis-

tence of a major pathway linking the posterior slope and the dorsal VNC neuropils is supported by

many prior studies in blowflies (Strausfeld and Gronenberg, 1990; Strausfeld and Lee, 1991). The

second pathway consists of DNs connecting the GNG to the ventral neuropils of the VNC. Note that

although many DNs have output synapses in the GNG, the analysis in Figure 9 is based on inputs.

Thus, the enhanced connectivity seen here represents a pathway carrying information from the GNG

to the leg neuromeres. Our analysis, which is based on a large number of cells, suggests that these

two direct pathways represent dominant conduits of information flow from the brain to the VNC. In

contrast to these two direct pathways, the third pathway that emerged from our analysis was a con-

vergent pathway onto the tectulum. In addition to the inputs from IPS and SPS forming the first

direct pathway, the tectulum also received input from a large number of neuropils distributed

Figure 8. Brain innervation by DNs. (A) Clustering of brain neuropils based on patterns of DN innervation. Both brain neuropils (rows) and DNs

(columns) were sorted by hierarchical clustering based on Pearson’s correlation as a metric and average linkage for calculating distances. Only brain

compartments with DN innervation are shown. (B) Autocorrelation matrix shows the similarity of DN innervation pattern among brain regions. For each

pair of brain compartments, the Pearson’s correlation coefficient between DN innervation profiles was calculated.

DOI: https://doi.org/10.7554/eLife.34272.036
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Figure 9. DN connectivity between the brain and VNC. (A) Dendritic distribution of DNs grouped by output. Heat

map colors indicate the number of DN types innervating each brain neuropil for different groups of DNs (A1–A8)

defined by their projection to a specified VNC neuropil. The brain innervation pattern is similar among DN groups

projecting to the different dorsal VNC neuropils (neck motor, A1; wing, A2; haltere, A3) and among DN groups

projecting to the different segmental leg neuropils (foreleg, A5; middle leg, A6; hindleg, A7). The distribution

pattern for DNs projecting to the lower tectulum is different from others, with the largest number of DNs

Figure 9 continued on next page

Namiki et al. eLife 2018;7:e34272. DOI: https://doi.org/10.7554/eLife.34272 15 of 50

Research article Neuroscience

https://doi.org/10.7554/eLife.34272


throughout the brain, with the notable exception of the mushroom bodies and central complex

(Figure 9C). Given that the tectulum receives input from so many different brain regions, is sand-

wiched between the dorsal motor centers and the leg neuromeres, and spans all three thoracic seg-

ments, it is tempting to postulate that this neuropil functions in behaviors requiring substantial

sensory integration and motor coordination such as courtship or grooming, whereas the direct path-

ways targeting the dorsal and ventral motor neuropils function more narrowly in locomotion. The

pathways projecting to the other VNC neuropils (AS, AMN, VAC, mVAC) are more difficult to charac-

terize because they include fewer of the DNs identified in this study. In general, they appear to fol-

low a convergent pattern in that they receive input from cells originating from an array of different

brain neuropils, without any obvious dominant source. One possible exception is the relatively high

number of DNs connecting the PVLP with the lower tectulum, which we discuss further below. An

analysis visualizing brain innervation patterns based on VNC clusters (Figure 9—figure supplement

1), and vice versa (Figure 9—figure supplement 2), indicates that the three main pathways identi-

fied here are the most prominent organization to emerge from the current analysis.

The axons within the three major pathways distribute among eight descending tracts in a some-

what consistent pattern (Figure 9—figure supplement 3). DNs targeting neck, wing, and haltere

neuropil descend via one of five tracts: the DLT, MDA, MTD, ITD, and VLT; however, the vast major-

ity of cells within this pathway run within the MTD. The DNs connecting the GNG with the leg neuro-

meres are distributed much more evenly among a larger number of tracts: DLT, MTD, ITD, VLT,

DLV, VTV. Although the DNs projecting to the tectulum arise from a large number of brain nuclei, a

very large fraction of them descend via the MTD, with the smaller fraction distributed among all

other major tracts.

Sub-neuropil analyses of DN connectivity
Our study thus far has relied upon a neuropil-to-neuropil analysis of connectivity. Although this is suf-

ficient to reveal large-scale organization of descending pathways, important organization of DN syn-

aptic connectivity likely exists at a finer, sub-neuropil resolution (Tsubouchi et al., 2017). Such

detailed analyses are possible because we aligned data from each DN type to a standard template

(see Materials and methods). A comprehensive analysis of all sub-neuropil DN connectivity is beyond

the scope of this paper; however, to demonstrate the importance of sub-neuropil organization and

to further explore the sensorimotor pathways identified above, we performed more detailed analy-

ses on three distinct examples. In the sections below, we describe the tract-based motor arrange-

ment of both leg and wing neuropil, as well the organization of DNs descending from the optic

glomeruli.

Figure 9 continued

emanating from the posterior ventral lateral protocerebrum (PVLP). (B) Distribution of DN axonal projections

grouped by input. Heat map colors indication the number of DN types innervating each VNC neuropil for different

groups of DNs (B2–B6) defined by their projection from a specified a brain neuropil. The VNC atlas is shown in

the left panel. Innervation biased for the leg neuropils is observed in DNs from the GNG, for the lower tectulum

from the PVLP, and for dorsal neuropils from the AMMC, IPS and SPS. (C) The connectivity matrix shows with

pseudocolor the number of DNs that innervate both a given brain (columns) and VNC (rows) neuropil. Rich

connections are observed from inferior and posterior slope (IPS and SPS) to the dorsal neuropils and from the

gnathal ganglia (GNG) to the leg neuropils. For neuropil abbreviations, see Supplemental file 6.

DOI: https://doi.org/10.7554/eLife.34272.037

The following figure supplements are available for figure 9:

Figure supplement 1. Innervation profile of DNs sorted by innervation clusters in the VNC.

DOI: https://doi.org/10.7554/eLife.34272.038

Figure supplement 2. Innervation profile of DNs sorted by innervation clusters in the brain.

DOI: https://doi.org/10.7554/eLife.34272.039

Figure supplement 3. Neuronal pathways of DNs.

DOI: https://doi.org/10.7554/eLife.34272.040
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Tract organization of DN input to leg motor centers
Insect leg neuropil is organized into sub-compartments (Leise, 1991); sensory afferents from differ-

ent classes of mechanoreceptors project to different layers within the leg neuromeres (Merritt and

Murphey, 1992), and the motorneurons form a myotopic map such that the position of their den-

drites along the medial-lateral axis reflects the proximal-distal position of the muscles they innervate

in the leg (Brierley et al., 2012; Landgraf et al., 2003). We observed that the two tracts conveying

the largest number of DNs to the leg neuropil, the VLT and MTD, terminate in different strata. The

VLT runs along the dorsal surface of the leg neuromeres, near the midline of the VNC, whereas the

MTD, together with the DLV, fuse with the oblique tract (OT) running diagonally through each neu-

romere from its dorsal to ventral surface (Figure 10A).

We divided DNs with axon terminals in the leg neuromeres according to the tracts through which

they descend (Figure 10B–F; see Figure 6B and Figure 9—figure supplement 1 for tract refer-

ence). We observed two distinct axon terminal morphologies between these groups. The DNs tra-

versing the VLT and ITD tracts end in bushy axon terminals that are restricted to the dorso-medial

zone of each leg neuromere (Figure 10B,D). In contrast, the termini of DNs from the MTD or DLV

that pass through the OT were more linear, extending across most of the neuromere (Figure 10E,F,

Figure 10—figure supplement 1). In addition, we observed synaptotagmin labeling of DN termini

throughout the entire OT (Figure 10G, bottom panels). We thus propose that leg motion is con-

trolled by at least two different DN descending systems: one traversing the VLT, which likely contact

premotor leg circuits (n = 12 DN types) such as those coordinating walking or movement of the

proximal leg joints, and one traversing the OT via the MTD and DLV (n = 7 DN types), which have

the opportunity to control motor neurons innervating muscles spanning all leg joints (Figure 10—fig-

ure supplement 2).

Tract organization of DN input to wing motor centers
We identified a total of 29 different DN types supplying the wing neuropil (blue, Figure 7A), an area

that is defined by the dendritic innervation of wing motor neurons (Leise, 1991). Compared to the

extensive ramification of wing motor neurons throughout this neuropil (Vonhoff and Duch, 2010),

the axonal projections of the DNs are notably sparse in most cases (Figure 11). Closer inspection of

axonal trajectories revealed that wing DNs in the MTD diverge upon entering the VNC. The majority

of the DNs that run in the MTD bend ventrally soon after they enter the VNC, whereas a smaller pro-

portion continue along the dorsal surface of the nerve cord before veering ventrally in the second

thoracic segment to rejoin the primary MTD group (Figure 11A–E). A similar morphology has been

observed in the blowfly, Phormia, and the dorsal portion we observe resembles the dorso-medial

tract in that species (MDT; Merritt and Murphey, 1992). In general, the DNs in the ventral MTD

route innervate a ventral layer of the wing neuropil, whereas those in the dorsal route terminate

above them in a dorsal layer (Figure 11G). Thus, our data suggest that the wing neuropil is divisible

into two thin dorsal and ventral sublayers, with different DN innervation patterns (Figure 11H). This

pattern appears to correspond to a stratification of the motor neurons innervating the two function-

ally distinct types of flight muscle. Motorneurons of the large power muscles, whose stretch-acti-

vated oscillations drive the coarse back and forth motion of the wings, have dendrites in the dorsal-

most portion of wing neuropil. In contrast, the dendrites of motorneuorns innervating the much

smaller steering muscles reside primarily in the ventral layer of wing neuropil (Figure 11—figure

supplements 1 and 2). We therefore suggest that there may be a separate set of DNs coordinating

the power muscles versus the steering muscles.

The sub-neuropil scale analysis of DN projections within the leg and wing neuropils (Figures 10

and 11) suggests that DNs may cluster into groups that target different zones within the primary

motor neuropils. Further studies will be necessary to determine whether these anatomically identifi-

able sub-compartments of VNC neuropils are functionally significant.

Connecting sensory features to motor circuits
To directly examine the correspondence between sensory features and descending pathways, and

as a final demonstration of DN sub-neuropil organization, we analyzed DNs that overlap with the

optic glomeruli (Strausfeld and Okamura, 2007; Wu et al., 2016; Panser et al., 2016), small,

anatomically distinct subcompartments of the ventral and posterior lateral protocerebrum (VLP, PLP)
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Figure 10. Tract-based analysis of DN axonal projection patterns in leg neuropils. (A) Major DN types projecting to leg neuropils have different

terminal patterns that segregate by descending tract. Horizontal (A1) and frontal (A2) views of overlaid aligned DNs running through VLT, ITD (green),

or DLV and MTD (magenta) illustrate these two disparate patterns. (B–F) Individual examples of axonal projections to leg neuropil for DNs running

through the (B) VLT, (C) DLT, (D) ITD, (E) oblique via MTD, or (F) oblique via DLV tracts. Transverse sections of the prothoracic (top), mesothoracic

Figure 10 continued on next page
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that each receive inputs from a distinct visual projection neuron type and are suggested to encode

different visual features. Individual glomeruli have been shown to act as looming detectors

(Klapoetke et al., 2017), encode fast (von Reyn et al., 2014) or slow (Wu et al., 2016) looming

velocities, and aid figure-ground discrimination (Aptekar et al., 2015). Furthermore, specific activa-

tion of the visual neurons projecting to distinct glomeruli elicit different behavioral phenotypes

(Wu et al., 2016).

We imaged the expression pattern for each of our split-GAL4 lines at a high resolution with an

nc82 counter-stain. We identified individual optic glomeruli based on nc82 staining and then scored

each of the DNs innervating these areas for strong, weak, or no innervation in each of the 18 identi-

fied optic glomeruli (Figure 12). Most of the ventral DNs had smooth branches in the optic glomer-

uli, indicating they receive input there (Figure 12—figure supplements 1 and 2). One of the DNs,

DNb05 is unusual in that it innervates both optic glomeruli and olfactory glomeruli (Figure 12—fig-

ure supplement 3). The number of DN outputs from each optic glomeruli were non-uniform, consis-

tent with previous findings in blowflies (Strausfeld and Okamura, 2007; Strausfeld et al., 2007).

