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Comparative microelectrode array 
data of the functional development 
of hPSC-derived and rat neuronal 
networks
Fikret Emre Kapucu    ✉, Andrey Vinogradov   , Tanja Hyvärinen, Laura Ylä-Outinen & 
Susanna Narkilahti    ✉

We present a dataset of microelectrode array (MEA) recordings from human pluripotent stem cell 
(hPSC)-derived and rat embryonic cortical neurons during their in vitro maturation. The data were 
prepared to assess extracellularly recorded spontaneous activity and to compare the functional 
development of these neuronal networks. In addition to recordings of spontaneous activity, we 
provide pharmacological responses of hPSC-derived and rat cortical cultures at their mature stage. 
Together with the recorded electrode raw data, we share the analysis code to form a comprehensive 
dataset including spike times, spike waveforms, burst activity and network synchronization metrics 
calculated with two different connectivity estimators. Moreover, we provide the analysis code that 
produced the key scientific findings published previously with this dataset. This large dataset enables 
investigation of the functional aspects of maturing cortical neuronal networks and provides substantial 
parameters to assess the differences and similarities between hPSC-derived and rat cortical networks 
in vitro. This publicly available dataset will be beneficial, especially for experimental and computational 
neuroscientists.

Background & Summary
Human pluripotent stem cell (hPSC)-derived neurons are becoming a more prominent tool for in vitro dis-
ease modeling, neurotoxicology and drug research with great prospects for reducing animal studies. Such 
patient-specific models have the potential to unravel the cellular and functional mechanisms behind neurolog-
ical diseases1. Compared to rodent counterparts, generating electrophysiologically mature neuronal networks 
from hPSCs has been challenging. However, during the last decade, several protocols and methodologies have 
been introduced to improve differentiation2,3, culture conditions4,5 and functional maturation6,7. With these 
improvements, hPSC-derived neurons have claimed their place as a valuable in vitro tool.

Microelectrode arrays (MEAs) have been used to measure neuronal electrophysiology extracellularly in vitro, 
in vivo and ex vivo8–10. The primary advantage of MEAs over cellular-level electrophysiological measurement 
methods is their ability to measure the activity of a population of neurons simultaneously to provide information 
about network behavior, thus allowing analyses of network-wide properties, e.g., connectivity11. In addition, the 
noninvasive nature of the technique enables repeated measurements over time, allowing follow-up on develop-
mental events and prolonged responses to different exposures, e.g., pharmacological responses12. Importantly, 
commercially available multiwell MEAs increase throughput in measurements6,13. Typically, network activity 
starts with individual spiking, followed by spike trains and further mature burst behavior8,14. These developmen-
tal steps and their features can be analyzed in depth to understand the activity pattern development of networks. 
As rodent neurons have been the gold standard in the field, MEA culture techniques, specific studies and signal 
analysis protocols have been established primarily with them14,15. Today, more data also exist for hPSC-derived 
neuronal networks12,16–18.

Previously, we used MEA technology to characterize the development of hPSC-derived neuronal network 
activity and compared it with rat embryonic cortical networks17 (Fig. 1). We followed the spontaneous activity 
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of the developing networks with regular time-point recordings and recorded network responses to pharmaco-
logical manipulations at a single time point. The pharmacology recordings were collected at a single time point 
to assess spontaneous baseline recordings and subsequent electrophysiological responses to glutamatergic and 
GABAergic agonists and antagonists as well as voltage-gated sodium channel blockers.

From the data point of view, to our knowledge, there are no openly available MEA datasets covering both 
hPSC-derived and rodent neuronal networks acquired in similarly designed and parallel experiments. Here, we 
share an approximately 2 TB dataset covering approximately 740 minutes of raw MEA recordings. The provided 
dataset can be compared by means of activity development patterns; thus, it can be used to build a comparative 
model for cortical activity development and network formation in such cultures. The recordings can be further 
analyzed with different analysis methods than were previously used by us. It is common for different labs to use 
their own analysis methods for data evaluation. For these reasons, we provide not only the raw data but also the 
outputs of the analyses that we previously performed. Thus, we provide a full dataset including spike times and 
necessary analysis code such as burst analysis code to detect burst start and end times and subsequently calculate 
burst statistics. Principal component analysis (PCA)-based classification results and network synchronization 
values calculated with two different connectivity estimators were also included in the dataset. Users can also 
harvest other types of parameters or different types of data, such as spike waveforms, from the raw data with 
small additions to the code we provide.

