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Introduction
The potential of artificial intelligence (AI) to transform health 
care is vast. AI-based applications in dentistry may help in 
research, prevention, diagnostics, decision support, and automat-
ing routine tasks to facilitate treatment at low cost for more peo-
ple, eventually allowing for personalized, predictive, preventive, 
and participatory dentistry (Schwendicke et al. 2020). However, 
particularly in health care, aspects related to data privacy and data 
sharing have been identified as hampering factors (Rieke et al. 
2020). Especially, dentistry is affected by this, as patients can be 
identified from anonymized radiographs due to individual struc-
tures of tissues, tooth anatomy, and restoration status.

Hence, scalable methods for building AI that respect privacy 
constraints are required to unlock the full potential of AI-based 
applications in dentistry. A promising direction is the paradigm 
shift from centralized data-pooling for the development of AI to 
federated learning (FL) approaches. FL is closely related to 
deep learning, which is an AI subfield that aims at training neu-
ral networks to extract statistical patterns in given data to even-
tually make predictions on unseen data. During the so-called 
training phase, the neural network is iteratively and repeatedly 
exposed to training data, which consist of data points (e.g., 
images) with associated expert-based labels (e.g., “healthy” or 
“caries”). By minimizing the prediction error, the model learns, 
for instance, to distinguish healthy and decayed teeth in bite-
wing radiographs. A common approach for this training process 
is to first pool data and then train a model on these data, known 
as centralized learning. Such an approach, however, often lacks 
generalizability as the data pool stems from one or very few 
data sources (e.g., 1 or 2 contributing hospitals or research insti-
tutes). Federated learning, in contrast, enables multiple partici-
pants to collaboratively train AI models. FL widens the access 

to knowledge from many more and diverse data sources with-
out sharing them directly. Instead, knowledge is exchanged in 
the form of trained AI models or their outputs (Rieke et al. 
2020; Kairouz et al. 2021). This enables generalizability, while 
keeping the training data private, which is a well-known restric-
tion for medical data analysis tasks. A central server (e.g., a 
trusted service provider) usually orchestrates the whole FL 
training process based on defined protocols.

One popular protocol for FL is federated averaging (FedAvg), 
introduced by McMahan et al. (2017), where all participants 
agree on an AI model (e.g., a certain neural network architec-
ture), and each participant (e.g., research institute) trains its 
model on its local training data (e.g., collected bitewing radio-
graphs with labels of “healthy” or “caries”). The updated models 
are then sent by the participants to the central server, which 
aggregates all received models to a new global model by averag-
ing all model parameters. This global model carries knowledge 
originating from data of all participants and is broadcasted to all 
participants for the next round of this iterative training proce-
dure, unless a certain stopping criterion is met. Figure 1 gives an 
overview of this communication protocol.
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Another established algorithmic paradigm for FL is feder-
ated distillation (FD) (Jeong et al. 2018; Li and Wang 2019; 
Sattler, Korjakow, et al. 2021; Sattler, Marban, et al. 2021), 
where instead of model parameters (as in FedAvg), only model 
outputs for an unlabeled public data set are exchanged between 
participants and the central server. This approach allows par-
ticipants to train heterogeneous model architectures but 
requires the existence of an appropriate public data set having 
similar distribution as the training data sets. Silva et al. (2018) 
published a public data set with 1,500 panoramic images, 
which may be used for employing FD in dentistry.

FL has already successfully fostered collaborative AI train-
ing without data sharing in different health care settings, espe-
cially for tasks in medical imaging (Roth et al. 2020; Sheller 
et al. 2020; Kaissis et al. 2021) and specifically also for inter-
national COVID-19 research (Raisaro et al. 2020; Dayan et al. 
2021; Yang et al. 2021). The findings of these studies illustrate 
the value proposition of FL:

1. The performance of all local AI models regarding their 
predictive quality and generalizability can be improved 
by collaborative training (Roth et al. 2020; Dayan et al. 
2021; Yang et al. 2021).