Only half of the optic glomeruli are innervated by dendrites of the DNs in this study. Two of the

optic glomeruli, LC4 and LC22 (also called LPLC4; Panser et al., 2016; Wu et al., 2016) are note-

worthy in providing divergent output to a large number of DNs (nine and eight cells, respectively,

Figure 12). LC4 and its neighbors, LPLC1 and LPLC2, form a cluster of densely innervated optic glo-

meruli in the ventral lateral protocerebrum (Figure 12—figure supplement 1), whereas LC22 and a

nearby glomerulus, LPLC3, constitute a more posterior group (Figure 12—figure supplement 2).

The LC4 glomerulus is of particular interest because it is innervated by the giant fiber (GF, desig-

nated DNp01 in our nomenclature). The GF neuron has been analyzed in great detail both anatomi-

cally (Power, 1948; Levine and Tracey, 1973; Koto et al., 1981; Strausfeld and Bassemir, 1983)

and physiologically (Levine and Tracey, 1973; Wyman et al., 1984; Mu et al., 2014;

Fotowat et al., 2009; von Reyn et al., 2014; von Reyn et al., 2014) and is critical for a fast mode

of escape takeoff in which the fly jumps into the air without prior coordination of its wings

(von Reyn et al., 2014). Recent work has confirmed that LC4 neurons are functionally presynaptic to

the GF and convey information about high-velocity looming expansion, such as that caused by an

attacking predator (von Reyn et al., 2014). Milde and Strausfeld, 1990 previously suggested that

the GF in a larger species of fly was a member of a cluster of descending neurons with overlapping

dendrites that targeted different areas of the VNC. Here, we have identified a group of ventral DNs

that all have dendrites in the LC4 glomerulus (Figure 13, see also Figure 12—figure supplement

1). Although these cells vary widely in their dendritic morphology, all of them arborized within the

LC4 glomerulus, and six of them also extend dendrites into the LPLC2 glomerulus, also innervated

by GF dendrites.

The ramifications within the LC4 glomerulus differ slightly among these LC4 DNs (Figure 13B).

For example, DNp04 innervates the entire glomerulus, whereas DNp02 innervation is confined to

the ventral portion of the LC4 glomerulus (Figure 13B). Localization of dendrites within the optic

glomeruli was unexpected, given that previous studies found scant evidence that the glomeruli are

organized with retinotopic structure. We found that the dendrites of most DNs innervating optic glo-

meruli (with the exception of DNp04) are spatially biased within the glomerulus (Figure 12—figure

supplements 1 and 2), indicating glomeruli may pass on spatial as well as feature information to

downstream partners. Three out of the nine LC4 glomerulus DN types project to leg neuropils

Figure 10 continued

(middle) and metathoracic (bottom) neuromere are shown. In most cases, the termination zone of axons were similar among the different segments and

for DNs withing the same tract. DNs do not innervate the hindleg neuropil in some cases. Note DNg14 was the only DN identified in this study that

traverses the DLT tract. (G) Examples of neuronal polarity of DN axonal projection in leg neuropils. The synaptotagmin signal (magenta) was observed

in terminals all along the oblique tract (bottom row).

DOI: https://doi.org/10.7554/eLife.34272.041

The following figure supplements are available for figure 10:

Figure supplement 1. DNs running through the oblique tract.

DOI: https://doi.org/10.7554/eLife.34272.042

Figure supplement 2. Potential overlap between DNs and leg motor neurons.

DOI: https://doi.org/10.7554/eLife.34272.043
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Figure 11. Tract-based analysis of DN axonal projection patterns in the wing neuropil. (A) Sagittal view of two example DN types targeting wing

neuropil (blue dashed line) via the MTD tract. The axon of DNp03 (green) travels ventrally, with the volume of its major axon in the MTD. In contrast,

DNg03 runs through the dorsal surface of the VNC from T1 to the middle of T2 segments, and enters the MTD tract in T2 (magenta). (B–C) Frontal view

of more example axonal projections (B) for DNs running through the ventral route (left) and dorsal route of the MTD (right). Merged images of DNs

running through ventral and dorsal MTD route (C) shown for a middle section of the prothoracic neuropil, anterior and posterior sections of the

mesothoracic neuropil, and an anterior section of the metathoracic neuropil illustrate how the two groups target different sublayers in the wing

neuropil. (D–H) Individual examples of DN axonal projections in the wing neuropil for DNs running through the (D) MTD ventral, (E) MTD dorsal, (F)

MDA, (G) DLT, and (H) ventral route tracts. Shown are a horizontal view of the whole VNC (top), and frontal sections of the prothoracic (2nd panel),

Figure 11 continued on next page
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(DNp02, DNp05 and DNp11; Figure 13C–D), one projects to the wing neuropil, and the majority (6/

9) target the lower tectulum, which is also targeted by the GF. The dendrite of the tergotrochanteral

motor neuron and the peripheral synapsing interneuron - both of which are the crucial components

for fly escape takeoffs - are present in the lower tectulum and show gap-junction coupling with the

GF (King and Wyman, 1980; Blagburn et al., 1999). In addition, we found several interneurons that

connect the lower tectulum with other VNC compartments, including leg and wing neuropil (Fig-

ure 4—figure supplement 2), suggesting the functional importance of circuits in the lower tectulum,

similar to those in the tectulum layer above it, for coordinating actions that involve both leg and

wing appendages.

Figure 11 continued

mesothoracic (3rd) and metathoracic neuromeres (4th). Synaptotagmin labeling is shown at the bottom for the bilateral pair. Note DNg27 is the only

DN identified in this study which runs through the MDA.

DOI: https://doi.org/10.7554/eLife.34272.044

The following figure supplements are available for figure 11:

Figure supplement 1. Innervation in the wing neuropil of DNs and interneurons.

DOI: https://doi.org/10.7554/eLife.34272.045

Figure supplement 2. Innervation in the wing neuropil of DNs and interneurons.

DOI: https://doi.org/10.7554/eLife.34272.046

Figure 12. DNs from optic glomeruli. (A) A matrix indicating DN innervation in the optic glomeruli. Neurite

innervation in individual glomeruli was observed with a 63x objective. Black and gray pixel shading represent

dense and sparse innervation, respectively. Many DNs were identified that innervate the LC4, and LC22/LPLC4

glomeruli. No DNs were identified that innervated about a half of the glomeruli. (B) The number of DNs

innervating individual glomeruli is shown as pseudo-color onto the 3D-atlas of optic glomeruli. More DNs were

found innervating the more posterior-ventral glomeruli.

DOI: https://doi.org/10.7554/eLife.34272.047

The following figure supplements are available for figure 12:

Figure supplement 1. Morphology of DNs from optic glomeruli in the posterior ventral protocerebrum.

DOI: https://doi.org/10.7554/eLife.34272.048

Figure supplement 2. Morphology of DNs from optic glomeruli in the posterior lateral protocerebrum.

DOI: https://doi.org/10.7554/eLife.34272.049

Figure supplement 3. Morphology of a DN innervating both olfactory and optic glomeruli.

DOI: https://doi.org/10.7554/eLife.34272.050
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Discussion
In this study, we systematically characterized the organization of DNs, a population of interneurons

that conduct information from the brain of a fly to motor centers in the VNC. Our analysis was based

on the morphologies of 98 DN cell types, covering 190 bilateral pairs of neurons. To discern DN

Figure 13. DNs forming a dendritic cluster within the LC4 glomerulus project to the lower tectulum. (A) The morphologies of DNs which have dendritic

innervation to the LC4 glomerulus (‘LC4 DNs’). The maximum intensity projection of a confocal stack with 20x objective are shown. All DNs partially

share input (LC4 glomeruli) and most of them have axonal projection into the lower tectulum. These DNs are comparable to the ‘descending neuron

cluster’ reported in blowflies (Milde and Strausfeld, 1990). (B) Simultaneous labeling of two different DNs innervating the LC4 glomerulus, visualized

using multicolor flip out (see Materials and methods). Three examples are shown. The shape of the LC4 glomerulus is shown with a dotted line. (C)

Sagittal view of LC4 DN axonal projections within the VNC. All but one (8/9) have axon terminals in the lower tectulum region of the VNC. One DN

does not innervate this region (DNp03). An example of simultaneous labeling of 2 DNs is shown (DNp04 and p06, right). (D) Frontal view of LC4 DN

projections in the mesothoracic neuropil. Projections are focused in the central region of the VNC volume, in the lower tectulum layer.

DOI: https://doi.org/10.7554/eLife.34272.051
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morphologies, we segmented individual neurons from driver lines targeting many cells, and we also

generated a library of 133 split-GAL4 lines that sparsely target 54 DN types. By registering the mor-

phology of all the DNs with standardized maps of the brain and VNC, we identified three major sen-

sory-motor pathways (Figures 7 and 9). One pathway links two neuropils on the posterior slope of

the brain (IPS and SPS) to dorsal neuropils associated with the neck, wing, and haltere motor sys-

tems, and a second carries neurons with dendrites in the GNG to the leg neuromeres. The third

pathway consists of DNs originating from an array of brain neuropils that converge to innervate the

tectulum, a long thin region of the VNC sandwiched between the wing and leg motor neuropils

(Figure 14A,B).

The simple, tripartite anatomical pattern we observe may reflect both the functional organization

of the DNs as well as the evolutionary history of Drosophila. With the notable exception of insects

(and the mythical horse, Pegasus), all flying animals use a modified foreleg as a wing (Gatesy and

Dial, 1996; Thewissen and Babcock, 1991; Prokop et al., 2017; Seki et al., 2017). That is, an

appendage originally evolved for walking was coopted for flight in pterosaurs, birds, and bats — a

fact supported by the fossil record, comparative morphology, and the organization of the underlying

motor circuitry (Gross and Oppenheim, 1985; Ryan et al., 1998). The evolution of flight was quite

different in insects, because their wings and associated muscles, did not arise via sacrifice of an

entire ancestral leg (Kukalova-Peck, 1978; Dudley, 1994; Bruce and Patel, 2018), and thus the

novel aerial mode of locomotion did not strongly compromise the more ancient, terrestrial mode.

As a result, insects are unique in possessing two somewhat independent motor systems, a fact that

is elegantly manifest in the organization of the VNC and the pattern of DN innervation that we

observed: the ventral leg neuromeres of flies resemble those of apterygote hexapods from which

they derived, whereas the more recent wing neuropil sits atop the VNC like icing on a cake. We

speculate that the GNG-to-leg neuromere descending pathway represents a very ancient pathway

and some of its member DNs may have deep homologies with other arthropod taxa, whereas the

pathway linking the posterior slope neuropils to the dorsal motor neuropils of the neck, wing, and

haltere are more recently evolved within insects.

Many behaviors such as grooming, courtship, take-off, and landing require the simultaneous use

of both legs and wings. Thus, insects must have a means of coordinating activity across the two

motor systems, a need that arose during or after the evolution of flight. As described more fully

below, we speculate that the teculum, and possibly the lower teculum, are neuropils that mediate

this functional integration of motor actions between the two systems. The convergence of DNs into

the tectulum from such a broad array of brain nuclei may reflect the high degree of sensory integra-

tion required to trigger and regulate these more complex, multi-appendage behaviors.

