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Abstract: Visfatin/NAMPT (nicotinamide phosphoribosyltransferase) is an adipocytokine with
several intriguing properties. It was first identified as pre-B-cell colony-enhancing factor but
turned out to possess enzymatic functions in nicotinamide adenine dinucleotide biosynthesis,
with ubiquitous expression in skeletal muscles, liver, cardiomyocytes, and brain cells. Visfatin exists
in an intracellular (iNAMPT) and extracellular (eNAMPT) form. Intracellularly, visfatin/iNAMPT
plays a regulatory role in NAD+ biosynthesis and thereby affects many NAD-dependent proteins
such as sirtuins, PARPs, MARTs and CD38/157. Extracellularly, visfatin is associated with many
hormone-like signaling pathways and activates some intracellular signaling cascades. Importantly,
eNAMPT has been associated with several metabolic disorders including obesity and type 1 and
2 diabetes. In this review, a brief overview about visfatin is presented with special emphasis on
its relevance to metabolic diseases. Visfatin/NAMPT appears to be a unique molecule with clinical
significance with a prospective promising diagnostic, prognostic, and therapeutic applications in
many cardiovasculo-metabolic disorders.
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1. Introduction

The role of adipose tissues evolved from simply being the main reservoir of energy in the form of
triglycerides to becoming an endocrine gland and essentially a part of the endocrine system. This is
due to that fact that adipose tissues secrete hormone-like substances known as “adipokines” or
“adipocytokine” [1]. Adipokines include inflammatory mediators such as complement factors B, C3,
and D, haptoglobin, hepatocyte growth factor, adiponectin, prostaglandin E2, interleukin (IL)-1β, IL-6,
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IL-8, IL-10, leukemia inhibitory factor, macrophage migration inhibitory factor, tumor necrosis factor
(TNF) and many more [2]. The concentration of these adipokines may be altered or dysregulated in some
metabolic disorders, such as obesity [3,4] and type 2 diabetes [4], sepsis [5], cardiovascular disorders,
such as hypertension and atherosclerosis [6–9] and many other cardiovasculo-metabolic disorders.
The relation between metabolism and cardiovascular disease starts in utero and continues until
adulthood [10].

In 1994, a protein, with a novel cytokine-like activity, was initially uncovered from the bone
marrow cDNA library [11]. It was denoted the name, pre-B-cell colony-enhancing factor (PBEF),
due to its enhancing role in murine pre-B-cell colony formation from early B lineage precursor
cells [11]. In 2001, a gene, with a similar sequence to PBEF, known as nadV, was discovered to
permit NAD-independent growth of Gram-negative bacteria such as Haemophilus influenza and
Actinobacillus [12]. This shed light on a possible underlying role of PBEF in nicotinamide adenine
dinucleotide (NAD) biosynthesis. In 2002, PBEF was identified to be a protein with enzymatic
properties capable of catalyzing the synthesis of nicotinamide mononucleotide (NMN), an intermediate
of NAD biosynthesis, from nicotinamide (NAM) and 5-phosphoribosyl-1-pyrophosphate (Figure 1) [13].
As a consequence, PBEF was renamed nicotinamide phosphoribosyltransferase (NAMPT). NAMPT is
a dimeric type 2 phosphoribosyltransferase and its role in NAD biosynthesis has been emphasized [14].
In 2005, a study reported NAMPT or PBEF as being a protein that is secreted solely by visceral fat,
hence it was denoted visfatin meaning visceral fat-specific adipokine [15]. The terms visfatin, PBEF,
and NAMPT are nowadays used interchangeably.
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mononucleotide (NAMN), which will be converted to nicotinic acid adenine dinucleotide (NAAD) 
via nicotinamide mononucleotide adenylyltransferases (NMNATs). NAAD conversion to NAD+ is 
catalyzed by nicotinamide adenine dinucleotide synthetase (NADS). Nicotinamide (NAM) constitute 
an important precursor for NAD+ inside the cell via the salvage (rescue) pathway. NAM is the product 
of several NAD+ dependent enzymes: sirtuins (SIRTs), poly (ADP-ribose) polymerases (PARPs), 
mono (ADP-ribose) transferases (MARTs), cluster of differentiation 38 (CD38) and CD157. NAM will 
be converted to nicotinamide mononucleotide (NMN) in the rate determining step of the salvage 
pathway via nicotinamide phosphoribosyltransferase (NAMPT) or visfatin. NAD+ may be 
regenerated from NMN via nicotinamide mononucleotide adenylyltransferase (NMNAT). 