2. FL has the potential to achieve results of centralized 
learning (Sheller et al. 2020; Kaissis et al. 2021).

3. There are security mechanisms for preserving the pri-
vacy within FL (Raisaro et al. 2020; Kaissis et al. 
2021).

As for dentistry, the above findings and insights apply like-
wise. Hence, we aim to introduce the FL concept, chances, cur-
rent challenges, and potential to the dental research community. 
Embracing FL may foster collaboration and cultivate knowl-
edge exchange, while respecting data privacy concerns, and 
overall improves AI-based applications in dentistry.

Chances of Federated Learning  
in Dentistry
AI is an emerging field in dentistry. In 2020, over 240 AI-related 
publications were listed on PubMed, which among others 
 predict the occurrence of caries lesions (Lee et al. 2018), 
 periodontal bone loss (Krois et al. 2019), periodontally com-
promised teeth (Thanathornwong and Suebnukarn 2020), and 
apical lesions (Ekert et al. 2019). The number of institutes tak-
ing active part in this endeavor and their widespread geo-
graphic locations are represented in Figure 2. Training such 
AI-based systems requires large dental data sets, which ideally 
capture all possible anatomical structures and pathologies. 
More available data are likely to improve the predictive perfor-
mance of models, and with more diversity of samples, models 
are likely to generalize better across different data sources. 
However, the procurement of such data is difficult as it takes a 
considerable amount of time, effort, and financial resources to 
collect and store the data as well as to establish a ground truth. 
Especially, the latter aspect is often a limiting factor for the size 
of data sets in dentistry, as most use-cases are based on seg-
mentation or detection tasks, which are generally more time-
consuming in ground truth generation than classification tasks. 
As this holds for many applications, FL is also better under-
stood for classification tasks than segmentation or detection, 
which necessitates further research in this direction.

In addition, dental data are considered highly sensitive, and 
data sharing is regulated to preserve the privacy of patients, 
which restricts the publication of data sets (Van Panhuis et al. 
2014). To address this, several techniques for deidentification 
have been proposed, such as removing patient-specific infor-
mation (i.e., age or date of birth). Yet, it has been shown that 
this is not sufficient to protect patients’ privacy (Rocher et al. 
2019). Especially dental images and radiographs bear a high 
risk for reidentification. Structures of hard and soft tissue as 
well as teeth anatomy and dental restorations are unique to 
individuals, which make radiographs highly relevant for foren-
sic odontology. In this field, reidentification is highly desired: 
a person, often an unknown deceased individual, may be iden-
tified by comparing ante- and postmortem dental radiographs. 
For example, after the tsunami disaster in 2004, 79% of 
deceased individuals were identified based on intraoral radiog-
raphy alone (James et al. 2005). For general data sharing 
between institutes, these reidentification capabilities of foren-
sic odontology highlight the risk of privacy sensitivity and pos-
sible privacy breaches.

To enable joint data-driven research between dental insti-
tutes, FL addresses these privacy concerns with its privacy-by-
design approach of avoiding raw data exchanges and instead 

Figure 1. Algorithmic overview of the iterative federated averaging 
protocol with 4 steps: 1) server broadcasts artificial intelligence model 
to all participants; 2) each participant individually trains model on its 
local data to create an updated model; 3) participants send model 
updates back to central server; 4) server averages all model updates to 
aggregate them to a new global model for the next round.
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sharing the wisdom learnt from the data, as described in the 
previous section. A typical setting for dentistry is cross-silo FL 
(Kairouz et al. 2021). Thereby, a few participants (e.g., 2–100 
hospitals) have access to large data silos that they cannot share 
directly with each other due to the described privacy concerns.

In addition to the privacy aspects, FL also offers a solution 
to data and model ownership concerns present in centralized 
learning, as in FL data never leave their source and the AI 
model is trained by all participants. This can be a security 
advantage, as in FL, there is not only a single institute that an 
attacker can concentrate on to tamper the training process or 
get access to private information.

