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ABSTRACT: Herein we report the first alkynylation of
quinolones with terminal alkynes under mild reaction conditions.
The reaction is catalyzed by Cu(I) salts in the presence of a Lewis
acid, which is essential for the reactivity of the system. The
enantioselective version of this transformation has also been
explored, and the methodology has been applied in the synthesis of
the enantioenriched tetrahydroquinoline alkaloid cuspareine.

Q uinolone (A) derivatives such as ciprofloxacin B are
well known as broad-spectrum bacteriocidal agents1−6

(Figure 1), which consequently has prompted the develop-
ment of several methods for their synthesis.7−9 However,
molecules with abundant sp3 carbons in their structure, such as
dihydroquinolone derivatives, are becoming increasingly
attractive for the development of potential drug candidates.10

In this context, dihydroquinolone derivative C has been
reported as a 5-HT6 serotonin receptor,11 and other
dihydroquinolones have been shown to be applicable as crucial
intermediates in the production of martinellic acid D12−14 and
(+)-angustureine E.15−17 Therefore, the development of new
efficient methodologies for the synthesis of dihydroquinolones
would improve the chemical toolbox for the synthesis of
biologically relevant molecules.
During the last couple of decades, several examples of

dihydroquinoline synthesis based on the functionalization of
quinolones have been reported. These quinolone functional-
izations, including Pd- and Rh-catalyzed arylations (Scheme

1a)18−20 and, more recently, Cu(I)-catalyzed alkylations using
organomagnesium and organoaluminum reagents (Scheme

1b),15,21 afford 4-oxo-2,3-dihydroquinolines. Despite this
progress with arylations and alkylations, alkynylations of
quinolones have not been reported. We were interested in
exploring alkynylation reactions of quinolones to extend the
structural variety of functionalized dihydroquinolones. The
synthesis of two alkynylated 4-oxo-2,3-dihydroquinolines has
been previously described,22,23 making use of 4-alkoxyquino-
lines and alkynylmagnesium bromides or organozinc chlorides
as nucleophiles in a lengthy multistep procedure. The limited
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Figure 1. Relevant quinolones and their derivatives.

Scheme 1. Functionalization of 4-Quinolones: (a) Arylation,
(b) Alkylation, and (c) Alkynylation (This Work)
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scope of readily available alkynylmagnesium bromides and the
lengthy multistep procedure limit the potential of this method.
On the contrary, the use of readily available and structurally

diverse terminal alkynes as pronucleophiles, along with the
mild reaction conditions, offers an attractive strategy for the
synthesis of structurally diverse quinolone derivatives. Several
examples of this approach, including Cu(I)-catalyzed alkyny-
lations of (thio)chromones24−27 and quinolines13,28 and allylic
alkylations of terminal alkynes,29 have been published during
the last several years, but the direct Cu(I)-catalyzed
alkynylation of quinolones has not been accomplished so
far.30,31

Herein we report the first example of the direct Cu(I)-
catalyzed alkynylation of 4-quinolones with terminal alkynes as
pronucleophiles (Scheme 1c). This methodology offers a new
path for functionalizing quinolones with an alkynyl moiety that
complements the existing synthetic routes toward 4-oxo-2,3-
dihydroquinolines.
At the start of this work, the optimization studies were

carried out for the alkynylation reaction between Cbz-
protected quinolone 1a and phenylacetylene 2a in the presence
of base DIPEA and catalytic amounts of Cu(I) salt. On the
basis of our group’s experience with Lewis-acid-promoted
Cu(I)-catalyzed conjugate additions,15,32−35 we evaluated the
effect of several Lewis acids to enhance the electrophilicity of
the quinolone substrate 1a. Excellent conversion to the desired
addition product 3a was observed in the presence of a
stoichiometric amount of tert-butyldimethylsilyl triflate
(TBDMSOTf) after stirring overnight (Table 1, entry 1).

Shortening the reaction time to 4 h had little effect on the
substrate conversion (entry 2). Further optimization of the
solvent and the base (see the Supporting Information)
confirmed the conditions in entry 1 as the most optimal.
Next, we evaluated the effect of the protecting group of the
quinolone substrate on the reaction outcome.