Figure 1. The three-mammalian nicotinamide adenine dinucleotide (NAD+) biosynthesis pathways.
De novo synthesis and the Preiss–Handler pathway start from nutritionally-derived tryptophan
(essential amino acid) and nicotinic acid (NA), respectively. Both will eventually yield nicotinic acid
mononucleotide (NAMN), which will be converted to nicotinic acid adenine dinucleotide (NAAD)
via nicotinamide mononucleotide adenylyltransferases (NMNATs). NAAD conversion to NAD+ is
catalyzed by nicotinamide adenine dinucleotide synthetase (NADS). Nicotinamide (NAM) constitute
an important precursor for NAD+ inside the cell via the salvage (rescue) pathway. NAM is the product
of several NAD+ dependent enzymes: sirtuins (SIRTs), poly (ADP-ribose) polymerases (PARPs), mono
(ADP-ribose) transferases (MARTs), cluster of differentiation 38 (CD38) and CD157. NAM will be
converted to nicotinamide mononucleotide (NMN) in the rate determining step of the salvage pathway
via nicotinamide phosphoribosyltransferase (NAMPT) or visfatin. NAD+ may be regenerated from
NMN via nicotinamide mononucleotide adenylyltransferase (NMNAT).
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2. Visfatin’s Tissue Expression

In 1994, cloning techniques revealed widespread expression and secretion of visfatin, in bone
marrow, liver, muscles, heart, placenta, lung, and kidney tissues [11]. The liver and muscles expressed
the highest amounts, with the former being the highest among all [11]. Visfatin/NAMPT was found
to have ubiquitous expression in adipose tissues, liver, muscle, and immune cells [15–17]. Moreover,
other studies reported that visfatin is expressed in myocardial cells, particularly in cardiomyocytes and
cardiac fibroblasts in a similar fashion at the mRNA and protein levels [18]. In addition, visfatin is found
in brain neuronal cells with marked up-regulation of expression during brain damage (ischemia) [19,20].
Hence, visfatin production is no longer considered limited to visceral fat and its ubiquitous expression
and secretion in many other tissues suggests a vital role in their physiological processes.

The fact that visfatin possesses both cytokine-like extrinsic activity (PBEF) and an enzymatic
intrinsic activity (NAMPT) incited researchers to investigate a possible determinant role in physiology
and pathophysiology of cardiovasculo-metabolic disorders [21]. Moreover, the comparison of the
visfatin gene in pigs and seven other representative organisms revealed that the visfatin gene is highly
conserved among different organisms [17]. Several variants of visfatin have been reported. Some of
the variants are present in all cells whereas others a more localized and absent in liver and testes [17].
This may be suggestive of specific functions performed by each variant.

3. Functional Roles

Visfatin/NAMPT can exist as intracellular (iNAMPT) or extracellular (eNAMPT) exerting different
roles [16,22].

3.1. Intracellular Visfatin (iNAMPT)

Nicotinamide adenine dinucleotides are pyridine substrates that include NAD+ and NADP
(phosphorylated form of NAD) and their reduced forms NADH and NADPH, respectively.
They are small molecule co-factors, essential in energy metabolism: NAD and NADH in oxidative
energy-releasing processes (catabolic reactions) and NADPH and NADP in reductive biosynthesis
(anabolic reactions), detoxification and anti-oxidation [23–27]. NAD substrates serve as cofactors
for several enzymes, which are known as NAD-dependent enzymes. These enzymes bridge the
interplay between cellular metabolic processes and different epigenetic regulation mechanisms.
This distinguishes NAD as a core potent substrate with tremendous regulatory and physiological
functions metabolism [23–27]. NAD+ and NADP remain as essential cofactors to several cellular
and metabolic processes pertinent to carbohydrates, proteins, lipid, cholesterol and steroids
metabolism [24,25,27]. NAD+ is more dedicated to the breakdown (oxidation) of carbohydrates,
fats, and proteins, and other reducing agents such as alcohols [24,25,27]. NADPH is primarily utilized
in synthetic pathways involving fatty acids and cholesterol [24–27]. Functional roles o iNAMPT are
discussed below and summarized in Table 1.

Table 1. Functional role of intracellular visfatin (iNAMPT).

NAD+-Dependent Cellular Signaling Functional Outcomes

Sirtuins

Cell division/proliferation
Cell differentiation

Cell survival/apoptosis
Life span

Inflammation
Cell metabolism/expenditure

CD38/CD157 Ca2+ signaling
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Table 1. Cont.