Overall, FL offers great potential to accelerate advances in 
AI for dentistry. There are already many distinguished gravita-
tional centers of AI research in dentistry (see Fig. 2), so that the 
provision of a technology that connects them may result in a 
tremendous development boost for the community. Each 
research group most likely has access to large amounts of 
siloed data of varying modalities and may be willing to con-
tribute to collaborative training of dental AI. Dentistry by 
nature offers beyond the already existing AI research centers 
many potential FL collaborators, as it is common to store data 
from small dental offices at large research institutions, which 
potentially have the required resources to overcome initial 
investments to join a federation.

Coping with Challenges for FL  
in Dentistry
Despite all the chances of FL for dentistry, there are also chal-
lenges that require appropriate solutions to unlock the potential 
of FL. First, FL requires AI preknowledge of the participants, 
since they agree on a certain model architecture (in FedAvg) or 

train on their individual architecture (in FD). Performing an 
architecture search (Elsken et al. 2019) within FL is computa-
tionally very expensive and thus should happen before the joint 
training phase on the local data to find an appropriate starting 
model for the considered learning task. Similarly, the tuning pro-
cess of parameters as well as monitoring and debugging of FL 
systems are more difficult without direct access to data. Within 
FL, all participants should have appropriate local computational 
resources to join the federation, which may be a high initial 
investment for new participants. Furthermore, these learning 
resources are costly in maintenance and require higher coordina-
tion and effort for deployment than centralized systems.

Second, the participants’ data silos are often statistically 
heterogeneous by nature due to different medical standards as 
well as social and economic determinants, also known as data 
set shift (Quionero-Candela et al. 2009). More formally, the 
whole training data are usually not distributed in an iid (inde-
pendent and identically distributed) fashion among the partici-
pants, which would be fulfilled in an ideal FL setting. Data 
heterogeneity (“non-iid-ness”), however, usually has negative 
effects on the final model performance in FL and is also a 
cause of the performance gap to centralized learning (Li et al. 
2018; Zhao et al. 2018; Hsu et al. 2019; Kairouz et al. 2021; 
Sattler, Korjakow, et al. 2021; Sattler, Müller, and Samek 
2021). Data heterogeneity in dentistry may be caused by a 
covariate shift (e.g., different x-ray machines used for data 
acquisition), prior probability shift (e.g., more implants in 
developed countries), or unbalancedness (e.g., some regions 
collect more data), as characterized by Kairouz et al. (2021).

FL applications usually must cope with a mixture of these 
types, especially when applied at an international scale. 
However, tasks in dentistry are usually less driven by personal 
preferences but rather by defined standards (e.g., when 

Figure 2. World map with artificial intelligence (AI)–related publications in dentistry (based on the first author’s affiliation) grouped by country. The 
data stem from a systematic review (unpublished) that screened the online repositories of Medline, IEEE, and arXiv for publications related to AI and 
dentistry that were published between 2015 and May 2021.
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considering caries classification). This is crucial for a feasible 
FL task, as shown by other success stories in medical imaging 
outlined in the first section.

There are different strategies for coping with data heterogene-
ity in FL (see, e.g., Kairouz et al. 2021). General approaches are 
data set augmentation by publicly available data or sharing some 
data between participants (Zhao et al. 2018) to make the data silos 
statistically more homogeneous as well as modifying existing FL 
algorithms together with their hyperparameters for more effective 
and efficient training in the presence of data heterogeneity (Li 
et al. 2018; Li and Wang 2019; Karimireddy et al. 2020; Sattler, 
Korjakow, et al. 2021). If the assumption that the participants 
share a similar probability distribution is not fulfilled, meaning 
that training a single model satisfying all participants is not pos-
sible, then more specific strategies are required such as personal-
ization of the global model (Wang et al. 2019), multitask learning 
(Smith et al. 2017), participant clustering (Sattler, Müller, and 
Samek 2021), and meta-learning (Khodak et al. 2019).