This pharmacological dataset may be especially beneficial in testing changes in network connectivity since 
the data were collected from functionally mature networks. As spontaneous activity, the response to pharma-
cological treatments can be analyzed by means of interdependences between spike time series, thus revealing 
network formation19 and information transfer between neurons20,21.

Fig. 1  Experimental setup for following the functional development of human and rat networks on two 
different MEA well plate types. After human pluripotent stem cells (hPSCs) differentiated into cortical neurons, 
they were plated on CytoView MEA 12 and CytoView MEA 48 well plates. Rat embryonic cortical cells were 
plated on the same MEA well plate types in parallel. Regular timepoint recordings were obtained in CytoView 
MEA 12, which has 64 electrodes per well, and pharmacological experiments were performed on CytoView 
MEA 48, which has 16 electrodes per well. Measurement days in MEA are referred to as days in vitro (DIV). 
Pharma recordings were obtained at DIV 29 and DIV 22, when peak activity is commonly observed for in vitro 
human and rat neuronal networks, respectively.
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Overall, our shared datasets provide an opportunity for MEA users in the neuroscience community to evalu-
ate their own data quality and analysis tools to assess “developing neuronal activity in vitro”. Moreover, the data 
can also be used as validation for in silico neuronal network models and simulations22. In conclusion, revealing 
the original data provides an opportunity to the experimental and computational neuroscience community for 
various purposes of reuse and thorough analysis between different types of networks.

Methods
Methods explained below are expanded versions of descriptions in our related work17.

hPSCS lines and neural differentiation.  The hPSC lines utilized in this study, Regea 08/023 and 10212.
EURCCs, have been previously characterized23,24. The study was approved by the regional ethics committee of 
Pirkanmaa Hospital District (R05116 and R08070). hPSCs were cultured in feeder-free conditions on a defined 
substrate, laminin 521 (LN521, Biolamina, Sweden), according to the protocol of Hongisto and colleagues25. The 
detailed neural differentiation protocol is described in Hyvärinen et al. 201917. The MEAs were coated with 0.1% 
polyethyleneimide (PEI, Sigma, CAS:9002–98–6) and 50 µg/ml LN521. At day 32, the cells were plated for MEAs 
at a density of 1 × 106 cells/cm2. Neural maintenance medium was used when cells were cultured on MEAs. The 
medium consisted of 1:1 DMEM/F12 with GlutaMAX and Neurobasal, 0.5% N2, 1% B27 with retinoic acid, 
0.5 mM GlutaMAX, 0.5% NEEA, 50 µM 2-mercaptoethanol (all obtained from Thermo Fisher Scientific, CAS:60–
24–2), 2.5 µg/ml insulin (Sigma, CAS:11061–68–0) and 0.1% penicillin/streptomycin (Thermo Fisher Scientific). 
Neural maintenance medium was supplemented with 20 ng/ml brain-derived neurotrophic factor (BDNF, R&D 
Systems), 10 ng/ml glial-derived neurotrophic factor (GDNF, R&D Systems), 500 µM dibutyryl-cyclicAMP 
(db-cAMP, Sigma, CAS:16980–89–5) and 200 µM ascorbic acid (AA, Sigma, CAS:50–81–7). Medium was 
changed every two to three days.

Primary rat cultures.  Primary cells were obtained from the Neuronal Cell Culture Unit at the University 
of Helsinki, Finland. Cortex tissue was harvested from Wistar rat embryos (E17-18) as described previously26. 
The described procedures were conducted under the animal license (County Administrative Board of Southern 
Finland, ESAVI/10300/04.10.07/2016) and approved by local authorities. All described experiments were per-
formed in accordance with institutional guidelines and regulations (University of Helsinki internal license num-
ber: KEK17–016). MEA plates were coated with 25 µg/ml poly-D-lysine (PDL, Sigma, CAS:27964-99-4). The cells 
were plated at a density of 2.5 × 105 cells/cm2 for MEAs. Cortical neurons were cultured in medium consisting of 
Neurobasal, 2% B27, 2 mM GlutaMAX and 1% penicillin/streptomycin (Thermo Fisher Scientific). Medium was 
changed every two to three days.