Estimating DN number
Based on PA-GFP labeling of neurons in the neck connective, we counted ~350 DN pairs. This is

within the range of 200–500 DN pairs estimated in other insect species (Gronenberg and Straus-

feld, 1990; Okada et al., 2003; Staudacher, 1998; Gal and Libersat, 2006), but smaller than a

value of ~550 pairs estimated in Drosophila based on backfills using a dextran dye (Hsu and Bhanda-

wat, 2016). Part of this discrepancy can be explained by the fact that our count excluded several

specialized cell populations that were included by Hsu and Bhandawat (2016). These include a set

of ~19 pairs of neck motor neurons (Strausfeld and Seyan, 1985b), whose axons exit the neck con-

nective posterior to the region we illuminated for PA-GFP photoconversion (Sandeman and Markl,

1980), as well as 16 neurons selectively innervating the retrocerebral complex (Shiga et al., 2000).

We did, however, include one of these cells (DNd01), which innervates both the VNC and retrocere-

bral complex. Our analysis is also likely an underestimate of the total because the nsyb-LexA driver

line we used to pan-neuronally express PA-GFP, may not label all neurons. For example, this line

does not label the Giant Fiber. It is also possible that certain cells are harder to label using the PA-

GFP approach as opposed to dextran backfills. The estimates from the two studies agree quite

closely for DNs with cell bodies in the cerebral ganglia (172 in this study vs. 206 in Hsu and Bhanda-

wat, 2016). Most of the discrepancy concerns DNs in the GNG group; we counted 180 pairs, only

51% of the number reported by Hsu and Bhandawat. Taking our estimate of 350 as a lower bound

and 550 an upper bound, we estimate that the DNs we have described in this study represent

between one third and one half of the entire population.
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Figure 14. Anatomical organization of DNs in Drosophila. (A) Sagittal view schematic of brain and VNC illustrating

the major descending pathways. Gross innervation areas of different DN types are shown with color. Inset shows

number of each DN type targeting the three main VNC layers. (B) The wiring diagram between the brain and VNC

via DNs. Only the major connections are shown. (C–D) Schematic of DN axonal projection into wing neuropil

shown in sagittal (C) and frontal (D) views. DN populations that supply axons from the dorsal surface (type-II)

provide more terminals than those contained within the more ventral MTD tract (type-I). See also Figure 11.

Type-I DNs are more likely to project to the dorsal zone, whereas the type-II DNs are more likely to project to the

ventral zone of the wing neuropil. (E–F) Schematic showing two types of DN innervation patterns in leg neuropils

Figure 14 continued on next page
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Identification of particular DN types in our study relied on the existence of a GAL4-line in the

Rubin (Jenett et al., 2012) or Vienna (BrainBase, http://brainbase.imp.ac.at/) collection with sparse

enough expression to recognize individual DN morphology. Additionally, most of the expression

patterns we screened were from female flies, thus our analysis would not include any potential male-

specific DNs. As a result, we did not find some DNs that have been reported in other studies, includ-

ing the Moonwalker Descending Neuron (MDN), which controls backwards walking in flies

(Bidaye et al., 2014), and pIP10/p2b (von Philipsborn et al., 2011; Kohatsu et al., 2011), which

are involved in the male courtship sequence.

Pathways to wing neuropil
We found a direct pathway linking the posterior slope of the brain to dorsal VNC neuropils. The pos-

terior slope is innervated by lobula plate tangential cells (LPTCs) projecting from the optic lobe,

which are excited by patterns of optic flow resulting from self-rotation (Krapp and Hengstenberg,

1996; Borst et al., 2010). These optic flow patterns are especially relevant during flight, when the

fly is able to move freely about all six degrees of freedom, and it has been suggested that LPTCs

mediate both corrective steering maneuvers of the wings (Wertz et al., 2008; Haikala et al., 2013;

Kim et al., 2015) as well as gaze stabilization of the head (Strausfeld et al., 1987; Milde et al.,

1987; Huston and Krapp, 2008; Kim et al., 2017; see also review, Borst et al., 2010;

Egelhaaf et al., 2012). Most of the DNs in this pathway targeted all three segmental dorsal VNC

neuropils, which contain neck (T1), wing (T2), or haltere (T3) motor neurons (Figure 7B), sensory neu-

ron projections from associated mechanoreceptors (Chan and Dickinson, 1996; Fayyazuddin and

Dickinson, 1996), and premotor interneurons (Strausfeld and Seyan, 1985b). DN innervation of all

three segmental dorsal neuropils is consistent with recent studies showing that neck and wing move-

ments are highly correlated (Suver et al., 2016; Kim et al., 2017) and suggests that the DNs of this

major posterior slope-to-dorsal neuropil pathway are involved in flight control. This notion is con-

firmed by recent whole cell recordings from tethered flying flies showing that three members of this

population are strongly correlated with compensatory visual responses (Suver et al., 2016), and

another is involved with spontaneous turns and collision avoidance (Schnell et al., 2017).

A similar pathway, in which DNs receiving inputs in the posterior slope target flight neuropil, has

been observed in blowflies and flesh flies (Strausfeld and Lee, 1991). Strausfeld and Lee contrasted

these with other DNs in the protocerebrum that have anterior dendrites near the outputs of the lob-

ula that project to ventral leg neuropils. They suggested that the posterior and anterior DN proto-

cerebral pathways are parallel systems linked to separate photoreceptor channels that process

different features of the visual scene (e.g. color vs. motion) and may be loosely analogous to the dor-

sal and ventral streams of the mammalian visual system (Strausfeld and Lee, 1991). Our

dataset allowed us to evaluate this hypothesis in Drosophila by examining the subset of 42 DNs with

dendrites in the protocerebrum (Figure 15). In keeping with the observations from large fly species,

we did find examples in which a DN with more posterior dendrites (e.g. DNg02, Figure 15A, left)

projected to the dorsal part of the VNC, whereas a DN with anterior dendrites (e.g. DNg13,

Figure 15A, right) projected to the ventral leg neuropils (see also Figure 15B–C). We also found

that the median location of a DN’s dendrites along anterior-posterior axis largely predicted whether

its axons targeted dorsal or ventral leg neuropil (Figure 15D; although see exceptions DNb01,

DNb06, DNp07, and DNp18). However, we found that the dendritic locations of DNs projecting to

the dorsal and leg neuropils of the VNC are not segregated into separable, parallel groups, but

instead form a continuous pattern of innervation in the protocerebrum. That is, the DN representa-

tion is graded in the protocerebrum, at least at the level of resolution of our analysis. Furthermore,

the dendritic arbors of many DNs are broad enough that they sample from both anterior and

Figure 14 continued

for the whole VNC (E) and a single leg neuropil (F). The majority of DNs send projections to the medio-dorsal area

of leg neuropil (magenta), whereas DNs running through oblique tract via MTD or DLV have fewer terminals and

extend to the ventral part of the leg neuropil (green). In most cases, DNs do not innervate the ventral association

center (VAC), the ventralmost part of the VNC, which is enriched for afferent sensory projections (F).

DOI: https://doi.org/10.7554/eLife.34272.052
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Figure 15. Biased representation in the protocerebrum among DNs targeting wing and leg motor areas. (A) Morphology of DNs preferentially

innervating anterior (DNg02, right) and posterior parts of the brain (DNg13, left). DNg02 projects to dorsal VNC, whereas DNg13 projects to ventral

VNC. (B–C) Frontal view of brain neurite morphology for four DNs projecting to the (B) dorsal or (C) ventral neuropils. The dorsal-projecting DNs have

neurites limited to the posterior side of the brain, whereas the neurites of ventral-projecting DNs extend to the anterior side of the brain. (D) Neurite

distribution of the DNs. The relative density of neurites for each DN are shown in gray scale along the anterior-posterior axis based on aligning the

data in the registered brain. The red circle indicates the center of mass of the neurite distribution. Along the x-axis, the DNs are arranged in by center

of mass position from anterior to posterior. Neurite density was normalized by the maximum value for individual neurons. Table below shows DN

projection neuropils in the VNC (blue, dorsal neuropils; yellow, leg neuropils). DNs with innervation toward the ventral side are more likely to project to

leg neuropils. (E) Schematic of hypothesized information flow in visual descending pathways. The DN dendritic regions in the protocrebrum are not

separated, rather there may be a gradient in the preference for axonal projection.

DOI: https://doi.org/10.7554/eLife.34272.053
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posterior regions of the protocerebrum, suggesting that many DNs integrate information from both

the lobula and lobula plate. Rather than the two separate parallel pathways suggested by

Strausfeld and Lee (1991) — one carrying visual information from the lobula plate to the wing neu-

ropil and the other carrying information from the lobula to the leg neuropil — we propose that there

is a mixing of this visual information in the protocerebrum, possibly in a graded manner along the

anterior-posterior axis (Figure 15E). A similar divergence and convergence of connectivity has been

described in the brainstem of mice. Brainstem nuclei differentially address spinal circuits, forming

exclusive connections either with forelimbs, hindlimbs, or both with differing connection strength

(Esposito et al., 2014).

Among all DNs targeting the wing neuropil, we found evidence for at least two distinct control

systems, one entering the neuropil from a dorsal tract and targeting the dorsal and medial portion

of the wing neuropil layer, where power muscle motor neuron dendrites reside, and one entering

the neuropil from a more ventral tract and invading primarily the ventral and medial wing neuropil,

where many steering muscle motor neurons dendrites reside (Figure 14C,D). In Drosophila, the

power muscles comprise two sets of stretch activated muscles attached across the thorax orthogo-

nally (Dickinson and Tu, 1997). Alternate deformation of the thoracic cavity by these muscles drives

the wing stroke indirectly, powering both flight and courtship song. In contrast, the smaller steering

muscles attach to the base of the wing hinge and act directly to coordinate the wing movements

that change flight course (Heide and Götz, 1996; Lindsay et al., 2017), or actuate finer movement,

such as the timing of song pulses (Ewing, 1979). Our results suggest separate descending control of

the power and steering muscle systems. Outside of flight and song, flies perform a wide range of dif-

ferent behaviors with their wings, including grooming (Szebenyi, 1969), aggressive displays

(Dow and von Schilcher, 1975), and preparation for takeoff (Trimarchi and Schneiderman, 1995).

Although we found that the posterior slope had the largest number of DNs innervating wing neuro-

pil, a wide range of other brain neuropils, including the GNG, VES, PLP, AMMC, SAD, SMP, and

LAL, are also connected to the wing neuropil, albeit via a smaller number of DNs. These sparser

pathways may be important for coordinating wing motion when the flies are not flying.

Pathways to leg neuropils
Despite the trend described in the previous section, in which DNs with more anterior dendrites in

the protocerebrum tend to target leg neuropil, our analysis (Figure 9) found that a different brain

region, the GNG, had the strongest DN connectivity to the six ventral neuromeres of the VNC. This

was true even after excluding the many DNs whose neurites are presynaptic in the GNG. Indeed,

90% (88/98) of the DN types we found have processes in the GNG, most of which are varicose termi-

nals containing synaptogagmin, and thus likely output terminals. We found that only one-third (29/

88) of DNs with processes in the GNG had dendrites in that region, two-thirds of which (18/29) tar-

get leg neuropil without any terminals in the dorsal wing, neck, or haltere neuropils.

Given the GNG’s evolutionary history as a separate anterior segmental ganglion (Niven et al.,

2008), it is perhaps not surprising that this neuropil is strongly connected to more posterior motor

centers. The suboesophageal ganglion, which includes the GNG (Ito et al., 2014), is involved in a

variety of behaviors, including walking (Kien and Williams, 1983; mantis, Roeder, 1937; locust,

Kien, 1990a,Kien, 1990b; stick insect, Graham, 1979a,Graham, 1979b,Graham, 1979a cockroach,

Bässler et al., 1985), stridulation (Hedwig, 1986; Hedwig, 1994; Lins and Elsner, 1995), flight initi-

ation (Ramirez, 1988), head movement (Altman and Kien, 1979; Kien and Altman, 1984), and res-

piration (Ramirez, 1988; Otto and Janiszewski, 1989; Otto and Hennig, 1993). However, the

GNG has been most specifically implicated in the temporal patterning of walking (Kien, 1983;

Kien, 1990a; Kien, 1990b; Kien and Altman, 1984; Kien and Altman, 1992; Gal and Libersat,

2006). For example, both supra- and subesophageal DNs are recruited in the preparatory phase

before walking (Kien, 1990a), whereas the activity of subesophageal DNs become predominant dur-

ing the walking phase (Kien, 1990a; Kien, 1990b).