Third, although FL is a privacy-by-design approach and has, 
due to its decentralized nature, a lower security risk than central-
ized learning, vanilla FL protocols without further protection 
mechanisms have been shown to be vulnerable to certain pri-
vacy attacks (Kairouz et al. 2021; Mothukuri et al. 2021). While 
attacks in centralized learning usually focus on compromising 
the central server to leak data, privacy attacks in FL rather aim at 
the reconstruction of the participants’ local training data or tam-
pering the training process to leak private information through 
model inversion attacks (Fredrikson et al. 2015), membership 
inference attacks (Shokri et al. 2017), or Generative Adversarial 
Network (GAN) attacks (Hitaj et al. 2017). Thus, privacy within 
FL systems often also depends on the system’s security. Hence, 
setting up an FL system that is based on trust and secured by 
cryptography (e.g., secure multiparty computation or homomor-
phic encryption) is a common approach to preserve privacy 
(Kairouz et al. 2021; Kaissis et al. 2021; Mothukuri et al. 2021). 
Another established concept for privacy preservation within FL 
is differential privacy (Dwork and Roth 2014), where carefully 
chosen noise is added to the model parameters or model outputs 
to obfuscate them before release so that it is hard to reconstruct 
individual training samples. Differential privacy provides a 
mathematically provable guarantee of privacy but often creates 
a privacy versus performance trade-off.

Fourth, the value propositions of FL in the first section 
might already motivate owners of data silos to join FL efforts. 
Nonetheless, FL requires an investment in local computing 
resources (including maintenance and coordination) and is 
based on trust among the participants. Both investments should 
pay off fairly to motivate participation. Designing mechanisms 
for FL that incentivize truthful participation and fairness is an 
interesting open research question (Donahue and Kleinberg 
2021; Shi et al. 2021; Witt et al. 2021).

Call for Action for Dental Researchers
The authors encourage researchers to join their forces to improve 
AI-based applications in dentistry through collaborative FL 

 initiatives. To get started, interested parties should get familiar 
with the FL life cycle and training process as, for instance, 
described in Kairouz et al. (2021). Based on a solid under-
standing of the theoretical concepts, one may decide on the 
data modality, the task to be solved, and potential collaborators 
for the FL initiative. The topic group “Dental Diagnostics and 
Digital Dentistry” (TG-Dental) within ITU/WHO Focus Group 
Artificial Intelligence for Health (FG-AI4H) provides a point 
of contact to find collaborators. Once the general conditions 
are defined, all participants must agree on certain settings of 
the FL process. This includes a decision on the collaboratively 
trained model architecture. A consensus might be reached by 
simulations of the FL process, which is not necessary if a well-
performing model architecture is already known. Alternatively, 
participants may use the FD protocol, allowing each partici-
pant to train individual architectures. As discussed in the previ-
ous section, setting up an FL system can be challenging in 
practice given the constraints in health care. Thus, the dis-
cussed aspects of data heterogeneity, privacy, security, and 
incentives should be considered already during the initial 
design phase. Finally, the implementation of the FL training 
pipelines may be supported by frameworks such as Flower 
(https://flower.dev/), PySyft (https://github.com/OpenMined/
PySyft), NVIDIA Clara (https://developer.nvidia.com/clara-
medical-imaging), or TensorFlow Federated (https://www.ten 
sorflow.org/federated).

Conclusion
FL is an established, scalable, and privacy-preserving concept 
for collaborative AI training without data sharing. Its value 
propositions have been successfully verified in different medi-
cal domains. Although challenges remain to be solved, den-
tistry should be among the early adopters to use the potential 
that lies in this concept. This in turn may foster digitalization 
and standardization efforts in dentistry to address some of the 
discussed challenges.
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