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Abstract: Cobalt oxides have been intensely explored as anodes of lithium-ion batteries to resolve the
intrinsic disadvantages of low electrical conductivity and volume change. However, as a precursor of
preparing cobalt oxides, Co(OH)2 has rarely been investigated as the anode material of lithium-ion
batteries, perhaps because of the complexity of hydroxides. Hybridized Co(OH)2 nanomaterial struc-
tures were synthesized by the water bath method and exhibited high electrochemical performance.
The initial discharge and charge capacities were 1703.2 and 1262.9 mAh/g at 200 mA/g, respectively.
The reversible capacity was 1050 mAh/g after 150 cycles. The reversible capability was 1015 mAh/g
at 800 mA/g and increased to 1630 mAh/g when driven back to 100 mA/g. The electrochemical
reaction kinetics study shows that the lithium-ion diffusion-controlled contribution is dominant in
the energy storage mechanism. The superior electrochemical performance could result from the water
bath method and the hybridization of nanosheets and nanoparticles structures. These hybridized
Co(OH)2 nanomaterial structures with high electrochemical performance are promising anodes for
lithium-ion batteries.

Keywords: Co(OH)2; structure hybridization; lithium-ion diffusion-controlled mechanism; anodes;
lithium-ion batteries

1. Introduction

To solve the problems of growing exhaustion of fossil energy (petroleum, natural
gas, and coal) and the resulting environmental issues, many energy conversion and stor-
age systems, such as lithium-ion batteries (LIBs), nanogenerators, and supercapacitors,
have been extensively investigated [1–13]. LIBs have attracted much attention owing
to their low self-discharge, no memory effect, high working voltage, and high energy
density [14–19]. However, the specific capacity, power density, and rate capability of
LIBs should be further improved to meet the demands of high-power energy storage
systems [17–19]. One of the obstacles is the low theoretical capability of the commercial
graphite anodes (372 mAh/g) [17–19]. According to the conversion reaction with lithium
ions, transition metal oxides are promising anodes for LIBs due to their high theoretical
capacities (500–1000 mAh/g) [18,19]. To achieve practical application, cobalt oxides, includ-
ing CoO and Co3O4, have been intensely investigated to solve the intrinsic disadvantages of
volume change and low electrical conductivity during the discharge-charge process [20–23].
As a precursor, Co(OH)2 has always been used to prepare cobalt-based oxides by heat
treatment [24–26]. Ma et al. prepared CoO microsphere anodes for LIBs, which were
evolved from the Co(OH)2 precursor in a high-temperature hydrothermal reaction [24].
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Chen et al. reported the transformation from Co(OH)2 to Co3O4 nanosheets by annealing in
air at 600 ◦C [25]. When used as anodes for LIBs, Co3O4 nanosheets exhibited a reversible
capacity of 700 mAh/g. In addition, Co(OH)2 has also been used as part of nanocompos-
ites to improve the electrochemical performance of the cobalt-based oxide anodes [27–29].
Huang et al. reported the improved electrochemical performance of Co(OH)2/Co3O4
nanocomposite anodes due to the introduction of Co(OH)2 and the resulting ordered nanos-
tructures [27]. Li et al. prepared Co(OH)2/Co3O4/Co nanoparticle anodes, which showed
a high reversible capacity of 540 mAh/g after 300 cycles with no obvious attenuation
due to the hybridized effect of Co3O4 and Co(OH)2 [28]. However, investigations of the
use of bare Co(OH)2 as anode for LIBs has rarely been reported, perhaps because of the
complexity of hydroxides [30–35]. Through a simultaneous hydrothermal method, Ma et al.
firstly prepared Co(OH)2-graphene nanosheet anodes, which exhibited an initial discharge
capacity of 1599 mAh/g at 200 mA/g [30]. Wang et al. prepared α-Co(OH)2 with 3D
flower-like morphology, which showed a high initial capacity of 1765 mAh/g [32]. Yoon
et al. focused on the investigation of the exceptional reaction of Co(OH)2 and found a high
initial capacity of 1122 mAh/g [33]. Recently, Shenouda et al. investigated the influence
of composition ratios of Co(OH)2 and graphene on the electrochemical performance and
found a reversible capacity of 690 mAh/g after 100 cycles [34]. Based on the above reports,
even though high initial discharge capacities were observed, the cycle stability and the rate
capability of the Co(OH)2 nanomaterials should be further enhanced to meet the demands
of practical application.