We found that the terminals of DNs targeting the same layers of the VNC clustered together

within the GNG (Figure 7F). One intriguing possibility is that these foci represent regions in which

efferent copies of descending commands to leg and wing motor centers are available to cephalic

sensory circuits. This information could then be integrated directly with other descending commands

within the GNG, or reciprocal connections could feed the information back to the cerebral ganglia.

The GNG also receives ascending inputs from the leg neuropil (Tsubouchi et al., 2017), allowing
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further integration within this region of information regarding locomotor state or mechanosensory

input. Given that the cerebral ganglia are known to have a strong inhibitory effect on walking in

insects, another possibility is that some DN terminals in the GNG are inhibitory. Indeed, a recent

study found that 37% of DNs express the inhibitory neurotransmitter GABA, compared to 38% that

are cholinergic (Hsu and Bhandawat, 2016), and just such an inhibitory pathway from the cerebral

ganglia to the GNG has been suggested based on prior behavioral experiments (Roeder, 1937;

Gal and Libersat, 2006). For example, lesion studies have shown that walking persists when the

cerebral ganglia are removed and spontaneous bouts are prolonged (Roeder, 1937; Kien, 1983). In

contrast, removal of the GNG reduces spontaneous walking (Kien, 1983; Johnston et al., 1999),

but prolongs flight duration (Gal and Libersat, 2006). Thus it is possible that the DN pathway we

identified linking the posterior slope to wing neuropil maintains flight and inhibits walking, whereas

the pathway linking the GNG to the leg neuropils maintains walking and inhibits flight. Thus, the

connections within the GNG may play a critical role in action selection, at least at a coarse level.

We found that DN terminals in the leg neuropils could be sorted into two major types: DNs pro-

jecting to the dorso-medial part of each neuromere (type-I) and DNs penetrating through the neuro-

meres via the oblique tract (type-II) (Figures 10 and 14E,F). Their terminal locations suggest that

type-I and type-II leg DNs may have different access to leg motor neurons because the dendrites

are known to form a rough myotopic map across the leg neuromere, with more proximal leg muscles

having more proximal dendrites (Brierley et al., 2012). Based on this arrangement, one possible

function of the type-I leg DNs is to coordinate the direction of walking, which depends critically on

the control of coxal muscles that protract and retract of the entire leg. Indeed, inverse activation of

the thoraco-coxal muscle is required for switching from forward to backward walking in stick insects

(Graham and Epstein, 1985; Rosenbaum et al., 2010). In Drosophila, moonwalker DNs (MDNs)

innervate the dorso-medial part of the leg neuropil and thus are classified as type-I (Bidaye et al.,

2014). Activation of bilateral MDNs cause backward locomotion, whereas the unilateral activation

cause backward turning toward the contralateral side (Sen et al., 2017). Type-II DNs running

through the oblique tract have the opportunity to contact with the entire array of proximal and distal

motor neurons and thus may be important for coordinated action of all leg segments. For example,

the jumping part of escape takeoffs may require tension in all leg segments, even though the extrin-

sic muscle extending the trochanter is the primary actor for the fast takeoff mode (Trimarchi and

Schneiderman, 1993; von Reyn et al., 2014). Consistent with this idea, type-II DNs are abundant in

mesothoracic leg neuropil (DNp02, p05, p06 and p11), and it is the middle legs that flies extend dur-

ing a jump. Similarly, in locust, the descending contralateral movement detector (DCMD,

O’Shea et al., 1974), which is important for escape behavior, has terminals that resemble type-II

and synapses directly on the motor neurons in the neuropil associated with the jumping legs.

Lower tectulum
We identified a small population of nine DNs specifically projecting to an intermediate zone of the

VNC, the lower tectulum, which occupies a volume distinct from wing and leg neuropils and which

we suggest can be distinguished from the other intermediate neuropil, the tectulum, that sits above

it (Figure 13). Neuronal connectivity is not well described in this region, and its function is unknown.

However, our observations suggest that, like the tectulum, it is an integrative area involved in both

leg and wing control. For example, this region includes dendrites from both the tergotrochanteral

leg motor neuron (TTMn) (Figure 4—figure supplement 2A) and a branch of a wing motor neuron

that we have tentatively identified as III1 (Figure 4—figure supplement 2E). The lower teculum also

contains the peripheral synapsing interneuron (PSI) (Bacon and Strausfeld, 1986), which is presynap-

tic to motor neurons for the wing depressor muscles (Figure 4—figure supplement 2B). The giant

fiber (GF) descending neurons that drive a looming-evoked escape takeoff terminate with

unbranched axons within the lower tectulum and form gap junctions with the TTMn and PSI

(King and Wyman, 1980; Wyman et al., 1984). We thus surmise that the lower tectulum may play a

role during takeoff, which requires coordinated actions of the wings and legs. It is known that there

are parallel pathways for take-off behavior in Drosophila (Hammond and O’Shea, 2007; Card and

Dickinson, 2008b; Fotowat et al., 2009; von Reyn et al., 2014), although the anatomical source

has not yet been identified. We identified a group of eight unique type DNs, in addition to the GF,

whose dendrites overlap with the terminals of visual projection neurons that detect looming

(von Reyn et al., 2014; Klapoetke et al., 2017). Most of these invade the lower tectulum and their
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axon terminals share some anatomical features with the GF (Figure 13). This population are candi-

dates for parallel pathways for takeoff, as well as other looming-evoked evasive behaviors (Card and

Dickinson, 2008a, 2008b; Card, 2012), and could represent circuits for wing-leg coordination.

Candidate descending pathways from higher order centers
We did not find any DNs that originate in the central complex (CX) (Figures 5F and 6A), consistent

with studies in other insect species (Strausfeld, 1976; Heinrich, 2002; Gronenberg et al., 1995;

Ito et al., 1998). Thus, information from the CX must be relayed to motor centers via other brain

regions. A prime candidate is the the lateral accessory lobe (LAL), which has dense mutual connec-

tions with the CX and, together with the bulb (BU), is considered the CX primary output

(Strausfeld and Hirth, 2013; Heinze et al., 2013; Lin et al., 2013; Wolff et al., 2015; Shih et al.,

2015; Stone et al., 2017). However, we find many fewer DNs from the LAL than from other regions

such as PS, PVLP or AMMC (Figure 4A). In other insects such as silk moths, connections between

the LAL and the PS are well documented (Namiki et al., 2014; Namiki and Kanzaki, 2016). In Dro-

sophila, connectivity between the LAL and PS is suggested by connectomics studies (Chiang et al.,

2011; Ito et al., 2013; Yu et al., 2013; Shih et al., 2015) and the morphology of individual neurons

connecting these regions has been recently described (Chiang et al., 2011; Costa et al., 2016, e.g.

neuron cluster 31, available from NBLAST web site). Thus, we suggest information processed in the

CX may descend to the VNC via a CX-LAL-PS pathway.

We also did not find any DNs originating from the mushroom bodies (MB), important processing

areas for olfactory and visual memory (Heisenberg, 2003). However, there are 11 DN types innervat-

ing the superior medial protocerebrum (SMP), a major target of MB output neurons (Aso et al.,

2014). The SMP is also well connected with the LAL (Ito et al., 2013; Yu et al., 2013; Namiki and

Kanzaki, 2016), which suggests MB output also uses the major descending pathway from the poste-

rior slope via the LAL.

Behavioral function of DNs
Prior studies in insects have focused on DN function at the single neuron level. Thus, how DNs oper-

ate as a population is still unclear. Evidence in insects and other species suggests that motor direc-

tives are likely encoded across the DN population rather than in the activity of individual command

neurons (Erickson, 1968; Kien, 1983; Borgmann and Büschges, 2015). For example, many DNs are

active, albeit with different firing patterns, at the same time during walking in locusts (Kien, 1990a,

1990b), and there are multiple brain locations where electrical stimulation can trigger walking

behavior in cockroaches (Kien, 1983; Kien and Williams, 1983). Also, population vector coding for

object direction has been observed in the DNs of dragonflies (Gonzalez-Bellido et al., 2013). Zebra-

fish have also been shown to utilize population coding in the control of locomotion, despite having

only ~220 DNs (Kimmel et al., 1985; Metcalfe et al., 1986) — even fewer than Drosophila. In fact,

there are very few neurons that fit the rigorous requirements of command neuron (i.e. necessary and

sufficient), proposed by Kupfermann and Weiss (1978). Even the giant fibers (a.k.a. DNp01), whose

activation drives a stereotyped escape jump in response to looming stimuli, are necessary only for a

particular ‘fast mode’ of takeoff, and the behavioral effect of their activation to naturalistic looming

stimuli has been shown to depend on the timing of their spike relative to activity in other descending

neurons (von Reyn et al., 2014).

Our study found that the VNC areas receiving the largest number of DNs are the dorsal neuropils

associated with flight control (neck, wing, haltere neuropils and tectulum). It has been suggested

that the number of DNs engaged during a behavior might relate to the precision of the control. In

mammals, for example, the number of activated corticospinal tract neurons corresponds to the

degree of digital dexterity (Heffner and Masterton, 1975, 1983). It is possible a large DN popula-

tion target flight neuropils because flight requires a high level of precise control. For example, flies

can execute sophisticated rapid aerial turns to evade a looming predator (Muijres et al., 2014),

movements that are controlled by a combination of adjustments in firing phase of tonically active

motor neurons and recruitment of phasically active cells (Balint and Dickinson, 2001; Lindsay et al.,

2017).

In addition to the number of DNs putatively assigned to wing control, our study found that the

organization of wing DNs is different than that of the DNs targeting leg neuropil. We identified
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several distinct clusters of DNs with nearly identical morphologies and highly overlapped input and

output projections, which we refer to as population type DNs because their similar morphology sug-

gests they may function as a group (e.g. DNg01, g02, g03, g05 and g06, Figure 2—figure supple-

ment 9–12). In most cases, these population DNs project to the wing neuropil or tectulum and are

thus likely involved in flight. In contrast, we found only unique type DNs (identifiable single bilateral

pairs) projecting to leg neuropil. This suggests that the strategy for controlling flight and walking

may be fundamentally different. Because of the physics involved, even very small changes in wing

motion during flight can result in large aerodynamic forces and moments (Muijres et al., 2014). The

necessity for fine control might account for the greater dependence on population coding in flight

as compared to walking. Another difference between flight and walking is the temporal scale

required for control. For example, wingbeat frequency is much faster than leg stepping frequency.

The control of force generation by wing steering muscles depends on the precise timing of motor

neuron spikes (Tu and Dickinson, 1994; Ms and Dickinson, 1996). The descending input during

flight must have the capacity to regulate motor neuron firing phase on a precise temporal scale, a

functionality that might be achieved via population coding (Lehmann and Bartussek, 2017).

Another possibility is that the number of active DNs encodes the magnitude of a command signal to

regulate continuous locomotor parameters such as speed. In larval zebrafish and lamprey, for exam-

ple, more reticulospinal DNs are recruited with increasing swimming frequency (Brocard and Dubuc,

2003). Further functional studies will be required to test whether DN encoding of flight and walking

commands operates by different principles.