Data acquisition tools.  Extracellular recordings were acquired with an Axion Maestro system controlled 
by AxIS software version 2.4 (Axion Biosystems, Atlanta, GA, USA) with a sampling rate of 12.5 kHz as previ-
ously described6. The recording hardware characteristics were configured to 1200 × gain and a bandwidth of 
10–5000 Hz. Cells were plated on CytoView MEA 12 M768-GL1-30Pt200 for recording spontaneous activity 
development and on CytoView MEA 48 M768-tMEA-48W for pharmacological experiments (both from Axion 
Biosystems). The CytoView MEA 12 plates contained 64 recording electrodes per well, and the CytoView MEA 48 
plates contained 16 recording electrodes per well. The electrode layouts are presented in Fig. 1.

Microelectrode array measurements.  Recordings were performed at 37 °C, and a 5% CO2 atmosphere 
was secured during measurements exceeding 10 minutes. Spontaneous activity was recorded twice a week for 
10 minutes. We collected recordings from DIV 3 to DIV 77 for hPSC-derived cortical neurons and DIV 2 to DIV 
35 for rat cortical neurons, which covered all the analyses performed previously17 (Table 1).

Pharmacological experiments were performed at the time point when peak activity was commonly 
observed; for hPSC-derived networks, this was at DIV 29, and for rat cortical networks, it was at DIV 22 
(Table 1). Both baseline activity and the subsequent pharmacological responses were recorded for 30 min-
utes. The following reagents were used: kainic acid (KA, 5 µM, Sigma, CAS:58002-62-3), α-amino-3-hydroxy
-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist 6 cyano 7 nitroquinoxaline 2,3 
dione (CNQX, 50 µM, Abcam, CAS:115066-14-3), N-methyl-D-aspartate (NMDA) receptor antagonist D-(-
)-2 amino-5-phosphonopentanoic acid (D-AP5, 50 µM, Sigma, CAS:79055-68-8), γ-aminobutyric acid (GABA, 
10 µM, Sigma, CAS:56-12-2), and GABAA receptor antagonist gabazine (30 µM, Sigma, CAS:104104-50-9). 
Pharmacological experiments were followed by the application of the voltage-gated sodium channel blocker 
tetrodotoxin (TTX, 1 µM, Tocris, CAS:18660-81-6). The response to TTX was recorded for 10 minutes. The final 
concentrations mentioned above were achieved by adding 30 µl of pharmacological agents at higher concentra-
tions into the MEA wells.

MEA datasets.  The datasets in this article are described under three different categories based on the pur-
pose of collection: regular timepoint recordings, recordings of pharmacological experiments and recordings 
selected for PCA-based classification analysis (Table 1). These categories are briefly described as follows:

•	 The dataset of regular timepoint recordings contains recordings of spontaneous activity performed with 
CytoView MEA 12-well plates (Fig. 1). For human cells, recordings were obtained from MEA well plates 
hPSC_MEA1 and hPSC_MEA2 from DIV 3 to DIV 66. Recordings from rat cells were obtained from MEA 
well plate Rat_MEA1 from DIV 2 to DIV 35. Cells that were plated on hPSC_MEA1 and hPSC_MEA2 were 
from the same differentiation batch and were recorded in parallel; thus, the recorded MEA data can be pooled 
as in Hyvärinen et al.17.
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•	 The Pharma dataset contains recordings during pharmacological experiments. All recordings were per-
formed with CytoView MEA 48-well plates (Fig. 1). The MEA well plate hPSC_MEA3 was recorded at DIV 
29, and Rat_MEA2 was recorded at DIV 22, when peak activity is commonly observed for in vitro human and 
rat neuronal networks, respectively.