NAD+-Dependent Cellular Signaling Functional Outcomes

PARPs/MARTs

Cell proliferation
DNA repair/DNA integrity

Cellular responses to environmental/oxidative stress
Proper gene expression
Mitochondrial health

Transcriptional and post-translational regulation

3.1.1. Role of iNAMPT in NAD Biosynthesis

NAD biosynthesis has been shown to be a key player in basic cellular function [23–27].
There are three main pathways of NAD biosynthesis: (1) the de novo synthesis: starting from
tryptophan (kinurenine pathway), (2) the salvage (rescue) pathway: synthesis from NAM, (3) and
the Preiss–Handler pathway which involves generation from nicotinic acid (NA) [22,28,29] (Figure 1).
The intracellular form of visfatin, iNAMPT, is involved in the salvage pathway [22,28,29]. The salvage
pathway involves the transfer of a phosphoribosyl moiety from 5-phosphoribosyl-1-pyrophosphate
to NAM (or possibly to nicotinamide riboside: NR) to yield nicotinamide mononucleotide (NMN).
This reaction is catalyzed by Nicotinamide phosphoribosyltransferase (NAMPT) which turns to be
a form of visfatin [22,28,29]. Then NMN may be converted to the ultimate NAD by the enzyme
nicotinamide mononucleotide adenylyltransferase (NMNAT) which exists in several isoforms and
requires ATP [22]. Interestingly NAMPT is the rate-limiting step in the NAD salvage pathway [21,30].
Unfortunately, the metabolic conditions and cellular processes that dictate the utilization or recruitment
of the NAD salvage pathway remain unclear.

Cellular and metabolic processes require continuous activity of NAD-consuming enzymes.
This prompts eukaryotic cells to resynthesize NAD from nictotinamide (NAM) using a salvage pathway.
It should be noted that dietary intake of tryptophan or low amounts of niacin (less than 20 mg) is
sufficient to fulfill the baseline needs for proper NAD biosynthesis [28]. The NAMPT-dependent salvage
pathway remains a predominant pathway for NAD+ synthesis in mammals [31]. Notably, there is
increasing evidence that increasing rates of NAD+ biosynthesis might have diverse protective roles
against aging and stress [32,33], implicating a potential role of visfatin in regulating these processes.

3.1.2. Visfatin and NAD-Dependent Enzymes

The ability of visfatin to regulate NAD+ synthesis makes it a dominant regulator of several
cellular components, including sirtuins (SIRTs), poly (ADP-ribose) polymerase (PARPs), (CD38),
and CD157 [22,34].

Sirtuins

SIRTs are a group of enzymes that possess NAD-dependent protein deacetylase activity.
Sirtuins have intrigued researchers due to their ability to regulate major metabolic processes and
interfere with the lifespan [35]. Sirtuins constitute a family of seven proteins SIRT 1–7 [35,36] with
different localization and activity within the cell. SIRT 1 is present in both the nucleus and cytosol,
whereas SIRT2 is limited to cytosol and SIRT 6 to the nucleus exclusively [35,36]. Sirtuins 3–5 (SIRT 3–5)
are present in the mitochondria and SIRT 7 in the nucleolus [35,36]. SIRTs perform different activities
such as deacetylation (SIRT 1–3) and ADP-ribosylation (SIRT 4, 6). SIRTs also participate in mediating
metabolic processes, such as glucose and lipids metabolism [35]. Additionally, SIRTs have wide ranging
effects and associations with several processes such as apoptosis, inflammation, energy expenditure,
insulin sensitivity and many other processes [37–39]. It seems that SIRT 1 induces some of its effects
through interaction with transcription factors, such as fork-head box class O (FOXO), brain and muscle
aryl hydrocarbon receptor nuclear translocator-like (BMAL1) [39], nuclear factor kappa B (NF-κB),
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and p53, which regulate cell growth, circadian rhythm, inflammation and cell cycle, respectively [35–37]
(Figure 2).
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Figure 2. The salvage (rescue) pathway remains a predominant pathway to meet NAD+ cellular
requirements. Several NAD+ dependent cellular signaling pathways exist and involve sirtuins,
CD38/CD157, and PARPs/MARTs. They are essential for various cellular biological functions such
as cellular division, proliferation, inflammation, maintaining genome integrity, DNA and protein
synthesis, cellular anti-oxidative power, cellular metabolism, energy expenditure, mitochondrial health,
and aging. FOXO: fork-head box class O; BMAL1: brain and muscle aryl hydrocarbon receptor
nuclear translocator-like.