We analyzed the neuronal organization of descending motor pathways in Drosophila, with single-

cell resolution. The wiring diagram revealed, in a genetically accessible model system, creates a

framework for our understanding of how the brain controls behavior. In combination with the Dro-

sophila genetic toolkit, the driver lines created in the present study open up the possibility to

directly probe the function of individual DNs during natural behavior.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(Drosophila melanogaster)

VT040698-x-VT025718 this paper split_gal4.janelia.org:SS02536 split-GAL4 driver line targeting DNa05

Genetic reagent
(Drosophila melanogaster)

VT040698-x-VT028606 this paper split_gal4.janelia.org:SS01546 split-GAL4 driver line targeting DNa05,
DNa07

Genetic reagent
(Drosophila melanogaster)

R31H10-x-VT040698 this paper split_gal4.janelia.org:SS01560 split-GAL4 driver line targeting DNa07

Genetic reagent
(Drosophila melanogaster)

VT023490-x-R80H02 this paper split_gal4.janelia.org:SS02393 split-GAL4 driver line targeting DNa08

Genetic reagent
(Drosophila melanogaster)

R55D12-x-R72H04 this paper split_gal4.janelia.org:SS02370 split-GAL4 driver line targeting DNb03

Genetic reagent
(Drosophila melanogaster)

R55D12-x-VT063306 this paper split_gal4.janelia.org:SS02552 split-GAL4 driver line targeting DNb03

Genetic reagent
(Drosophila melanogaster)

VT019391-x-VT028198 this paper split_gal4.janelia.org:SS01051 split-GAL4 driver line targeting DNb05

Genetic reagent
(Drosophila melanogaster)

R20C04-x-VT025999 this paper split_gal4.janelia.org:SS02631 split-GAL4 driver line targeting DNb06

Genetic reagent
(Drosophila melanogaster)

R59A06-x-R64B11 this paper split_gal4.janelia.org:SS04161 split-GAL4 driver line targeting DNc01

Genetic reagent
(Drosophila melanogaster)

VT012639-x-VT034795 this paper split_gal4.janelia.org:SS01570 split-GAL4 driver line targeting DNd02,
DNd03

Genetic reagent
(Drosophila melanogaster)

VT059225-x-VT057283 this paper split_gal4.janelia.org:SS02111 split-GAL4 driver line targeting DNg10

Genetic reagent
(Drosophila melanogaster)

VT049363-x-VT057283 this paper split_gal4.janelia.org:SS01547 split-GAL4 driver line targeting DNg10
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(Drosophila melanogaster)

VT037583-x-R81C11 this paper split_gal4.janelia.org:SS01579 split-GAL4 driver line targeting DNg11

Genetic reagent
(Drosophila melanogaster)

VT037825-x-VT020379 this paper split_gal4.janelia.org:SS02538 split-GAL4 driver line targeting DNg01

Genetic reagent
(Drosophila melanogaster)

VT059450-x-VT043626 this paper split_gal4.janelia.org:SS02285 split-GAL4 driver line targeting DNg01

Genetic reagent
(Drosophila melanogaster)

R38H06-x-VT018689 this paper split_gal4.janelia.org:SS01069 split-GAL4 driver line targeting DNg14

Genetic reagent
(Drosophila melanogaster)

R53D12-x-VT018689 this paper split_gal4.janelia.org:SS04158 split-GAL4 driver line targeting DNg14

Genetic reagent
(Drosophila melanogaster)

VT020033-x-VT008483 this paper split_gal4.janelia.org:SS02279 split-GAL4 driver line targeting DNg17

Genetic reagent
(Drosophila melanogaster)

VT020033-x-VT014208 this paper split_gal4.janelia.org:SS00898 split-GAL4 driver line targeting DNg17

Genetic reagent
(Drosophila melanogaster)

VT039465-x-VT023750 this paper split_gal4.janelia.org:SS02625 split-GAL4 driver line targeting DNg02

Genetic reagent
(Drosophila melanogaster)

VT048835-x-R24C07 this paper split_gal4.janelia.org:SS01046 split-GAL4 driver line targeting DNp24

Genetic reagent
(Drosophila melanogaster)

VT056582-x-R22D06 this paper split_gal4.janelia.org:SS01052 split-GAL4 driver line targeting DNp25

Genetic reagent
(Drosophila melanogaster)

R21F01-x-R22D06 this paper split_gal4.janelia.org:SS01059 split-GAL4 driver line targeting DNp25

Genetic reagent
(Drosophila melanogaster)

R27E07-x-VT014958 this paper split_gal4.janelia.org:SS01558 split-GAL4 driver line targeting DNg26

Genetic reagent
(Drosophila melanogaster)

R13D04-x-R65D05 this paper split_gal4.janelia.org:SS01557 split-GAL4 driver line targeting DNg27

Genetic reagent
(Drosophila melanogaster)

R59F08-x-R47H03 this paper split_gal4.janelia.org:SS04159 split-GAL4 driver line targeting DNg29

Genetic reagent
(Drosophila melanogaster)

R42B02-x-VT005005 this paper split_gal4.janelia.org:SS02548 split-GAL4 driver line targeting DNg03

Genetic reagent
(Drosophila melanogaster)

R61A01-x-R13B05 this paper split_gal4.janelia.org:SS02378 split-GAL4 driver line targeting DNg30

Genetic reagent
(Drosophila melanogaster)

R14H09-x-R61A01 this paper split_gal4.janelia.org:SS02388 split-GAL4 driver line targeting DNg30

Genetic reagent
(Drosophila melanogaster)

R14H09-x-R56H09 this paper split_gal4.janelia.org:SS01054 split-GAL4 driver line targeting DNg30

Genetic reagent
(Drosophila melanogaster)

R61A01-x-VT057280 this paper split_gal4.janelia.org:SS01077 split-GAL4 driver line targeting DNg30

Genetic reagent
(Drosophila melanogaster)

R14H09-x-VT032228 this paper split_gal4.janelia.org:SS02316 split-GAL4 driver line targeting DNg30

Genetic reagent
(Drosophila melanogaster)

R42B02-x-VT042734 this paper split_gal4.janelia.org:SS02324 split-GAL4 driver line targeting DNg07

Genetic reagent
(Drosophila melanogaster)

R42B02-x-R89B01 this paper split_gal4.janelia.org:SS01074 split-GAL4 driver line targeting DNg07

Genetic reagent
(Drosophila melanogaster)

R42B02-x-VT026005 this paper split_gal4.janelia.org:SS01597 split-GAL4 driver line targeting DNg07

Genetic reagent
(Drosophila melanogaster)

R42B02-x-VT059427 this paper split_gal4.janelia.org:SS02547 split-GAL4 driver line targeting DNg07

Genetic reagent
(Drosophila melanogaster)

R73A05-x-VT059427 this paper split_gal4.janelia.org:SS02554 split-GAL4 driver line targeting DNg07

Genetic reagent
(Drosophila melanogaster)

R42B02-x-VT037574 this paper split_gal4.janelia.org:SS02635 split-GAL4 driver line targeting DNg07,
DNg08
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(Drosophila melanogaster)

R10A12-x-VT004455 this paper split_gal4.janelia.org:SS02299 split-GAL4 driver line targeting DNp01

Genetic reagent
(Drosophila melanogaster)

R94E01-x-VT031084 this paper split_gal4.janelia.org:SS01608 split-GAL4 driver line targeting DNp10

Genetic reagent
(Drosophila melanogaster)

R94E01-x-R48E11 this paper split_gal4.janelia.org:SS02385 split-GAL4 driver line targeting DNp10

Genetic reagent
(Drosophila melanogaster)

VT017683-x-VT031084 this paper split_gal4.janelia.org:SS01049 split-GAL4 driver line targeting DNp10

Genetic reagent
(Drosophila melanogaster)

VT031084-x-R48E11 this paper split_gal4.janelia.org:SS01580 split-GAL4 driver line targeting DNp10

Genetic reagent
(Drosophila melanogaster)

R69C11-x-R81D05 this paper split_gal4.janelia.org:SS01078 split-GAL4 driver line targeting DNp20

Genetic reagent
(Drosophila melanogaster)

R17A04-x-R24A03 this paper split_gal4.janelia.org:SS01056 split-GAL4 driver line targeting DNp28

Genetic reagent
(Drosophila melanogaster)

R20C03-x-R23C07 this paper split_gal4.janelia.org:SS01589 split-GAL4 driver line targeting DNp28

Genetic reagent
(Drosophila melanogaster)

R11H10-x-VT040348 this paper split_gal4.janelia.org:SS02618 split-GAL4 driver line targeting DNp29

Genetic reagent
(Drosophila melanogaster)

R29F12-x-R37G07 this paper split_gal4.janelia.org:SS01596 split-GAL4 driver line targeting DNp03

Genetic reagent
(Drosophila melanogaster)

R60B12-x-R58E05 this paper split_gal4.janelia.org:SS02387 split-GAL4 driver line targeting DNg30

Genetic reagent
(Drosophila melanogaster)

R84B12-x-VT048835 this paper split_gal4.janelia.org:SS01080 split-GAL4 driver line targeting DNp04

Genetic reagent
(Drosophila melanogaster)

VT048835-x-VT017647 this paper split_gal4.janelia.org:SS01544 split-GAL4 driver line targeting DNp04,
DNp02

Genetic reagent
(Drosophila melanogaster)

VT017411-x-VT017647 this paper split_gal4.janelia.org:SS02292 split-GAL4 driver line targeting DNp04,
DNp06

Genetic reagent
(Drosophila melanogaster)

VT019018-x-VT017411 this paper split_gal4.janelia.org:SS02256 split-GAL4 driver line targeting DNp06

Genetic reagent
(Drosophila melanogaster)

VT029814-x-VT047755 this paper split_gal4.janelia.org:SS02276 split-GAL4 driver line targeting DNp07

Genetic reagent
(Drosophila melanogaster)

VT023490-x-R38F04 this paper split_gal4.janelia.org:SS01540 split-GAL4 driver line targeting DNp09

Genetic reagent
(Drosophila melanogaster)

VT047755-x-VT025718 this paper split_gal4.janelia.org:SS02310 split-GAL4 driver line targeting several
types of DNa DNs

Genetic reagent
(Drosophila melanogaster)

R22C05-x-R56G08 this paper split_gal4.janelia.org:SS00731 split-GAL4 driver line targeting DNa01

Genetic reagent
(Drosophila melanogaster)

R75C10-x-R87D07 this paper split_gal4.janelia.org:SS00730 split-GAL4 driver line targeting DNa02

Genetic reagent
(Drosophila melanogaster)

VT047755-x-R47D05 this paper split_gal4.janelia.org:SS02384 split-GAL4 driver line targeting DNa04,
DNa10

Genetic reagent
(Drosophila melanogaster)

VT061919-x-VT040698 this paper split_gal4.janelia.org:SS01552 split-GAL4 driver line targeting DNa05,
DNa07

Genetic reagent
(Drosophila melanogaster)

VT048835-x-VT017682 this paper split_gal4.janelia.org:SS01572 split-GAL4 driver line targeting DNa05,
DNp11

Genetic reagent
(Drosophila melanogaster)

VT028606-x-R56G08 this paper split_gal4.janelia.org:SS01541 split-GAL4 driver line targeting DNa07

Genetic reagent
(Drosophila melanogaster)

VT028606-x-R87B09 this paper split_gal4.janelia.org:SS01542 split-GAL4 driver line targeting DNa07

Genetic reagent
(Drosophila melanogaster)

VT028606-x-VT008675 this paper split_gal4.janelia.org:SS01571 split-GAL4 driver line targeting DNa07
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(Drosophila melanogaster)

VT013121-x-R45H03 this paper split_gal4.janelia.org:SS02383 split-GAL4 driver line targeting DNb01

Genetic reagent
(Drosophila melanogaster)

VT049749-x-VT013121 this paper split_gal4.janelia.org:SS02542 split-GAL4 driver line targeting DNb01

Genetic reagent
(Drosophila melanogaster)

R21F05-x-R93B10 this paper split_gal4.janelia.org:SS02396 split-GAL4 driver line targeting DNb02

Genetic reagent
(Drosophila melanogaster)

R59B10-x-R21F05 this paper split_gal4.janelia.org:SS01600 split-GAL4 driver line targeting DNb02

Genetic reagent
(Drosophila melanogaster)

R21F05-x-R21H11 this paper split_gal4.janelia.org:SS01060 split-GAL4 driver line targeting DNb02

Genetic reagent
(Drosophila melanogaster)