•	 The dataset that was formed for PCA-based classification includes recordings from a dataset of regular 
timepoint recordings (hPSC_MEA1, hPSC_MEA2 and Rat_MEA1). Two additional MEA well plates were 
included in the dataset for both human (hPSC_MEA4 and hPSC_MEA5) and rat (Rat_MEA3 and Rat_
MEA4) data groups. All included recordings were performed with CytoView MEA 12-well plates (Fig. 1). The 
human MEA data were derived from two neural differentiations of human embryonic stem cells (hESC) line 
08/023 (hPSC_MEA1, hPSC_MEA2 and hPSC_MEA4) and one of human induced pluripotent stem cells 
(hiPSC) line 10212.EURCCs (hPSC_MEA5). The rat MEA data were derived from three independent batches 
of rat embryonic neurons (Rat_MEA1, Rat_MEA3 and Rat_MEA4). From each MEA dataset, the time point 
showing the most significant activity (i.e., the maximum spike rate) and two of its surrounding time points 
were selected for PCA. The selected time points were DIV 21, 24 and 28 for hPSC_MEA1, hPSC_MEA2 and 
hPSC_MEA4; DIV 70, 73 and 77 for hPSC_MEA5; DIV 21, 24 and 28 for Rat_MEA1 and Rat_MEA3; and 
DIV 24, 28 and 31 for Rat_MEA4 (Table 1).

Data preparation.  The measurements were recorded as .raw files by acquisition software, which contained 
voltage values as a product of a voltage scale factor and a set of integer values stored separately during signal quan-
tization. The published data were reformatted to HDF5 (.h5) file format with a custom MATLAB script; thus, the 
reformatted raw recordings have only the final calculated voltage values for ease of use.

We also stored metadata in each HDF5 file. Thus, each HDF5 file contains two main groups: ‘/Data’ and ‘/
DataInfo’. Hierarchically, the ‘/Data’ group contains groups for each well, each well group contains a number of 
datasets equal to the number of electrodes, and each dataset contains a time series of the voltage values (Fig. 2). 
The ‘/DataInfo’ group contains two datasets and five attributes, including the information on the excluded wells, 
inactive channels for each recorded well, sampling frequency, duration of the recording, recording units (i.e., 
volts), time point of the measurement and MEA well plate type used.

Microelectrode array data analysis.  Analysis of the MEA data consisted of several consecutive steps 
starting with the assessment of the raw data. In the initial stage of the analysis, spikes were extracted from the .
h5 formatted data, with spike detection performed in MATLAB. The detected spike times were stored with their 
corresponding electrode labels in .csv files. Analyses based on individual spike activity and bursts were performed 
in R with a modified version of meaRtools27. Bursts were detected, and their start and end times were labeled. 
After labeling the bursts, several parameters associated with bursting were calculated and stored in .csv files with 
corresponding names. For synchronized activity, the spike time tiling coefficients (STTC) were also calculated 
in R27 and stored in .csv files. PCA was performed in MATLAB according to the parameters associated with the 
spike firing statistics, burst parameters and synchronization analysis, i.e., STTC. In addition, we analyzed network 
connectivity from the raw data based on the correlations of the time-variant spectral entropies (CorSE)19. Fig. 2 
presents the overall analysis process used in this work. The required code to reproduce the shared results is also 
provided with this article.