The interplay between NAMPT and SIRT1 is very intricate and well-regulated that allows the
control of several cellular events and physiologic processes, such as the circadian rhythm. Visfatin is
required in the regulation of the circadian gene expression [39]. This process involves SIRT1,
which modifies NAMPT expression by affecting NAMPT promoter to maintain the availability
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of its own cofactor NAD+ [39]. The relationship between visfatin and SIRT1 might provide an insight
into how cellular metabolism affects physiologic processes such as the circadian rhythm and even more
complex processes such as senescence.

PARPs/MARTs

PARPs are a family of enzymes involved in the post-translation modification of target proteins by
introducing ADP-ribose (ADPr) moiety [40]. They can exist as poly (ADP-ribose) polymerase (PARPs) or
mono (ADP-ribose) transferase (MARTs) depending on whether they produce a poly(ADP-ribose) (PAR)
or a mono(ADP-ribose) (MAR) [41]. PARPs functional roles include cell division, transcriptional and
post-translational regulation [40,42,43]. In addition to regulating cell death and survival, PARPs have
been implicated in cellular responses to environmental and metabolic insults (oxidation), such as
DNA repair and heat shock proteins [40,42–44]. Moreover, PARPs were found to be critical regulators
for eukaryotic physiology [45]. PARPs plays a critical role in maintenance of cell proliferation,
DNA integrity, proper gene expression, cell motility and are therefore essential for cell viability [44,45].

Given that PARPs utilize NAD+ as substrates to catalyze their reactions [40–42], it is not unlikely
to conclude that visfatin is a key player in PARPs effects and that any dysregulation in visfatin might
affect NAD levels and thereby influence PARPs regulatory role (Figure 2). Mechanistically, it has
been shown that the decrease in NAD+ levels following NAMPT inhibition is modulated by PARPs
rather than SIRT 1 [46]. Additionally, visfatin has been found to maintain cell viability through PARP1
activation [47]. PARPs, in particular PARP alpha, has been reported to be an important regulator
of visfatin’s expression in hepatic tissue, suggesting an intricate relationship between PARPs and
visfatin [48].

On the other hand, inhibition of NAMPT downregulates many proteins including antioxidants,
catalases, and most importantly PARP 1 [49], resulting in decreased cell survival and mitigated the
cellular responses to stress. Therefore, inhibition of visfatin increases susceptibility to oxidative insults
and disrupts cellular growth [49]. Following its enzymatic role in NAD+ biosynthesis, the inhibition of
visfatin will indeed affect NAD levels and bioenergetics.

CD38 and CD157

CD38 is a membrane bound protein with multi-enzymatic functions [50–52]. It is ubiquitously
expressed in different mammalian tissues [53,54]. Its major enzymatic function is hydrolysis of
NAD making it a major mammalian NADase [55]. Its catalytic functions have been implicated
in the metabolism of two distinct Ca2+ mobilization messengers: cyclic ADP-ribose (cADPR) and
nicotinic acid adenine dinucleotide phosphate (NAADP) [55–61]. CD38 may regulate major metabolic
and cellular processes by regulating NAD+ levels [55]. It is present in the plasma membrane of
cells and may be present intracellularly in mitochondrial membrane [62]. Additionally, it has been
reported to be located in the inner membrane [63,64] and outer membrane [65] of the nuclear envelope
(Figure 3). In line with these studies, other studies reported high levels of CD38 to be located in plasma
membrane [66], intracellularly in the nuclear membrane and endoplasmic reticulum [67] and inside cell
nuclei [66]. More importantly, CD38 has been found to be constitutively expressed in hematopoietic
cells, particularly in the nucleus, and researchers suggested a regulatory role in maintaining nuclear
Ca2+ and NAD+ levels [68].
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Figure 3. Various physiological roles of intracellular visfatin (iNAMPT). iNAMPT can be located in
the cytoplasm, nucleus, and mitochondria. iNAMPT triggers its effects by regulating the levels of the
core molecule NAD+. NAD+ levels are maintained through the de novo, Preiss–Handler, and salvage
pathways. NAD+ is heavily converted to NAM by several cellular NAD+ dependent enzymes which
include SIRT 1, 2 in the cytoplasm, SIRT 1, 6, 7 in the nucleus, and SIRT 3, 4, 5, in the mitochondria and
PARPs. NAM will be converted to NMN via iNAMPT which is the rate limiting step in the salvage
pathway. NAD+ can be regenerated from NMN via nicotinamide mononucleotide adenylyltransferases
(NMNATs). The ectoenzyme CD38 converts NAD+ to NAM to produce NAADP and cADPR involved
in intracellular Ca2+ signaling. CD38 can be also present on inner/outer mitochondrial membrane or
inner/outer nuclear envelope. NAD+ can be metabolized extracellularly to NMN via the ectoenzyme
CD73. NAD+ is a core molecule that plays a role in basic cellular metabolism. NAD+ is a key substrate
for glycolysis, the tricarboxylic acid cycle (TCA), pyruvate dehydrogenase (PDH), beta-oxidation
yielding NADH. The reduced form NADH can be regenerated via electron transport chain (ETC).
NAD+ exist also in a phosphorylated form NADP+. The reduced form NADPH determines the
anti-oxidative power of the cell. It is involved in anabolic biosynthesis (fatty acid (FA) biosynthesis),
detoxification, cellular responses during oxidative stress via glutathione reductase, and protection
against reactive oxygen species (ROS) via NADPH oxidase. NR: nicotinamide riboside.