VT027175-x-R83B06 this paper split_gal4.janelia.org:SS02395 split-GAL4 driver line targeting DNc02

Genetic reagent
(Drosophila melanogaster)

VT001615-x-VT043132 this paper split_gal4.janelia.org:SS01545 split-GAL4 driver line targeting DNd02

Genetic reagent
(Drosophila melanogaster)

VT001615-x-VT026017 this paper split_gal4.janelia.org:SS01575 split-GAL4 driver line targeting DNd02

Genetic reagent
(Drosophila melanogaster)

VT012639-x-VT045791 this paper split_gal4.janelia.org:SS01569 split-GAL4 driver line targeting DNd02,
DNd03

Genetic reagent
(Drosophila melanogaster)

VT001615-x-R70C05 this paper split_gal4.janelia.org:SS01576 split-GAL4 driver line targeting DNd02,
DNd03

Genetic reagent
(Drosophila melanogaster)

VT049363-x-VT059225 this paper split_gal4.janelia.org:SS02278 split-GAL4 driver line targeting DNg10

Genetic reagent
(Drosophila melanogaster)

R81C11-x-R66B05 this paper split_gal4.janelia.org:SS02391 split-GAL4 driver line targeting DNg11

Genetic reagent
(Drosophila melanogaster)

VT037583-x-VT025598 this paper split_gal4.janelia.org:SS01550 split-GAL4 driver line targeting DNg11

Genetic reagent
(Drosophila melanogaster)

R66B05-x-R85H06 this paper split_gal4.janelia.org:SS01566 split-GAL4 driver line targeting DNg11

Genetic reagent
(Drosophila melanogaster)

VT037574-x-VT025598 this paper split_gal4.janelia.org:SS02617 split-GAL4 driver line targeting DNg11

Genetic reagent
(Drosophila melanogaster)

VT025739-x-VT032280 this paper split_gal4.janelia.org:SS02609 split-GAL4 driver line targeting DNg12

Genetic reagent
(Drosophila melanogaster)

VT025739-x-VT025999 this paper split_gal4.janelia.org:SS02608 split-GAL4 driver line targeting DNg12

Genetic reagent
(Drosophila melanogaster)

VT027166-x-VT009857 this paper split_gal4.janelia.org:SS02259 split-GAL4 driver line targeting DNg13

Genetic reagent
(Drosophila melanogaster)

R88F03-x-VT009857 this paper split_gal4.janelia.org:SS01567 split-GAL4 driver line targeting DNg13

Genetic reagent
(Drosophila melanogaster)

VT047747-x-VT037825 this paper split_gal4.janelia.org:SS02275 split-GAL4 driver line targeting DNg01

Genetic reagent
(Drosophila melanogaster)

R60B11-x-R83B04 this paper split_gal4.janelia.org:SS01565 split-GAL4 driver line targeting DNg01

Genetic reagent
(Drosophila melanogaster)

VT043400-x-VT043662 this paper split_gal4.janelia.org:SS02377 split-GAL4 driver line targeting DNg15

Genetic reagent
(Drosophila melanogaster)

VT043288-x-VT028153 this paper split_gal4.janelia.org:SS01543 split-GAL4 driver line targeting DNg16

Genetic reagent
(Drosophila melanogaster)

VT023750-x-VT039465 this paper split_gal4.janelia.org:SS02624 split-GAL4 driver line targeting DNg02

Genetic reagent
(Drosophila melanogaster)

R42B02-x-VT042835 this paper split_gal4.janelia.org:SS02634 split-GAL4 driver line targeting DNg02

Genetic reagent
(Drosophila melanogaster)

R42B02-x-R65C10 this paper split_gal4.janelia.org:SS01073 split-GAL4 driver line targeting DNg02
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(Drosophila melanogaster)

R42B02-x-VT011148 this paper split_gal4.janelia.org:SS01561 split-GAL4 driver line targeting DNg02

Genetic reagent
(Drosophila melanogaster)

R14F03-x-R24C07 this paper split_gal4.janelia.org:SS00732 split-GAL4 driver line targeting DNp24

Genetic reagent
(Drosophila melanogaster)

R64B03-x-R29G08 this paper split_gal4.janelia.org:SS01602 split-GAL4 driver line targeting DNg25

Genetic reagent
(Drosophila melanogaster)

VT057470-x-VT033947 this paper split_gal4.janelia.org:SS00923 split-GAL4 driver line targeting DNp27

Genetic reagent
(Drosophila melanogaster)

R10A07-x-VT057470 this paper split_gal4.janelia.org:SS02257 split-GAL4 driver line targeting DNp27

Genetic reagent
(Drosophila melanogaster)

R22H02-x-R20F03 this paper split_gal4.janelia.org:SS01061 split-GAL4 driver line targeting DNg26

Genetic reagent
(Drosophila melanogaster)

R27E07-x-R14D01 this paper split_gal4.janelia.org:SS01064 split-GAL4 driver line targeting DNg26

Genetic reagent
(Drosophila melanogaster)

R27E07-x-R20F03 this paper split_gal4.janelia.org:SS01593 split-GAL4 driver line targeting DNg26

Genetic reagent
(Drosophila melanogaster)

R24F06-x-R45E06 this paper split_gal4.janelia.org:SS01063 split-GAL4 driver line targeting DNg28

Genetic reagent
(Drosophila melanogaster)

R44A07-x-VT045150 this paper split_gal4.janelia.org:SS01564 split-GAL4 driver line targeting DNg28

Genetic reagent
(Drosophila melanogaster)

R47H03-x-R59F08 this paper split_gal4.janelia.org:SS01075 split-GAL4 driver line targeting DNg29

Genetic reagent
(Drosophila melanogaster)

R42B02-x-VT044958 this paper split_gal4.janelia.org:SS02633 split-GAL4 driver line targeting DNg03

Genetic reagent
(Drosophila melanogaster)

R14H09-x-R13B05 this paper split_gal4.janelia.org:SS01588 split-GAL4 driver line targeting DNp26

genetic reagent
(Drosophila melanogaster)

VT003476-x-R89A03 this paper split_gal4.janelia.org:SS01553 split-GAL4 driver line targeting DNp26

Genetic reagent
(Drosophila melanogaster)

R73A05-x-VT012287 this paper split_gal4.janelia.org:SS01604 split-GAL4 driver line targeting DNg07

Genetic reagent
(Drosophila melanogaster)

R14A01-x-R79H02 this paper split_gal4.janelia.org:SS00727 split-GAL4 driver line targeting DNp01

Genetic reagent
(Drosophila melanogaster)

R25C08-x-R68A06 this paper split_gal4.janelia.org:SS00726 split-GAL4 driver line targeting DNp01

Genetic reagent
(Drosophila melanogaster)

VT025392-x-VT057247 this paper split_gal4.janelia.org:SS02891 split-GAL4 driver line targeting DNp11

Genetic reagent
(Drosophila melanogaster)

R11E07-x-R77F05 this paper split_gal4.janelia.org:SS01556 split-GAL4 driver line targeting DNp15

Genetic reagent
(Drosophila melanogaster)

R49A07-x-R55A03 this paper split_gal4.janelia.org:SS00735 split-GAL4 driver line targeting DNp16

Genetic reagent
(Drosophila melanogaster)

R67E08-x-VT025789 this paper split_gal4.janelia.org:SS02553 split-GAL4 driver line targeting DNp17

Genetic reagent
(Drosophila melanogaster)

VT064490-x-R69C11 this paper split_gal4.janelia.org:SS02392 split-GAL4 driver line targeting DNp18

Genetic reagent
(Drosophila melanogaster)

VT063736-x-R24A03 this paper split_gal4.janelia.org:SS01053 split-GAL4 driver line targeting DNp02

Genetic reagent
(Drosophila melanogaster)

VT063736-x-VT017647 this paper split_gal4.janelia.org:SS01554 split-GAL4 driver line targeting DNp02

Genetic reagent
(Drosophila melanogaster)

VT025392-x-R15E12 this paper split_gal4.janelia.org:SS02379 split-GAL4 driver line targeting DNp02,
DNp11

Genetic reagent
(Drosophila melanogaster)

VT025392-x-VT017647 this paper split_gal4.janelia.org:SS02534 split-GAL4 driver line targeting DNp02,
DNp11
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(Drosophila melanogaster)

R58G11-x-R81D05 this paper split_gal4.janelia.org:SS00729 split-GAL4 driver line targeting DNp20

Genetic reagent
(Drosophila melanogaster)

R20C05-x-R85H06 this paper split_gal4.janelia.org:SS01057 split-GAL4 driver line targeting DNp20

Genetic reagent
(Drosophila melanogaster)

R20C03-x-R31B08 this paper split_gal4.janelia.org:SS01590 split-GAL4 driver line targeting DNp28

Genetic reagent
(Drosophila melanogaster)

R11H10-x-VT033947 this paper split_gal4.janelia.org:SS01587 split-GAL4 driver line targeting DNp29

Genetic reagent
(Drosophila melanogaster)

R30C12-x-R22D06 this paper split_gal4.janelia.org:SS01066 split-GAL4 driver line targeting DNp03

Genetic reagent
(Drosophila melanogaster)

R91C05-x-R31B08 this paper split_gal4.janelia.org:SS01081 split-GAL4 driver line targeting DNp03

Genetic reagent
(Drosophila melanogaster)

R29F12-x-R88C07 this paper split_gal4.janelia.org:SS01559 split-GAL4 driver line targeting DNp03

Genetic reagent
(Drosophila melanogaster)

R91C05-x-R37G07 this paper split_gal4.janelia.org:SS02382 split-GAL4 driver line targeting DNp03

Genetic reagent
(Drosophila melanogaster)

R61H01-x-R82C10 this paper split_gal4.janelia.org:SS02394 split-GAL4 driver line targeting DNp32

Genetic reagent
(Drosophila melanogaster)

VT032898-x-VT048835 this paper split_gal4.janelia.org:SS00934 split-GAL4 driver line targeting DNp04

Genetic reagent
(Drosophila melanogaster)

R50D07-x-R33H11 this paper split_gal4.janelia.org:SS00725 split-GAL4 driver line targeting DNp04

Genetic reagent
(Drosophila melanogaster)

VT019060-x-VT003280 this paper split_gal4.janelia.org:SS00865 split-GAL4 driver line targeting DNp05

Genetic reagent
(Drosophila melanogaster)

VT019018-x-VT017647 this paper split_gal4.janelia.org:SS01047 split-GAL4 driver line targeting DNp06

Genetic reagent
(Drosophila melanogaster)

VT047755-x-VT003280 this paper split_gal4.janelia.org:SS02612 split-GAL4 driver line targeting DNp07

Genetic reagent
(Drosophila melanogaster)

VT029814-x-VT003280 this paper split_gal4.janelia.org:SS01549 split-GAL4 driver line targeting DNp07,
DNp13

Genetic reagent
(Drosophila melanogaster)

VT032900-x-VT043145 this paper split_gal4.janelia.org:SS01582 split-GAL4 driver line targeting DNb04

Genetic reagent
(Drosophila melanogaster)

VT008142-x-VT046808 this paper split_gal4.janelia.org:SS01581 split-GAL4 driver line targeting DNp13,
DNp30

Genetic reagent
(Drosophila melanogaster)

R24A03-x-R74C01 this paper split_gal4.janelia.org:SS01062 split-GAL4 driver line empty
brain control

Genetic reagent
(Drosophila melanogaster)

R19G08-x-R47F01 this paper split_gal4.janelia.org:SS04528 split-GAL4 driver line targeting motor
neuron b1 (mnb1), a VNC interneuron,
with weak expression in DNg02
and possibly DNg06

Genetic reagent
(Drosophila melanogaster)

R10A12-x-R81E05 this paper split_gal4.janelia.org:SS00737 split-GAL4 driver line targeting DNp20,
DNp22, motor neuron
b2 (mnb2), and dorsoventral muscle
motor neurons (DVM)

Genetic reagent
(Drosophila melanogaster)