MEA well 
plate name Cell type

Wells used/ 
Well plate

Time points 
(days in vitro) Additional Information Located in Folder

hPSC_MEA1 hPSC 6/12 3–66 Regular timepoint recording hPSC_MEA1

hPSC_MEA2 hPSC 6/12 3–66 Regular timepoint recording hPSC_MEA2

hPSC_MEA1 hPSC 6/12 21, 24, 28 Regular timepoint recording PCA

hPSC_MEA2 hPSC 6/12 21, 24, 28 Regular timepoint recording PCA

hPSC_MEA3 hPSC 24/48 29 Pharma experiments hPSC_MEA3_ Pharmacology

hPSC_MEA4 hPSC 6/12 21, 24, 28 Used for data classification with 
PCA PCA

hPSC_MEA5 hPSC 4/12 70, 73, 77 Used for data classification with 
PCA PCA

Rat_MEA1 Rat 12/12 2–35 Regular timepoint- recording Rat_MEA1

Rat_MEA1 Rat 12/12 21, 24, 28 Regular timepoint- recording PCA

Rat_MEA2 Rat 42/48 22 Pharma experiments Rat_MEA2_ Pharmacology

Rat_MEA3 Rat 12/12 21, 24, 28 Used for data classification with 
PCA PCA

Rat_MEA4 Rat 12/12 24, 28, 31 Used for data classification with 
PCA PCA

Table 1.  Information on the shared MEA data from each MEA well plate grouped according to different types 
of assessments in previous work17. The recording time points are also given to clarify the purpose of having 
copies of the same recordings in different folders, as some of the recordings were used in more than one 
assessment.
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Spike detection.  Spike detection was performed according to the stationary wavelet transform-based Teager 
energy operator (SWTTEO) algorithm presented previously28 and revised for biological data29. The algo-
rithm was embedded into custom MATLAB (MathWorks) code. During initial tests, the performance of the 
method in detecting the low-amplitude spikes typical for hPSC-derived networks was confirmed17. In short, 
the data were prefiltered with an elliptic bandpass filter with a passband range of 200–3000 Hz. First, initial 
absolute-amplitude-based thresholding30 was performed with the threshold value, which was set to 4.5 times the 
estimate of the standard deviation of the noise. During the next step, putative false positive spikes were cancelled 
using the SWTTEO algorithm. Briefly, the total number of spikes extracted by threshold detection was used 
by SWTTEO analysis to detect the same number of spikes, and only the spikes detected by both methods were 
considered true positives. Electrodes exhibiting >10 spikes per minute were considered active and included in 
further analysis.

Burst detection and analysis.  We used the logISI algorithm for burst detection31 with small modifications. The 
minimum number of spikes in a burst was set to 5. Another adjustment was applied to merge bursts if their 
interburst interval was less than 100 ms. Then, the bursts were analyzed to calculate the associated parameters. 
Burst analysis was performed with the R package meaRtools27 only for the electrodes exhibiting bursts. Notably, 
this burst detection algorithm was not introduced in the original meaRtools, but we integrated it into the anal-
ysis code shared with this article.

Connectivity analysis.  Network connectivity was analyzed using the CorSE method described earlier19. 
Functional connectivity was assessed pairwise in each MEA well. In summary, CorSE evaluates the synchro-
nization of signals by the correlation of the temporal changes in their spectral contents. The magnitude of this 
correlation represents the connectivity strength. The average CorSE values were calculated from all channels of 
the MEA well to assess the overall connectivity strength of the whole network. To observe the changes in net-
work formation, connectivity maps were plotted for the channel pairs of the most robust network participants, 
e.g., for the channels with CorSE > 0.7, as in Hyvärinen et al.17.

Principal component analysis.  PCA was used as previously described32 to observe the difference in network 
activity in different experiments. A list of 7 features from spike, burst and network synchronization analysis were 
selected for comparison. These included the mean firing rate by active electrodes (MFR), burst rate (per minute),  

Fig. 2  Preparation and analysis of the data. The raw data recorded with AxIS Navigator software were 
reformatted in HDF5 format (.h5) to include both the raw data and associated metadata. The architecture of 
.h5 is also presented. Spike detection was performed in MATLAB, and the spike times were saved for further 
analysis. Burst detection was performed in R from the previously calculated spike times. The parameters 
based on spike and burst activity were calculated in R, and the results were stored in .csv format. The stored 
parameters were used as inputs to principal component analysis (PCA) for data classification (except 
the number of active electrodes, which was only used for calculating some other parameters). Network 
synchronization was estimated from the raw data by correlated spectral entropy (CorSE) analysis in MATLAB, 
and the spike time tiling coefficient (STTC)-based pairwise correlation was calculated from the spike times in R.
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mean burst duration (in seconds), mean spike frequency in bursts (spikes/burst duration), mean number of spikes 
in a burst, percentage of spikes in bursts and spike time tiling coefficient (STTC, using a default time bin of  
50 msec). All values were normalized with the standard score approach before the analysis. PCA was imple-
mented in MATLAB. The three major principal components were selected, and a three-dimensional plot was 
generated.