NAMPT and CD38 exert opposite effects on NAD+ availability. In fact, NAMPT inhibition has been
found to have similar metabolic consequences of CD38 expression [69]. For example, age-related decreases
in NAD+ levels is associated with increased CD38 levels [70,71]. Thus, CD38 inhibitors and NAMPT
activators constitute a promising area to maintain high levels of NAD+ with aging.
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CD157 (BST-1), known as bone marrow stromal cell antigen-1, is another surface antigen known
to possess both ADP ribosyl cyclase and cADPR hydrolase enzymatic activities similar to CD38 [72].
CD38 and its homologue CD157 are considered to be two main mammalian NADases [70]. Their ability
to regulate NAD+ levels suggests a possible relationship with visfatin that need to be uncovered more
in future studies.

The fact that visfatin is a major regulator of NAD+ biosynthesis makes any protein or enzyme that
is dependent on NAD+ or NADPH, vulnerable to dysregulation by visfatin. This is not limited to sirtuin
and PARPs, but also might include proteins such as catalases, anti-oxidants, DNA repair proteins and
metabolic enzymes, known to be dependent on NAD+ and NADPH availability. Visfatin’s regulatory
roles extend beyond the boundaries of the cell, eith an extracellular form of visfatin existing.

3.2. Extracellular Visfatin (eNAMPT)

Though its physiological role tends to be unclear, the extracellular form of visfatin, eNAMPT,
has been reported to act as a cytokine. PBEF, and as an insulomimetic adipokine (visfatin)
pro-inflammatory mediator, and active enzymes in addition to many other functions [5,15,16,21,73].
The fact that eNAMPT lacks a signal sequence for secretion prompted researchers to entertain the
possibility that eNAMPT may be the intracellular form of visfatin released due to cell lysis or after
cell death [13,74,75]. This might be able to explain its ubiquitous presence in several diseases. In the
first place, it was controversial whether eNAMPT is secreted or if it is just a result of cell lysis and cell
death. Then, it was found that human adipocytes produce and positively secrete eNAMPT through
a nonclassical pathway [16]. Accordingly, researchers suggested that the presence of eNAMPT is not
indicative of cell lysis [16]. Therefore, eNAMPT is apparently different from the intracellular form,
iNAMPT. Thus, the underlying physiological role of eNAMPT remains to be elucidated. The functional
roles of eNAMPT are summarized in Table 2 and discussed thereafter.

Table 2. Functional roles of extracellular visfatin (eNAMPT).

Functional Role Possible Outcomes

PBEF Enhances murine pre-B-cell colony formation
Upregulates SCF and IL-7

Cytokine

Inflammatory pathways:
NF-κB, MAPK, PI3

Vascular remodeling:
↑MCP-1, ↑MMP, ↑ VGEF, ↑ FGF-2

Insulin-mimetic

Binds insulin receptor
Increases insulin sensitivity and glucose lowering effects

Enhances glucose uptake/transport
Lipogenesis

3.2.1. eNAMPT/Visfatin Acting as PBEF

PBEF was the first form of visfatin to be discovered in 1994 [11]. PBEF is induced by
pokeweed mitogen (PWM) (mitogen derived from Phytolacca americana) and more significantly
by cycloheximide [11]. PBEF has ubiquitous expression in bone marrow, liver, muscles, kidney and
many other cells [11]. Additionally, it enhances murine pre-B-cell colony formation by working
synergistically to increase the effects of stem cell factor (SCF) and IL-7 [11]. Initially, at the moment of
discovery, PBEF was isolated in phytohemagglutinin (PHA)- and PWM-activated peripheral human
lymphocytes [11]. Assumed to be a soluble factor involved in B-cell development, it has been given
the name pre-B-cell colony enhancing factor (PBEF) [11]. Its expression is upregulated upon activation
of several immune cells including T-cells [13], monocytes [76], neutrophils [77], and macrophages [78].
This suggests a possible immunological functional role of PBEF as a secreted cytokine.
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3.2.2. eNAMPT/Visfatin Acting as a Cytokine