In this work, we designed and prepared by the water bath method hybridized Co(OH)2
nanomaterial structures, which exhibit outstanding electrochemical performance as anodes
for LIBs. The initial discharge and charge capacities were 1703.2 and 1262.9 mAh/g at
200 mA/g, respectively. The reversible capacity was 1050 mAh/g after 150 cycles, higher
than the theoretical capacity (576 mAh/g) of Co(OH)2. The reversible capability was
1015 mAh/g at 800 mA/g and increased to 1630 mAh/g when returned back to 100 mA/g.
The superior electrochemical performance could result from the water bath method used
and the hybridization of nanosheet and nanoparticle structures. These hybridized Co(OH)2
nanomaterial structures with high electrochemical performance are promising anodes for
lithium-ion batteries.

2. Experimental Section
2.1. Materials and Methods

A schematic showing the preparation of Co(OH)2 nanomaterials is shown in Figure 1.
The details of the preparation procedure are as follows: (CH3 COO)2Co·4H2O (2 mmol)
was added to a mixed solution of pure water (21 mL) and dimethylformamide (DMF,
49 mL). After magnetic stirring (30 s) and ultrasonic stirring (2 min), in turn, several times,
hexadecyltrimethyl ammonium bromide (CTAB, 8 mmol) was added. After ultrasonic
stirring for another 30 min, NaOH (10 mmol) was subsequently added, and then magnetic
stirring in a 60 ◦C water bath continued for 10 min. Finally, the Co(OH)2 nanomaterials were
obtained after centrifuging with ethanol and pure water in turn and vacuum drying for
12 h at 60 ◦C. The assembly details of the half cells (CR-2032) were described before [17–19],
and the main process is as follows: the Co(OH)2 nanomaterials, carbon black, and CMC
(10 wt% in pure water) were mixed in a weight ratio of 7:2:1. After thoroughly grinding
the mixture, the resulting black slurry was smeared on copper foil and then dried under
vacuum at 60 ◦C overnight. The loading mass of active materials on the copper foil was
about 0.71 mg/cm2. After punching the copper foil into many disks, the half cells were
assembled in an argon-filled glove box with lithium metal foil as counter electrode. The
diaphragm and electrolyte are a Celgard 2250 film and 1 M LiPF6 dissolved in a mixed
solution of EC (50 v/v%) and DEC (50 v/v%).
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Figure 1. The illustration of preparing Co(OH)2 nanomaterials by the water bath method.

2.2. Structure and Morphology Characterization

The nanomaterials’ structure was characterized by X-ray diffraction (XRD, Smart Lab,
Rigaku, Tokyo, Japan) in the range of 5◦ to 80◦. The morphology was further confirmed
using a scanning electron microscope (SEM, Gemini SEM300, Zeiss, Oberkochen, Germany).

2.3. Electrochemical Performance Characterization

The electrochemical performance and impedance characteristics were tested on a
battery testing system (Land-ct2001A, LanHe, Wuhan, China) and electrochemical worksta-
tion (CHI660E, ChenHua, Shanghai, China) at room temperature in the potential range of
0.01–3.0 V.