Statistical analysis.  We do not share any produced results from statistical analysis in this work. However, sta-
tistical analysis can be performed on the output of the meaRtools analysis which we also shared. In the original 
article17 nonparametric Mann-Whitney U test was used for statistical analysis (p-value < 0.05 was considered 
significant). Tests were performed with SPSS Statistics software (version 25.0).

Data Records
The data shared in this paper were prepared and processed in several consecutive processes (Fig. 2). From the 
acquisition of the raw data to the end stage analysis, we primarily analyzed the data in MATLAB and R. The 
analysis output was stored in .csv file format (Fig. 2). The post analysis and figures were produced from these.
csv files. The file names were created by using the labels of the MEA well plate used, the day of the culturing and 
the time point of the recording. For example, the <data label> for the MEA well plate hPSC_MEA1, which was 
plated on 02/05/17 (dd/mm/yy) and recorded on DIV 35, is hPSC_20517_MEA1_DIV35. For the pharmacolog-
ical experiments, the MEA plate label continues with a specific postfix such as “Baseline”, “Pharma” or “TTX”, 
which indicates the corresponding stage of the experiment. The data in the repository are separated into folders, 
where each folder is associated with a single MEA well plate. The folders can be found in https://gin.g-node.org/
NeuroGroup_TUNI/Comparative_MEA_dataset33. Each of these folders contains raw data files in .h5 format, 
the previously calculated spike and burst parameter results in .csv format, a noisy electrode list in .csv format and 
the expLog files used by the analysis code in .csv format.

Briefly, the files in these folders can be described as follows:

•	 <data label>.h5 files: the raw recording from each MEA well plate with associated metadata. Architectur-
ally, each HDF5 file contains ‘/Data’ and ‘/DataInfo’ groups.

•	 The ‘/Data’ group includes subgroups for each well of the MEA plate, e.g., ‘/Data/A3’. Each of these sub-
groups includes a number of datasets equal to the number of electrodes. Each dataset is named for the 
corresponding electrode and contains a time series of voltage values.

•	 The ‘/DataInfo’ group contains the information on the data recorded: two datasets, ‘ExcludedWells’ and 
‘InactiveChannels’, and five attributes, ‘SamplingFrequencyInHz’, ‘DurationInSec’, ‘RecordingUnits’, ‘DIV’, 
and ‘Plate type’.

•	 ExcludedWells: the list of excluded wells of the MEA plate that were not used for the experiment
•	 InactiveChannels: the list of single channels in the MEA plate that were not recorded due to malfunc-

tioning electrodes during acquisition
•	 SamplingFrequencyinHz: sampling frequency of the recording
•	 DurationInSec: duration of the recording in seconds
•	 RecordingUnits: Volts
•	 DIV: days in vitro on MEA on the day of recording
•	 Plate type: MEA plate type, either 12 or 48 wells per plate

•	 noisy_electrodes_<MEA well plate name>.csv files: the list of noisy electrodes for meaRtools, which are 
automatically discarded by the analysis code.

•	 <data label>_expLog.csv files: the log files for meaRtools, which are named in accordance with the first 
DIV included in each set of recordings. They contain the list of wells associated with a particular MEA plate 
and the corresponding pharmacological treatments, if applied. The data analysis code automatically reads the 
related information.

•	 <data label>_spikes.csv: spike times calculated in seconds, which are detected from the raw recordings by 
the analysis code Main.m in MATLAB.

In addition to these files, the output of the meaRtools analysis is returned in the .csv tables. Each table in 
the .csv files contains a particular output feature value averaged over each well of an MEA plate for each day of 
recording. A detailed description of the meaRtools package can be obtained from the original publication27. The 
list of output features used in the original work is introduced below:

•	 < data label >_meanfiringrate_by_active_electrodes.csv: mean firing rate of the active electrodes in a well
•	 < data label >_nae.csv: number of active electrodes
•	 < data label >_STTC.csv: spike train tiling coefficient evaluating correlations between pairs of electrodes
•	 < data label >_bursts_per_min.csv: average number of bursts per minute
•	 < data label >_mean_dur.csv: average burst duration in seconds for the bursts captured
•	 < data label >_mean_freq_in_burst.csv: average spike frequency for the bursts captured
•	 < data label >_per_spikes_in_burst.csv: percentage of spikes participating in bursts
•	 < data label >_mean_spikes_in_burst.csv: average number of spikes in bursts

https://doi.org/10.1038/s41597-022-01242-4
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In this section, to enhance readability, we present a short summary of each folder’s content in Table 1. For 
more thorough reading, a description of each file and their format, size and repository address are presented in 
Supplementary Table 1.