Visfatin originally, when discovered as PBEF, was believed to be an immune modulating
cytokine [11]. It has been reported to regulate about 50 different inflammatory genes in peripheral
blood mononuclear cells (PBMCs) [21]. In line with this, visfatin has been proven to stimulate
the release of many inflammatory mediators [4,71]. Additionally, it has been shown to induce
monocyte chemoattractant protein 1 (MCP-1) production [79] and matrix metalloproteinases (MMPs)
expression [80]. Visfatin is implicated in the activation of many inflammatory pathways such as
NF-κB [4], mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3) [81].
Visfatin also may act as a cytokine mediating vascular remodeling by upregulating vascular endothelial
growth factor (VEGF) [82] and fibroblast growth factor 2 (FGF-2) [83]. Visfatin-induced cytokine
production in leukocytes has been also linked to p38 mitogen-activated protein kinase (p38MAPK)
and NF-κB p65 signaling pathways [71]. Therefore, it is clear that visfatin has abundant wide ranging
functions beyond immune modulation.

3.2.3. eNAMPT/Visfatin Acting as Insulinomimetic Adipokine

In 2005, a study discovered that PBEF/NAMPT is secreted by visceral fat and hence, has been
denoted visfatin [15]. It has been shown that visfatin/eNAMPT elicited insulomimetic effects via
binding to and activating insulin receptor in hepatocytes, myocytes and adipocytes [15]. Similar to
insulin, visfatin/eNAMPT exerted a glucose-lowering effect and enhanced glucose transport and
lipogenesis [15]. Moreover, it increased insulin sensitivity in diabetic mice [15]. Additionally, it has
been shown that elevated blood glucose levels resulted in increased plasma PBEF/visfatin, which was
abrogated by co-infusion of insulin or somatostatin [84]. However, with the retraction of some of
these data [85], the involvement of insulin receptors in mediating visfatin/eNAMPT’s actions became
controversial. In this line, a subsequent study revealed that visfatin/eNAMPT-induced increase in
skeletal muscle glucose transport does not involve the classical insulin signaling pathways [86].

4. Relevance of Visfatin to Metabolic Diseases

Many studies emerged suggesting possible associations between visfatin and metabolic disorders.
In fact, one meta-analysis regarded visfatin as a promising biomarker for several metabolic disorders
including diabetes, insulin resistance, and obesity [87].

4.1. Visfatin and Diabetes

One of the first metabolic disorders to be linked to visfatin is diabetes. Several studies have
reported association between visfatin levels and various types of diabetes ranging from gestational [88],
type 1 [89,90], and type 2 diabetes [89,91–94]. Another investigation reported increased circulating
visfatin with progressive B-cell deterioration [89]. In contrast, many other studies had opposite findings
and reported no association between visfatin and diabetes. In this regard, low circulating visfatin
levels were found in gestational [95] and other forms of diabetes [96]. Additionally, one study reported
no significant difference between circulating visfatin levels in type 2 diabetic patients compared to
matched healthy individuals [97]. Moreover, no association between circulating visfatin and insulin
sensitivity or glucose tolerance has been found in other studies [94,98–101].

Visfatin may play a role in the pathogenesis of diabetes through interaction with the insulin receptor.
Indeed, through binding to insulin receptor, recombinant visfatin was found to phosphorylate tyrosine
and insulin substrate-1 and -2, thereby enhancing glucose uptake [15]. Interestingly, visfatin was found
to bind to insulin receptor with an affinity comparable to that of insulin, albeit at a different binding
site [15]. However, visfatin could activate downstream signaling at a 10-fold lower molar concentration
than insulin [15]. Similarly, the insulin-mimetic effects of visfatin, including increasing glucose uptake
in human osteoblasts, was also demonstrated [102]. Relevantly, this visfatin-enhanced glucose uptake
was also reported in SGBS pre-adipocytes [71]. However, increasing visfatin concentration from
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100 ng/mL to 2 µg/mL did not further enhance glucose uptake in pre-adipocytes [71]. Collectively,
this suggests a possible compensatory role for visfatin in diet or obesity-induced diabetes.