3. Results and Discussion
3.1. Structure and Morphology

The XRD patterns of the as-prepared precipitates are shown in Figure 2a. The diffrac-
tion peaks are in agreement with the standard cards of PDF No. 30–0443 (Co(OH)2). The
characteristic peak at 19.1◦, 32.5◦, 37.9◦, 51.4◦, 57.9◦, 61.5◦, 69.8◦, and 71.9◦ corresponds to
the (001), (100), (101), (102), (110), (111), (103), and (112) crystal planes of the hexagonal
Co(OH)2 phase, respectively [27,36]. There are no other diffraction peaks, which indicates
the purity of the Co(OH)2 nanomaterials. From the SEM images shown in Figure 2b, the
Co(OH)2 nanomaterials are composed of nanoparticles and nanosheets. The average di-
ameter of the nanoparticles and the average thickness of the nanosheets are about 50 nm,
while the length of the nanosheets cannot be seen clearly.
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To further confirm the elements’ valence states in the Co(OH)2 nanomaterials, X-ray
photoelectron spectroscopy (XPS) was performed, as shown in Figure 3. Figure 3a shows
the survey XPS spectra of the Co(OH)2 nanomaterials, including C 1s, O 1s, and Co 2p peaks.
From the high-resolution of O 1s peaks shown in Figure 3b, two fitted peaks at 529.3 eV
and 531 eV were obtained, which would be consistent with the presence of H-O bonds and
Co2+ binding to OH [33,35–37]. The Co 2p peaks were magnified, as shown in Figure 3c.
There are two main peaks at 780.45 eV and 796.65 eV with a spin-energy separation of
16.2 eV corresponding to Co 2p2/3 and Co 2p1/3 of Co(OH)2, respectively [24,38]. There
are also two satellite peaks located at 786.2 eV and 802.5 eV, which could be the satellite
peaks of Co(OH)2 [36,37]. The two fitted peaks at 780.3 eV and 782.2 eV related to Co 2p2/3
further confirm that the as-prepared nanomaterials are Co(OH)2 [33,36,37,39,40].
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3.2. Electrochemical Performance

The Co(OH)2 nanomaterial electrodes exhibit high capacities, cycle stability at
200 mA/g, and outstanding rate capability, as is shown in Figure 4. Figure 4a shows
the initial discharge and charge capacities were 1703.2 and 1262.9 mAh/g, respectively. The
Coulombic efficiency increased to 94.21% in the second cycle and remained above 95% till
the 150th cycle. A reversible capacity of 1050 mAh/g is obtained after 150 cycles, which is
higher than the theoretical capacity (576 mAh/g) of Co(OH)2 [33,41]. The fluctuation of the
capacities could result from the difference in testing temperatures during the day and night.
However, the fluctuation does not influence the excellent cycle stability of the Co(OH)2
nanomaterials. The outstanding rate performance is shown in Figure 4b, The reversible
capabilities of the Co(OH)2 nanomaterials were 1588, 1425, 1168, and 1015 mAh/g at 100,
200, 500, and 800 mA/g, and the capabilities increased to 1169, 1410, and 1630 mAh/g
when the current density went back to 500, 200, and 100 mA/g. Table 1 compares the
electrochemical results of other related Co(OH)2 materials and those prepared in our work,
which indicates the outstanding electrochemical performance of the Co(OH)2 nanomate-
rials. The superior electrochemical performance could result from the facile water bath
method and the structure hybridization of nanosheets and nanoparticles [42–46]. The
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nanoparticles filled in the nanosheets could avoid the aggregation of the nanosheets and
then accommodate the volume change during the discharge-charge cycles [42,43,47].
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Table 1. The electrochemical results of other related Co(OH)2 materials and our work.