Technical Validation
The technical quality of MEA recordings depends on several parameters, such as electrode noise, signal-to-noise 
ratio, amplification, filtering, etc. The parameters directly related to the quality standards of data acquisition are 
mainly validated by the manufacturer and are distributed upon request (https://www.axionbiosystems.com/). 
Here, we validated the raw MEA data, whether from a biological source or noise, by silencing the activity with 
the voltage-dependent sodium channel blocker tetrodotoxin (TTX, Fig. 3c), which blocks neuron-specific sig-
naling. As a result, we confirmed that the activity recorded with the MEAs originated from neuronal activ-
ity. Recording channels containing severe artifacts were discarded from analysis. We share a discarded noisy 
electrode list in .csv files for each MEA. The quality of our cultures was confirmed with parallel assays on cells 
cultured on glass cover slips (Fig. 3a)17. The quality of the analysis tools was also considered; e.g., the spike and 
burst analysis tools were previously published and are openly available in their originally published forms28,30,31; 
their compatibility with our data was evaluated qualitatively by experts in our group, and necessary modifica-
tions were applied. Fig. 3b illustrates an exemplary burst and spike detection result on a sample recording. In this 
article, we share the analysis code used together with our data.

Usage Notes
The shared data can be read and assessed with the analysis code provided here or with any other tools that users 
choose. To access and manipulate the data beyond the provided code, the user needs an appropriate platform 
supporting the HDF5 file type, for example, MATLAB, Python, R, or Java.

In general, the code is modified to be user-friendly; e.g., the file selection process is organized with the help of 
pop-up windows with labels that describe the corresponding selection step. However, minor code modifications 
are still required for some specific cases. Thus, the user should read the comments in the code, which requires 
basic knowledge of R and MATLAB operations.

The analysis code embeds the necessary commands for reading HDF5 files. To access a particular dataset 
outside of our code and to obtain raw data, the user needs to use specific commands for HDF5 file reading with 
the corresponding HDF5 file name and the desired dataset address as its parameters. For example, to access the 
dataset containing the signal of electrode 22 of well A3 recorded in the ‘hPSC_20517_MEA2_DIV35.h5’ file, the 
user needs to implement the following MATLAB command:

•	 h5read(‘…path/hPSC_20517_MEA2_DIV35.h5’, ‘/Data/A3/22’)

The same is true of the attributes of the ‘/DataInfo’ group; for example, the duration of the recording is 
accessible as:

•	 h5readatt(‘…path/hPSC_20517_MEA2_DIV35.h5’, ‘/DataInfo’, ‘DurationInSec’)

(note that the attribute name is specified as a separate argument here).

For the second argument of the reading functions, which specifies the address inside the .h5 file, the usage 
of the slash and not the backslash is important.

An attempt to read datasets for electrodes of wells that are not recorded will lead to an error. These wells are 
listed in the ‘ExcludedWells’ dataset in the ‘\DataInfo\’ group. The same is true for inactive electrodes stored in 
the ‘InactiveChannels’ dataset of the same group.

To launch the MATLAB spike detection code, the user needs to open the Main.m file and then add the whole 
folder containing the MATLAB analysis code to the MATLAB path (so that the program is capable of finding 
the functions that the code requires). Next, by pressing MATLAB’s green “Run” button, the analysis is launched. 
The selection of the .h5 raw data files for the analysis is implemented via a pop-up window that opens as the user 
launches the code. One or more files can be selected for analysis. The output folder selection is performed in the 
same way. The code sequentially analyses the selected files, providing the user with spike .csv files as an output. 
If the user decides to use different parameters than described in the methods section for spike detection, the 
parameters to be changed are located in Main.m and amp_detect.m.