4.2. Visfatin and Obesity

A similar profile of contradictory results has been documented with regards to analyses correlating
visfatin and obesity. Whereas some studies have reported positive correlations between visfatin and
obesity [93,95,96], others have demonstrated low plasma visfatin levels in patients with obesity [99,100].
However, one reading described visfatin to be associated with type 2 diabetes rather than obesity [97].
In contrast, visfatin levels were comparable in obese nondiabetics and lean controls, but were
significantly upregulated in obese type 2 diabetic patients, suggesting that visfatin is related to
type 2 diabetes, rather than to obesity. On the other hand, no association between circulating visfatin
levels and metabolic disorders, such as diabetes, various types of obesity (generalized, or abdominal
and subcutaneous, or visceral), or even dyslipidemia has been documented [96].

Despite the contradictory data available regarding visfatin and obesity, some studies reported
possible roles of visfatin in obesity-associated injury. Inflammasome activation was shown to
be a central player in the pathogenesis of adipose tissue inflammation, insulin resistance (IR),
and obesity-associated metabolic diseases [103]. More importantly, inflammasome activation was
shown in many instances to be adipokine-driven [103]. Furthermore, the ability of visfatin to
mediate obesity-induced podocyte injury via NOD-, LRR- and pyrin domain-containing protein 3
(NLRP3)-inflammasome activation has also been shown [104]. Additionally, visfatin was shown to
mediate arterial inflammation and endothelial dysfunction during early stages of obesity, via an NLRP3
inflammasome dependent endothelial inflammatory response [105]. Similarly, visfatin-induced
vascular dysfunction in mice was shown to involve NLRP3-inflammosome and paracrine IL-1ß via
a NAMPT-dependent Toll-like receptor 4 (TLR4)-mediated pathway [106]. Another study found that
visfatin-induced endothelial NLRP3-inflammasomes may result in the production of high mobility
group box protein 1 (HMGB1) [107]. Consequently, HMGB1 can disrupt inter-endothelial junctions and
increase paracellular permeability of the endothelium via paracrine and autocrine signaling, resulting in
early stage endothelial injury during metabolic disorders such as obesity [107]. Together, these findings
suggest that the NLRP3 inflammasome, HMGB1, TLR4, and possibly some other mediators might serve
as promising therapeutic targets to counter visfatin-mediated vascular injury associated to obesity.

A very recent paper reported a potentially important new role for visfatin in the context of
metabolic disease. The report shows that visfatin upregulates extracellular matrix (ECM) proteins
including osteopontin, collagen type VI, MMP-2, and MMP-9 in pre-adipocytes [108]. Given the
documented role of ECM protein in tissue fibrosis, the authors suggested adipose tissue fibrosis as
a possible link between visfatin and obesity-associated fibrosis and insulin resistance [108].

4.3. Visfatin and PCOS

Polycystic ovary syndrome (PCOS), a common endocrine metabolic disorder in women,
characterized by hyperandrogenism, obesity, impaired lipid metabolism and insulin resistance [109].
Several studies demonstrate higher visfatin/NAMPT plasma concentrations in PCOS women than those
in matched controls [109–112], suggesting its implication in the pathogenesis of PCOS. In this context,
visfatin/NAMPT plasma concentrations have been shown to be positively correlated with glucose
level, insulin and insulin resistance [109], body mass index and the log free androgen index [113],
as well as many lipid profile parameters, including total cholesterol, LDL cholesterol, triglycerides,
lipoprotein(a) [114]. Moreover, serum eNAMPT were found to be strongly correlated with free
testosterone levels suggesting a possible role of visfatin in the pathogenesis of PCOS [115]. Moreover,
visfatin was found to be an independent predictor of fibromuscular dysplasia (FMD) in patients with
PCOS [115].

A role for visfatin in the pathogenesis of endothelial dysfunction in PCOS has been suggested.
This was thought to be due to increased inflammation associated with visfatin. Indeed, studies reported
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a correlation between visfatin levels and pro-inflammatory markers. For instance, serum visfatin
levels were significantly associated with C-reactive protein (CRP) and white blood cell (WBC) levels;
however, no association was found with PCOS [116]. This prompted the authors to propose that
visfatin acts as a possible pro-inflammatory cytokine in women with PCOS, which may then explain
how visfatin contributes to endothelial dysfunction in PCOS [116]. Mechanistically, visfatin may
mediate endothelial dysfunction in PCOS by inducing the expression of pro-angiogenic factors such as
VEGF and MMP-9 [117]. Nonetheless, much remains to be investigated about the interplay between
visfatin, inflammation, endothelial dysfunction and PCOS.