R18A05-x-VT045791 this paper split_gal4.janelia.org:SS31976 split-GAL4 driver line targeting
an interneuron

Genetic reagent
(Drosophila melanogaster)

VT016973-x-VT002042 this paper split_gal4.janelia.org:SS02623 split-GAL4 driver line targeting
the tergotrochanteral muscle
motor neuron (TTMn)

Genetic reagent
(Drosophila melanogaster)

VT049105 doi: 10.1101/198648 flweb.janelia.org:VT049105 split-GAL4 driver line targeting
the peripherally synapsing interneuron
(PSI) and other VNC interneurons

Genetic reagent
(Drosophila melanogaster)

VT007170-x-VT041658 this paper split_gal4.janelia.org:SS02628 split-GAL4 driver line targeting
an interneuron
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Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(Drosophila melanogaster)

R26E02-x-R81D05 this paper split_gal4.janelia.org:SS01592 split-GAL4 driver line targeting DNp18,
DNp22, and the motor
neuron for wing steering
muscle III1 (III1mn)

Genetic reagent
(Drosophila melanogaster)

R31B08-x-R24A03 this paper split_gal4.janelia.org:SS00724 split-GAL4 driver line targeting DNp03,
DNp28, DNp02

Genetic reagent
(Drosophila melanogaster)

R25C08-x-R79H02 this paper split_gal4.janelia.org:SS00728 split-GAL4 driver line targeting DNp01

Genetic reagent
(Drosophila melanogaster)

R58E07-x-R39H12 this paper split_gal4.janelia.org:SS00733 split-GAL4 driver line targeting DNp31

Genetic reagent
(Drosophila melanogaster)

R73C04-x-R39H12 this paper split_gal4.janelia.org:SS00734 split-GAL4 driver line targeting DNb05

Genetic reagent
(Drosophila melanogaster)

R21A07-x-R72A01 this paper split_gal4.janelia.org:SS00736 split-GAL4 driver line targeting DNa05

Genetic reagent
(Drosophila melanogaster)

R81D05-x-R81E05 this paper split_gal4.janelia.org:SS00738 split-GAL4 driver line targeting
DNp03, DNp18, DNp20, DNp22

Genetic reagent
(Drosophila melanogaster)

VT040541-x-VT050661 this paper split_gal4.janelia.org:SS01048 split-GAL4 driver line targeting DNd01

Genetic reagent
(Drosophila melanogaster)

R21C05-x-R28E01 this paper split_gal4.janelia.org:SS01058 split-GAL4 driver line targeting DNg09

Genetic reagent
(Drosophila melanogaster)

R30C01-x-R85H01 this paper split_gal4.janelia.org:SS01065 split-GAL4 driver line targeting DNp04

Genetic reagent
(Drosophila melanogaster)

R31B08-x-R88C07 this paper split_gal4.janelia.org:SS01067 split-GAL4 driver line targeting DNp03

Genetic reagent
(Drosophila melanogaster)

R32C05-x-R70C05 this paper split_gal4.janelia.org:SS01068 split-GAL4 driver line
targeting DNd02, DNd03

Genetic reagent
(Drosophila melanogaster)

R38H06-x-R65D06 this paper split_gal4.janelia.org:SS01070 split-GAL4 driver line targeting DNa10

Genetic reagent
(Drosophila melanogaster)

R40H12-x-R85H01 this paper split_gal4.janelia.org:SS01071 split-GAL4 driver line targeting DNp04,
DNp20

Genetic reagent
(Drosophila melanogaster)

R42B02-x-R65C02 this paper split_gal4.janelia.org:SS01072 split-GAL4 driver line targeting DNg07

Genetic reagent
(Drosophila melanogaster)

R50D07-x-R74C01 this paper split_gal4.janelia.org:SS01076 split-GAL4 driver line targeting DNp04

Genetic reagent
(Drosophila melanogaster)

VT059450-x-VT037825 this paper split_gal4.janelia.org:SS01551 split-GAL4 driver line targeting DNg01

Genetic reagent
(Drosophila melanogaster)

R10A07-x-VT033947 this paper split_gal4.janelia.org:SS01555 split-GAL4 driver line targeting DNp27

Genetic reagent
(Drosophila melanogaster)

R91C05-x-R10A12 this paper split_gal4.janelia.org:SS01568 split-GAL4 driver line targeting DNp20

Genetic reagent
(Drosophila melanogaster)

VT045148-x-VT045150 this paper split_gal4.janelia.org:SS01574 split-GAL4 driver line targeting DNg28

Genetic reagent
(Drosophila melanogaster)

VT004985-x-VT017928 this paper split_gal4.janelia.org:SS01583 split-GAL4 driver line targeting DNp11,
DNp28

Genetic reagent
(Drosophila melanogaster)

VT034258-x-R32B03 this paper split_gal4.janelia.org:SS01584 split-GAL4 driver line targeting DNg15

Genetic reagent
(Drosophila melanogaster)

R10A07-x-R24D07 this paper split_gal4.janelia.org:SS01585 split-GAL4 driver line targeting DNp27

Genetic reagent
(Drosophila melanogaster)

R29F12-x-R24A03 this paper split_gal4.janelia.org:SS01594 split-GAL4 driver line targeting DNp02,
DNp03, DNp28

Genetic reagent
(Drosophila melanogaster)

R29F12-x-R31B08 this paper split_gal4.janelia.org:SS01595 split-GAL4 driver line targeting DNp03
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or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(Drosophila melanogaster)

R42B02-x-VT015782 this paper split_gal4.janelia.org:SS01598 split-GAL4 driver line targeting DNg06

Genetic reagent
(Drosophila melanogaster)

R47D05-x-R39H12 this paper split_gal4.janelia.org:SS01599 split-GAL4 driver line targeting DNa04

Genetic reagent
(Drosophila melanogaster)

R59B10-x-R21H11 this paper split_gal4.janelia.org:SS01601 split-GAL4 driver line targeting DNb02

Genetic reagent
(Drosophila melanogaster)

R72H09-x-VT037825 this paper split_gal4.janelia.org:SS01603 split-GAL4 driver line targeting DNg01

Genetic reagent
(Drosophila melanogaster)

R77H03-x-R74B04 this paper split_gal4.janelia.org:SS01605 split-GAL4 driver line targeting DNb01

Genetic reagent
(Drosophila melanogaster)

VT015782-x-VT061933 this paper split_gal4.janelia.org:SS02260 split-GAL4 driver line targeting DNg06

Genetic reagent
(Drosophila melanogaster)

VT020379-x-VT043626 this paper split_gal4.janelia.org:SS02541 split-GAL4 driver line targeting DNg01

Genetic reagent
(Drosophila melanogaster)

R22C05-x-VT025718 this paper split_gal4.janelia.org:SS02545 split-GAL4 driver line targeting DNa02

Genetic reagent
(Drosophila melanogaster)

R81C11-x-VT025598 this paper split_gal4.janelia.org:SS02555 split-GAL4 driver line targeting DNg11

Genetic reagent
(Drosophila melanogaster)

VT029814-x-VT008145 this paper split_gal4.janelia.org:SS02610 split-GAL4 driver line targeting DNp13

Genetic reagent
(Drosophila melanogaster)

R58E07-x-R30C01 this paper split_gal4.janelia.org:SS02621 split-GAL4 driver line targeting DNp31

Genetic reagent
(Drosophila melanogaster)

R38H06-x-R50B07 this paper split_gal4.janelia.org:SS04160 split-GAL4 driver line targeting DNg14

Genetic reagent
(Drosophila melanogaster)

R40F04-x-R83B06 this paper split_gal4.janelia.org:SS04530 split-GAL4 driver line targeting DNc01,
DNc02

Genetic reagent
(Drosophila melanogaster)

VT042835-x-R65C10 this paper split_gal4.janelia.org:SS05089 split-GAL4 driver line targeting DNg02

Genetic reagent
(Drosophila melanogaster)

R44A07-x-VT062604 this paper split_gal4.janelia.org:SS05099 split-GAL4 driver line targeting DNg28

Genetic reagent
(Drosophila melanogaster)

VT023750-x-VT042835 this paper split_gal4.janelia.org:SS05107 split-GAL4 driver line targeting DNg02

Genetic reagent
(Drosophila melanogaster)

VT042835-x-VT023750 this paper split_gal4.janelia.org:SS05116 split-GAL4 driver line targeting DNg02

Genetic reagent
(Drosophila melanogaster)

VT042835-x-VT020379 this paper split_gal4.janelia.org:SS05122 split-GAL4 driver line targeting DNg01

Genetic reagent
(Drosophila melanogaster)

pJFRC51-3xUAS-Syt::
smGFP-HA in
su(Hw)attPa

Aso et al., 2014

Genetic reagent
(Drosophila melanogaster)

pJFRC22-10XUAS-
IVS-myr::tdTomato

Pfeiffer et al. 2010 https://www.janelia.org/lab/
rubin-lab/tools-reagents

Genetic reagent
(Drosophila melanogaster)

pJFRC93-13XLexAop2-
IVS-Syn21-mPA-p10
(VK00005)

Pfeiffer et al. 2012 https://www.janelia.org/
lab/rubin-lab/tools-reagents

Genetic reagent
(Drosophila melanogaster)

nsyb-LexAp65
(attP2)/ TM2

Rubin, G. Personal communicaiton

Genetic reagent
(Drosophila melanogaster)

mPA-LexAop Pfeiffer et al., 2012

Genetic reagent
(Drosophila melanogaster)

tsh-LexA Simpson, 2016

Genetic reagent
(Drosophila melanogaster)

LexAop2-GAL80 Pfeiffer, B. http://flybase.org/
reports/FBrf0212441
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(Drosophila melanogaster)

pJFRC20-8XLexAop2-
IVS-GAL80-WPRE
(su(Hw)attP5)

Pfeiffer et al., 2010 https://www.janelia.org/
lab/rubin-lab/tools-reagents

Genetic reagent
(Drosophila melanogaster)

pJFRC28-10XUAS-
IVS-GFP-p10(attP40)

von Reyn et al., 2014

Genetic reagent
(Drosophila melanogaster)

pJFRC200-
10XUASIVS-
myr::smGFP-HA in
attP18

Aso et al., 2014

Genetic reagent
(Drosophila melanogaster)

pJFRC51-3xUAS Aso et al., 2014

Genetic reagent
(Drosophila melanogaster)

Syt::smGFP-HA
in su(Hw) attP1

Nern et al., 2015

Genetic reagent
(Drosophila melanogaster)

pJFRC225-5xUAS-IVS-
myr::smGFP-FLAG in
VK00005

Nern et al., 2015 http://flybase.org/
reports/FBrf0228639.html

Genetic reagent
(Drosophila melanogaster)

20XUAS-CsChrimson-
mVenus trafficked in
attP18

Klapoetke et al., 2014 http://flybase.org/
reports/FBrf0224686

Genetic reagent
(Drosophila melanogaster)

teashirt-GAL80 Rubinstein et al., 2010

Antibody nc82 supernatant Mouse a-bruchpilot. Developmental Studies
Hybridoma Bank. # nc82-s

https://www.janelia.org/
sites/default/files/
Project%20Teams/
Fly%20Light/FL%20Protocol%20-
%20Adult%20IHC%20-
%20Split%20Screen_1.pdf

Antibody rabbit polyclonal
anti-GFP

Thermo Fisher Scientific Cat #: A-11122;
RRID: AB_221569

Antibody Alexa Fluor 488 goat
anti-rabbit

Thermo Fisher Scientific Cat #: A-11034;
RRID: AB_2576217

Antibody Alexa Fluor 568 goat
anti-mouse

Thermo Fisher Scientific Cat #: A-11031;
RRID: AB_144696

Chemical compound, drug paraformaldehyde Electron Microscopy
Sciences

15713-S https://www.janelia.org/sites/
default/files/Project%20
Teams/Fly%20Light/
FL%20Recipe%20-%20PFA_2.pdf