To implement the analyses in meaRtools, the user needs to follow the steps specified below:

	 i.	 First, the user needs to open the MEA_analysis_Axion.R file.
	 ii.	 Then, by clicking the “Source” button, the code is launched. The user sees pop-up windows for selecting the 

code-containing folder, the output folder, the spike.csv files, the noisy electrode file and the expLog file.
	iii.	 The last pop-up window enables the selection of the analyzed MEA type. There are 12- and 48-well MEA 

plates available, and the user only needs to enter an integer that corresponds to the analyzed plate type.

The folder selection windows sometimes do not appear on top of the RStudio window; then, they are found 
in the Windows taskbar. If the user wants to avoid the code directory selection step, it is possible to remove the 
first pop-up window by replacing the first “choose.dir” function with the code directory address.

https://doi.org/10.1038/s41597-022-01242-4
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Fig. 3  Validation of the MEA recordings of neuronal networks and signal analysis. (a) The quality of hPSC-
derived neural cultures was verified with immunocytochemical staining of pre- and postsynaptic markers 
(synaptophysin in red and PSD-95 in green) overlaid with neuron-specific b-tubulin staining (white). DAPI 
stains cell nuclei. A phase contrast image of hPSC-derived neurons on the MEA is used to illustrate the 
formation of networks over the electrode area. (b) The performance of spike detection in recognizing the typical 
low-amplitude signal of hPSC-derived networks was confirmed. The detected spikes are illustrated with red dots 
(top) and red bars (bottom). A single channel burst detection algorithm successfully detected quasiperiodic 
burst activity, which is commonly observed in mature neuronal cultures. The detected bursts are labeled with 
black lines on the red spike bars (bottom). (c) The MEA signal was associated with action potentials, as it was 
blocked by the voltage-gated sodium channel antagonist tetrodotoxin (TTX). The number of detected spikes 
(red bars) decreased considerably (bottom) compared to the baseline recording (top).

https://doi.org/10.1038/s41597-022-01242-4
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It should be noted that electrodes that

•	 have no detected spikes (are not mentioned in the MATLAB-generated .csv spike files)
•	 are listed in the noisy electrode .csv file
•	 are eliminated by the minimum-spikes-per-minute criterion

are not included in the meaRtools analysis.

Essentially, if for these abovementioned reasons all electrodes in a particular well are cancelled for all DIVs 
included in the analysis, this well is not displayed in the analysis output files.

There is a possibility of implementing the code in segments by performing segment selection and pressing 
the “Run” button.

The PCA and connectivity analysis MATLAB code packages are delivered in their corresponding folders. 
To run the PCA code, the user needs to open the PCA.m code in the “PCA” folder and add the whole folder to 
the MATLAB path. The folder contains a table with preselected activity features of the cell populations obtained 
during the provided analysis path. The next step is to click the “Run” button to launch PCA.

To launch the connectivity analysis, the user needs to open the Connectivity.m file in the “Connectivity anal-
ysis” folder and add this folder to the MATLAB path. After clicking the “Run” button, the pop-up window for 
.h5 file selection appears. After selecting the desired file, a new pop-up window for MEA well selection appears. 
The user needs to take into account the list of excluded wells, which are automatically displayed in the command 
window after file selection, and avoid selecting them. For the connectivity analysis, the threshold value for con-
nectivity strength can be changed in the script cross_selection_correlated_channels.m. More information on the 
CorSE and analysis guidelines can be found at https://se.mathworks.com/matlabcentral/fileexchange/59626-sp
ectral-entropy-based-neuronal-network-synchronization-analysis-corse.

Code availability
The provided codes are modified versions of those published earlier19,27,28,31 and custom in-house scripts. 
Modification and further distribution fall under the restrictions described by the authors. The codes can be found 
in https://gin.g-node.org/NeuroGroup_TUNI/Comparative_MEA_dataset/src/master/Codes33.

MATLAB 2020a (MathWorks) and RStudio version 1.3.959 were used during the preparation of the current 
publication.
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