Because a relationship between visfatin and insulin resistance had been established, it was tempting
to assume such a relationship exists in women with metabolic diseases. Interestingly, higher plasma
visfatin levels were reported in PCOS women with insulin resistance [112]. These elevated levels in
PCOS patients compared to control women of similar age and body mass index (BMI) may suggest
a possible role for visfatin in mediating insulin resistance in PCOS [112]. While it would be tempting to
propose that visfatin might play a role in the pathogenesis of PCOS by mediating hyperandrogenism,
obesity, and insulin resistance, one cannot overlook findings in other studies where no causative
correlation between visfatin levels and PCOS can be conclusively presumed [116].

4.4. Visfatin in Clinical Studies

The variations observed in plasma visfatin levels in several metabolic disorders suggests a possible
role in the pathogenesis of these disorders and therefore have therapeutic implications. Many research
teams have indeed started to investigate visfatin levels in their clinical trials. Several clinical
studies targeting metabolic disorders started to include visfatin in their criteria for evaluating
therapeutic efficacy.

One randomized clinical trial studied the effects of metformin immediate release compared with
metformin extended release on glycemic control in type 2 diabetes mellitus (T2DM) [118]. The authors
observed increased levels of visfatin in patients randomized to metformin extended release [118].
Another trial showed a reduction in visfatin serum levels after metformin administration in PCOS
women [119]. In contrast to these studies, one trial reported no variation in serum visfatin levels despite
improved glycemic control in response to slow-release and regular-form metformin in T2DM [120].
Similarly, one clinical study detected no significant changes in visfatin levels when rosiglitazone or
metformin monotherapy was utilized in T2DM patients [121]. Similarly, no change in visfatin serum
levels was noted when PCOS women were treated with pioglitazone [122]. Additionally, no change
in visfatin plasma levels was detected in response to pioglitazone or metformin treatment despite
improvement in insulin sensitivity and glycemic regulation in naïve T2DM (newly diagnosed and
untreated T2DM) [123].

Several human studies are now paying closer attention to visfatin levels when metabolic diseases
are investigated. For instance, several studies investigating the effect of L-carnitine supplementation
on glucose oxidation and insulin resistance markers in T2DM have considered visfatin levels as
an important parameter. Indeed, l-carnitine was found to reduce levels of the adipokine visfatin in
many trials when combined with a T2DM regimen. In one study, addition of L-carnitine to glimepiride
was found to reduce visfatin levels in T2DM patients [124]. Similar results were achieved in obese
diabetic patients when treated with orlistat and L-carnitine [125] and in diabetic patients when treated
with sibutramine and l-carnitine [126].

These studies further support the relevance of visfatin in these diseases, and warrant
further investigations that may present this adipokine as an attractive target in the fight against
cariovasculometabolic disease. Visfatin might serve as a biomarker for lipid profile control in metabolic
disorders. Its plasma levels may be used to track the therapeutic progress in patients with metabolic
diseases. The possibility of visfatin to play a role as a prognostic factor also needs to be investigated.
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5. Conclusions

Visfatin is a novel adipokine which is abundantly expressed in visceral fats. It elicits insulomimetic
actions, and consequently its plasma level is closely associated with many metabolic diseases
including obesity, diabetes mellitus and PCOS. Given that many of the metabolic diseases are
major risk factors and contributors to increased morbidity and mortality from cardiovascular disease
(CVD) [127,128], further investigation of visfatin with regards to its implication and therapeutic target
potentials in cardiovascular–metabolic disorders is warranted. Obviously, the role of serum visfatin
in metabolic diseases remains debatable [129]. Nevertheless, controversial studies do not rule out
the possibility of an association between visfatin and these metabolic disorders, but rather suggest
the existence of specific metabolic conditions that dictate the plasma concentration of visfatin. In fact,
the ubiquitous expression of visfatin in many cells and tissues makes it complex and difficult to
make any association using its plasma concentration. There might be other players controlling the
visfatin plasma concentration and concealing any possible role. Moreover, the existence of some
limitations in different immunoassays used for the detection of visfatin serum levels may contribute to
the observed discrepancies [130]. Three immunoassays comprised of an enzyme immunoassay (EIA),
radioimmunoassay (RIA), and enzyme linked immunosorbent assay (ELISA) were used in a study
to detect visfatin [130]. A significant disparity in visfatin concentration has been found between EIA
and RIA and between EIA and ELISA. Each of the immunoassays has its own limitations with the
ELISA being the most sensitive but with a narrow detection range [130]. Therefore, the development
of sensitive immunoassays with wider detection ranges to detect serum visfatin accurately may be
necessary to explain those controversial observations and unwind any possible correlation. Additionally,
plasma visfatin levels are not necessarily true representatives of the tissue activity.
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