Chemical compound, drug Triton X-100 Sigma Aldrich X100 https://www.janelia.org/sites/
default/files/Project%20
Teams/Fly%20Light/FL%20
Protocol%20-%20Adult%20
IHC%20-%20Split%20Screen_1.pdf

Chemical compound, drug DPX Mountant Electron Microscopy
Sciences

#13512 https://www.janelia.org/sites/
default/files/Project%20Teams/
Fly%20Light/FL%20Protocol%20-
%20DPX%20Mounting_0.pdf

Chemical compound, drug xylene Fisher Scientific x5-500 https://www.janelia.org/sites/
default/files/Project%20Teams/
Fly%20Light/FL%20Protocol%20-
%20DPX%20Mounting_0.pdf

Mass-staining of DNs with photoactivatable GFP
To quantify the number of neurons with cell bodies in the brain and axonal projections into the VNC,

we pan-neuronally expressed phtotoactivatable GFP (PA-GFP) using the following fly stock: w1118;

pJFRC22-10XUAS-IVS-myr::tdTomato (attP40)/CyO; pJFRC93-13XLexAop2-IVS-Syn21-mPA-p10

(VK00005), nsyb-LexAp65 (attP2)/TM2. This line drives the PA-GFP construct, LexAop2-mPA

(Pfeiffer et al., 2012; Patterson and Lippincott-Schwartz, 2002), under control of the neuronal
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synaptobrevin promotor, nsyb-LexA (also known as R57C10-LexA; Jenett et al., 2012), which codes

for a synaptic vesicle protein that should be present in most neurons. Photoactivation was performed

on adult female progeny aged 0–1 days after eclosion. The central nervous system was dissected

intact and kept in saline solution. Using a confocal microscope (Zeiss LSM 710), we scanned a volume

of the neck connective posterior to the cervical nerve every 5 min for 1 hr with 408 nm light. After

the activation, the brain was imaged, first from the anterior surface, and then from the posterior sur-

face, by flipping the sample. Labeled cell bodies in the brain were counted manually in four

preparations.

Screening for DNs
To identify driver lines containing specific DN morphologies, we manually searched the brain and

VNC expression pattern images of approximately 9000 GAL4 driver lines from publically available

GAL4 lines in the Janelia FlyLight collection (http://flweb.janelia.org, Jenett et al., 2012) for neurons

with an axon in the neck connective and a cell body in the brain. To make individual neuron mor-

phology more clear, and to help distinguish DNs from ascending neurons, we used teashirt (tsh), a

transcription factor specifying the VNC (Röder et al., 1992; Simpson, 2016). We chose 586 GAL4

lines with connective expression and crossed these to a line with tsh-LexA, LexAop2-GAL80, and a

GFP reporter (w; tsh-LexAp65, pJFRC20-8XLexAop2-IVS-GAL80-WPRE (su(Hw)attP5), pJFRC28-

10XUAS-IVS-GFP-p10 (attP40)/CyO, TB-RFP; Simpson, 2016; Pfeiffer et al., 2010). For the prog-

eny, this suppressed expression in most neurons originating in the VNC, allowing us to clearly visual-

ize the morphologies of any DN axon terminals (see Expression pattern visualization below). We

generated approximately 200 new transgenic lines using enhancers identified in our screen to

express either the GAL4 transcription activation domain (p65ADZp) or the DNA binding domain

(ZpGAL4DBD). New lines were made using vectors from Pfeiffer et al. (2010).

Expression pattern visualization
Expression patterns of GAL4 driver lines crossed with tsh-LexA were obtained by CNS dissection,

immunohistochemistry, and confocal imaging. We used the standard Janelia FlyLight protocols

(based on Jenett et al., 2012), available at https://www.janelia.org/project-team/flylight/protocols,

which we describe briefly here. The complete central nervous systems of 3- to 5-day-old female adult

progeny were dissected in S2 media (Schneider’s Insect Medium, Sigma), fixed in paraformaldehyde,

and transferred to a goat serum blocking buffer for 1 hr. The buffer was then replaced with the pri-

mary antibodies (mouse nc82 supernatant at 1:30, rabbit polyclonal anti-GFP at 1:1000) diluted in

phosphate buffered saline with 0.5% Triton X-100 (PBT) and rocked at 4˚C for 36–48 hr. After wash-

ing with PBT, the samples were next incubated with secondary antibodies (Alexa Fluor 488 goat

anti-rabbit, and Alexa Fluor 568 goat anti-mouse at 1:400) diluted in PBT and rocked at 4˚C for 3

days. Next, samples were washed, fixed again in paraformaldehyde, mounted on a poly-L-lysine

cover slip, cleared with xylene, and embedded in dibutyl phthalate in xylene (DPX) on a standard

microscope slide with spacers. After drying for two days, samples were imaged at 20X with a confo-

cal microscope (Zeiss LSM 510) (Dionne et al., 2018).

Split-GAL4 intersections
Based on our screening of GAL4 and GAL4 with teashirt lines, we selected AD/DBD combinations

from the Janelia (Dionne et al., 2018) and VT (Tirian and Dickson, 2017) collections (that we

thought shared expression in individual DNs. To visualize combined expression patterns, we crossed

males carrying a GFP reporter (pJFRC200-10XUASIVS-myr::smGFP-HA in attP18) and the

ZpGAL4DBD transgene (in attP2) with virgin females carrying the p65ADZp transgene in either su

(Hw)attP8, attP40, or VK00027 and examined expression in 3- to 10-day-old female progeny as

described above. The split-GAL4 combinations that we deemed sparse enough to include in our DN

collection were made into stable stocks containing the AD and DBD transgenes. To obtain polarity

and higher resolution (40x, 63x) information on selected lines, split-GAL4 lines were crossed to

pJFRC51-3xUAS-Syt::smGFP-HA in su(Hw)attP1; pJFRC225-5xUAS-IVS-myr::smGFP-FLAG in

VK00005 and processed for imaging. We used the multicolor flip out technique to stochastically

label individual neurons in lines that contained multiple cells (Nern et al., 2015). These protocols are

available on the Janelia FlyLight website (https://www.janelia.org/project-team/flylight/protocols).
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Some split-GAL4 lines were also crossed to 20XUAS-CsChrimson-mVenus trafficked in attP18 (virgin-

ator stock) and processed as above to visualize expression pattern when using the CsChrimson

effector, as observed expression patterns are known to vary slightly depending on the reporter used

(Aso et al., 2014). Based on their GFP or CsChrimson expression patterns, we made our best esti-

mate of the number of background (non-targeted-DN) cell types in each split-GAL4 line made,

and we gave each split line a quality score of A (no background expression), B (one background cell

type), or C (two or more background cell types). Confocal image stacks of the stabilized split-GAL4

intersections are available online (http://www.janelia.org/split-gal4).

Terminology and neuropil annotation
We operationally define a DN as a neuron that: (1) connects brain and VNC with an axon through

the neck connective and (2) has its cell body in the brain. We did not include ascending neurons and

neck motor neurons in this analysis. For the physical definitions and nomenclature of the brain neuro-

pils, we followed the virtual fly brain (http://www.virtualflybrain.org/; Ito et al., 2014). Abbreviations

used in the document are summarized in Supplementary file 6. For the terminology of the VNC, we

primarily followed Power (1948), Merritt and Murphey (1992) and Boerner and Duch, 2010 and

introduced some new formal standards also described in Court et al. (2017). DNs are named with

first two letters ‘DN’ followed by a single letter indicating the location of the cell body (a, anterior

dorsal; b, anterior ventral; c, pars intercerebralis; d, outside cluster on anterior surface; g, gnathal

ganglion; p, posterior surface; x, outside brain) and then a two-digit number assigned randomly

(roughly in discovery order) within each cell body group.

Image processing
Neuron and neuropil tracing was carried out semi-manually using Amira 5.4.3 (Visage Imaging,

Fuerth, Germany). For the reconstruction of neuropils, individual objects were smoothed using the

‘smooth label’ function after the manual tracing. Volume rendering was performed using Amira ‘gen-

erate surface’ function. Segmentation data for the brain in some figures (Figures 6 and 9) were

obtained from Virtual Fly Brain (https://github.com/VirtualFlyBrain/DrosAdultBRAINdomains). Seg-

mentation data for the neuronal tracts in the VNC was kindly provided by Jana Boerner

(Boerner and Duch, 2010). For images of single DN morphology, masked images were used for

visualization. We performed segmentation for individual neurons in the confocal stacks of genera-

tion-1 GAL4 lines with sparse expression pattern or split-GAL4 lines. We first detected the signal

with the Amira ‘Interactive Thresholding’ function. We then corrected any false detection by manual

tracing. Using this image as a mask, we obtained the final masked images shown in the figures using

a custom-made program written in MATLAB and the image processing toolbox (MathWorks, Natick,

MA, USA). The contrast and brightness of images were modified in Image J (National Institutes of

Health, Bethesda, MD). Figures were prepared in Adobe Illustrator CS (Adobe systems, San Jose,

CA).

Confocal image stacks of split-GAL4 expression patterns in the brain were aligned to standard-

ized brain template JFRC2013 (available here: https://github.com/jefferislab/BridgingRegistrations)

as part of an established processing pipeline (Aso et al., 2014; Peng et al., 2011). A similar tem-

plate was derived from the nc82 expression pattern in the VNC of an example female CantonS fly

imaged by the FlyLight Project team (template is available here: https://github.com/VirtualFlyBrain/

DrosAdultVNSdomains/blob/master/template/Neuropil_185.nrrd). Our VNC alignment pipeline was

adapted from Court et al. (2017). Briefly: confocal VNC stacks were first converted to an 8-bit nrrd

file format, preprocessed using the nc82 reference channel to normalize contrast across samples,

rotated to approximately orient the VNC along the anterior-posterior axis, and then the reference

channel was aligned to the template by nonrigid warping (Rohlfing and Maurer, 2003) using the

Computational Morphometry Toolkit (https://www.nitrc.org/projects/cmtk/), as described in detail in

Jefferis et al. (2007). The signal channel containing the GFP expression pattern was then trans-

formed using the warped mesh determined above, and the two individual image files were com-

bined as separate channels and converted back to the LSM file format.
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Analysis
We performed hierarchical clustering based on the neurite innervation of DNs in the brain (Figure 8)

and VNC (Figure 7) using the MATLAB statistics toolbox with Pearson’s correlation as metric and

average linkage for calculating distances. DN innervation was represented as a matrix, where the

presence and absence of innervation were scored as ‘1’ and ‘0’ (Supplementary file 1). We only

scored smooth processes as ‘1’ for DN innervation in the brain. To evaluate the pattern of DN axonal

projections in the VNC, we calculated Pearson’s linear correlation coefficient between each pair of

VNC regions (Figure 7B). To evaluate the pattern of DN axonal projections in the brain, we calcu-

lated Pearson’s linear correlation coefficient between each pair of brain regions and sorted by the

results of the clustering analysis (Figure 8B). The brain regions without DN innervation were

omitted.

For the visualization of spatial patterns of DN distribution (Figures 6 and 9), we made pseudo-

color maps for the brain and VNC neuropil compartments. The number of DN types visiting each

compartment was counted and mapped onto the neuropil segmentation data with pseudo-color.

We only counted the innervation with smooth appearance in Figure 6A, top, and 9A, and the inner-

vation with varicose appearance in Figure 6A, bottom, and 9B.

For the analysis of neurite distribution in the protoerebrum (Figure 15), registered brain data

were used to compare the dendritic distribution of DNs in the protocerebrum (Peng et al., 2011).

Using segmentation data, we counted the number of voxels for neurite volume along the anterior-

posterior axis with 1 mm interval. We excluded the volume of somata and axons. The value at each

depth was normalized by the maximum value for each DN.
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Data availability

Confocal images of driver line expression data can be found at http://splitgal4.janelia.org/cgi-bin/

splitgal4.cgi. Source data are provided in editable tables in. xlsx format.
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