Materials Initial Discharge
Capacity (mAh/g)

Reversible Capacity
(mAh/g)

Current Density
(mA/g) References

Co(OH)2 1703.2 1050 (150 cycles) 200 This Work

Co(OH)2 1599.1 190.7 (20 cycles) 100 [25]

Co(OH)2 1232 614 (40 cycles) 100 [26]

GC–Co(OH)2 1146 706 (50 cycles) 58 [27]

Co(OH)2/Co3O4/Co@NGC 1032 543 (300 cycles) 100 [28]

ZnO@α-Co(OH)2 1425 1127 (150 cycles) 200 [29]

Co(OH)2@GNS 1599 910 (30 cycles) 200 [30]

α-Co(OH)2 1765 433 (50 cycles) 100 [32]

CS-Co(OH)2 1699.54 1036.32 (30 cycles) 0.1C [33]

4Co(OH)2-1G 1250 690 (100 cycles) 0.1C [34]

Mn–Co2(OH)3Cl 1966 1377 (50 cycles) 100 [35]

Co(OH)2–rGO 1410 690 (60 cycles) 50 [41]

Co(OH)2@MnO2 1621.33 700 (90 cycles) 250 [37]

NixCo2x(OH)6x@eRG 1308 787 (500 cycles) 200 [38]

Co2(OH)3Cl@GS 1600 753 (50 cycles) 200 [48]

Co(OH)2/GNSs 1654 (50 mA/g) 508 (100 cycles) 500 [49]
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To clarify the electrochemical reactions of the Co(OH)2 nanomaterials, the first five
cyclic voltammetry (CV) curves at 0.1mV/s were measured, as shown in Figure 5a. In
the first cathodic sweep, there is only one broad peak at 0.72 V, which corresponds to the
formation of the solid electrolyte interface (SEI) film and the reduction reaction of Co(OH)2
to Co [27,32,34,37,48]. For the first anodic process, there are three peaks at 1.20 V, 1.71 V, and
2.16 V, which corresponds to the multistep oxidation reaction of Co to Co(OH)2 [32,37,49].
The positions of the three oxidation peaks are almost unchanged in the following cycles,
indicating the relatively stable reaction mechanism of the Co(OH)2 electrodes. In the second
cathodic sweep, the main reduction peak at 0.72 V splits into two peaks at 0.75 V and 1.20 V,
which has been reported to be due to the irreversibility of the Co(OH)2 structure after the
first cycle or the size of the nanomaterials and nanoparticles of Co(OH)2 [32,38,49]. The
two split peaks increase to high voltage a little in the third cathodic cycle, and then finally
locate at 0.91 V and 1.45 V. After the first cycle, the reduction peak at 2.25 V appears and
increases, which has also been reported in the study of Co(OH)2 nanosheets anodes [26].
This inconspicuous reduction peak could result from the insertion of lithium ions into the
Co(OH)2 electrodes. The CV curves almost overlap after the third cycle, indicating the
excellent stability of the electrochemical reaction during cycles [50,51].
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The first five discharge-charge curves at 100 mA/g are shown in Figure 5b to compare
with the CV curves shown in Figure 5a. In the first discharge curve, the voltage sharply
dropped from the open-circuit voltage to 1.30 V, which was observed in many experimental
results [26–28]. The voltage plateau from 1.04 to 0.64 V corresponds to the reduction
reaction denoted by the peak of 0.72 V shown in Figure 5a. In the first charge curve, there
are three voltage plateaus from 1.00 to 1.50 V, from 1.60 to 1.80 V, and from 1.95 to 2.47 V,
which relate to the complex oxidation reaction to Co(OH)2 shown in CV curves. In the
following cycles, there are two discharge voltage plateaus of 2.60–2.07 V and 1.34–0.75 V in
the discharging process, relating to the lithium ions insertion denoted by the peak of 2.25 V
and the multistep reduction reaction to Co denoted by the peaks of 0.91 V and 1.45 V in the
CV cathodic process. The discharge-charge curves also almost coincide after the third cycle,
indicating excellent cycle stability [29,30].

The electrochemical reaction kinetic and the increased electrochemical performance of
the electrodes can be investigated by electrochemical impedance spectroscopy (EIS) [17–19].
Therefore, the EIS of Co(OH)2 nanomaterials was measured from 10−2 to 105 Hz before and
after 50 cycles, as shown in Figure 6. The two Nyquist plots (scatters), which are composed
of two semicircles in high frequency and a straight line in low frequency, can be well fitted
by the equivalent circuit (fitting line) shown in the inset of Figure 6a. The parameters of Rs,
Rcf, Rct, and Zw denote the ohmic resistance of the electrode and electrolyte, the impedance
of the SEI layer, the charge transfer resistance, and the Warburg impedance [17–19,50,52].
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The Li-ions diffusion coefficient (DLi+ ) is an essential parameter of electrodes, and it can be
obtained by the following equations:

DLi+ =
R2T2

2A2n4F4C2σ2 (1)

Zreal = Rs + Rct + σω−1/2 (2)
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The physical parameters above include the gas constant (R), the measuring tempera-
ture (T), the surface area of the electrode (A), the number of transferred electrons (n), the
Faraday constant (F), the concentration of lithium ions (C), the Warburg coefficient (σ),
and the angle frequency (ω), respectively [50,52]. The value of σ can be fitted by Equation
(2) in the low-frequency [50,52]. As shown in the inset of Figure 6b, the impedance data
before cycling was divided by 2, and DLi+ was obtained by Equation (1) further. All the
fitted resistance parameters (Rs, Rcf, Rct, and Rtotal) and DLi+ are shown in Table 2. Except
Rs increased a little due to the formation of SEI film [18], the other resistances of (Rcf,
Rct, and Rtotal) decreased remarkably after cycling, which indicates the increased electro-
chemical kinetics during cycling [17,18]. The Li-ion diffusion coefficient also dramatically
increased after cycling, which is essential for the outstanding cycling performance and
the rate capability [17,18]. The increased electrochemical kinetics and DLi+ of the Co(OH)2
nanomaterials could result from the hybridization of structures [42–45].

Table 2. The fitted parameters and DLi+ of Co(OH)2 nanomaterials.

States Rs (Ω) Rcf (Ω) Rct (Ω) Rtotal (Ω) DLi+ (cm2/s)

Before
cycling 3.29 1257 850.6 2110.89 9.10 × 10−16

After cycling 7.96 800.5 73.33 881.79 3.42 × 10−14

The CV curves at different scan rates can investigate the lithium storage
mechanism [22,44]. As shown in Figure 7a, the shapes of the CV curves are similar, indi-
cating the stable electrochemical reaction mechanism. The Co(OH)2 nanomaterials show
excellent lithium ion intercalation dynamics for the remarkable redox peaks at 3 mV/s [18].
The current in the CV curves was contributed by the lithium-ion diffusion mechanism
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and the surface capacitance mechanism, which the following equations can qualitatively
obtained [18,19,22,43]:

Ipeak = aνb (3)

log
(

Ipeak

)
= b log(ν) + loga (4)

where Ipeak and ν denote the peak current in the CV curves and the scan rate. a and
b are the adjustable parameters, which can be fitted by Equation (4) [22,43]. The value
of b (0.5–1) can indicate the qualitative contribution rations of the lithium-ion diffusion
mechanism and the surface capacitance mechanism [22,44,53]. For b = 0.5, the lithium-ion
diffusion mechanism contributes almost the total current in CV curves, while for b = 1,
the surface capacitance mechanism is dominant [22,44,53]. As shown in Figure 7b, the
values of b for the two redox peaks marked in Figure 7a are 0.53 and 0.54, indicating the
dominance of the lithium-ion diffusion contribution [18,19]. Because of the relatively high
lithium-ion diffusion-controlled contribution at the two redox reactions, it is necessary
to further quantitatively calculate the contribution ratios of the lithium-ion diffusion-
controlled mechanism at different scan rates by the following equations [43,44,51,53]:

I = k1ν + k2ν0.5 (5)

I/ν0.5 = k1ν0.5 + k2 (6)

where k1ν and k2ν0.5 denote the contribution of surface capacitance controlled and diffusion-
controlled mechanisms, respectively [43,44]. The adjustable parameters k1 and k2 can be
fitted by the linear fitting of Equation (6). After obtaining enough values of k1 and k2 at
different voltages, the contribution ratios of surface capacitance controlled and diffusion-
controlled mechanisms can be calculated [51,53]. As shown in Figure 7c, the contribution
ratio of surface capacitance controlled is only 8.9%, while the diffusion-controlled mech-
anism contributes as high as 91.1% of the energy storage at 0.1 mV/s. Figure 7d shows
the quantitative contribution ratios of the lithium-ion diffusion-controlled mechanism at
different scan rates. Although the contribution of the lithium-ion diffusion-controlled mech-
anism decreases with the scan rates, it still is dominant in energy storage, which consists
with the relatively low resistance and the high Li-ions diffusion coefficient obtained in EIS
measurement [51,53].
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To investigate the structural stability of the Co(OH)2 nanomaterials during cycles,
the electrodes were disassembled after the cycling test, and then the SEM images were
recorded. As shown in Figure 8, the Co(OH)2 nanomaterials nearly maintain the nanosheet
structure as before cycling, which is consistent with the good cycling stability and rate
performance shown in Figure 4. The hybridization of structures could thus be a useful way
to protect the structural integrity of Co(OH)2 nanomaterial anodes.

Micromachines 2022, 13, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 7. (a) The CV curves at different scan rates. (b) The corresponding plots of log(Ipeak) vs. log(v) 
at the two redox peaks marked in (a). (c) The CV curve and the contribution of surface capacitance 
mechanism at 0.1 mV/s. (d) Contribution ratios of diffusion-controlled mechanism. 

 
Figure 8. The SEM images of the Co(OH)2 nanomaterials after cycling tests with different magnifi-
cation. (a) 1 μm, (b) 300 nm. 

4. Conclusions 
In this work, hybridized Co(OH)2 nanomaterial structures were synthesized by the 

water bath method and exhibited high electrochemical performance as anodes for LIBs. 
The initial discharge and charge capacities were 1703.2 and 1262.9 mAh/g at 200 mA/g, 
respectively. The reversible capacity was 1050 mAh/g after 150 cycles. The reversible ca-
pability was 1015 mAh/g at 800 mA/g and increased to 1630 mAh/g when cycled back to 
100 mA/g. The superior electrochemical performance could result from the water bath 
method used and the hybridization of nanosheet and nanoparticle structures. The hybrid-
ization of structures could therefore be an efficient method to increase the electrochemical 
performance of Co(OH)2 nanomaterials as anodes for LIBs. 

Author Contributions: L.R. and L.W. prepared the Co(OH)2 nanomaterials, assembled the half cells, 
carried out the XRD and SEM measurements, performed the electrochemical tests, and drafted the 
original manuscript. Q.L. and Y.Q. provided funding and supervision. Y.Q. revised and edited the 
final manuscript. All authors have read and agreed to the published version of the manuscript. 

Figure 8. The SEM images of the Co(OH)2 nanomaterials after cycling tests with different magnifica-
tion. (a) 1 µm, (b) 300 nm.

4. Conclusions

In this work, hybridized Co(OH)2 nanomaterial structures were synthesized by the
water bath method and exhibited high electrochemical performance as anodes for LIBs.
The initial discharge and charge capacities were 1703.2 and 1262.9 mAh/g at 200 mA/g,
respectively. The reversible capacity was 1050 mAh/g after 150 cycles. The reversible
capability was 1015 mAh/g at 800 mA/g and increased to 1630 mAh/g when cycled
back to 100 mA/g. The superior electrochemical performance could result from the water
bath method used and the hybridization of nanosheet and nanoparticle structures. The
hybridization of structures could therefore be an efficient method to increase the electro-
chemical performance of Co(OH)2 nanomaterials as anodes for LIBs.
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