No conversion was observed when unprotected or benzyl-
protected quinolones were used (entries 3 and 4). Moreover,
replacing the Cbz protecting group on the quinolone substrate
by a Boc group resulted in a significant drop in the conversion
(entry 5). Further studies confirmed that the presence of a
copper salt and a stoichiometric amount of a Lewis acid are
mandatory to promote the reaction to completion. No
conversion of quinolone was observed in the absence of
copper salt or using only a catalytic amount of a Lewis acid
(entries 6−8). With silyl-based Lewis acids other than
TBDMSOTf, a lower substrate conversion was obtained
(entries 9−13). Only traces of the addition product 3a were
obtained when trimethylsilyl halides were used instead (entries
9 and 10). The use of stronger silicon-based Lewis acids such
as trimethylsilyl (TMS) and triethylsilyl (TES) triflates
resulted in moderate reaction rates (entries 11 and 12),
whereas the boron-based Lewis acid BF3·Et2O did not improve
the reaction outcome either (entry 13). The superiority of
TBDMSOTf over other explored silyl triflates can be
rationalized by the higher stability of a possible TBDMS-
enolate intermediate formed during the reaction.
Having the optimized conditions in hand (entry 1), we

moved to study the scope of the reaction. For this purpose,
various alkynes and quinolones were tested (Scheme 2).
The reaction was successfully extended to several aromatic

terminal alkynes bearing electron-donating and electron-
withdrawing groups and four-, three-, and two-substituted
aromatic rings (3ab−3aj). An excellent yield was also obtained
with heteroaromatic alkyne 3ak. Similar results were obtained
when using cyclopropyl-, isobutyl-, and ester-substituted
alkynes (3al−3an). Surprisingly, the linear terminal alkyne 1-
pentyne was unreactive under the optimized reaction
conditions (3ao). The limited reactivity of alkyl alkynes and
the lack of reactivity of linear alkynes are consistent with the
literature observations in other Cu-catalyzed reactions.31,36,37

Various quinolones can be used with this catalytic system.
Excellent yields were obtained for quinolones both with
activating and with deactivating groups present in the
quinolone ring (3eg−3ig) and for those with disubstituted
substrates (3jg and 3kg).
Next, we envisaged that the use of a copper salt in

combination with a chiral ligand could lead to enantioinduc-
tion through the binding of the chiral copper complex to the
quinolone. After some optimization, we found that the copper
complex of chiral diphenylphosphine ligand BPE catalyzes the
alkynylation of several quinolone substrates with enantiose-
lectivities in the range of 50−82% ee (Scheme 3), thus
confirming the feasibility of the catalytic asymmetric synthesis
of these molecules.
The robustness of the methodology was tested by scaling up

the synthesis of 3aa to 1 mmol (Scheme 4). Moreover, the
selective deprotection of the Cbz group was successfully
performed under basic conditions to afford dihydroquinolin-4-
one 4 in 83% yield.
The hydrogenation of 3ap with Pd on activated carbon

under acidic conditions followed by the methylation of the
nitrogen atom afforded the Hancock alkaloid (+)-cuspareine
(5) without racemization, allowing the determination of the
absolute configuration of the stereogenic carbon by comparing
the optical rotation of cuspareine with literature data.16,17

In summary, an efficient methodology for the alkynylation of
quinolones with readily available terminal alkynes has been
accomplished. This methodology tolerates the presence of

Table 1. Optimization of Cu(I)-Catalyzed Alkynylationa

entry Lewis acid protecting group t (h) conv. (%)b

1 TBDMSOTf Cbz (1a) 18 >99
2 TBDMSOTf Cbz (1a) 4 96
3 TBDMSOTf H (1b) 18 0
4 TBDMSOTf Bn (1c) 18 0
5 TBDMSOTf Boc (1d) 18 <10
6c TBDMSOTf Cbz (1a) 18 0
7d TBDMSOTf Cbz (1a) 18 20
8 Cbz (1a) 18 0
9 TMSBr Cbz (1a) 18 <10
10 TMSI Cbz (1a) 18 <10
11 TMSOTf Cbz (1a) 18 30
12 TESOTf Cbz (1a) 18 63
13 BF3·Et2O Cbz (1a) 18 0

aReaction conditions: quinolone 1 (0.1 mmol), CuI (10 mol %),
toluene (1 mL), alkyne 2a (1.3 equiv), DIPEA (1.6 equiv), LA (1.2
equiv). bConversion was determined by 1H NMR with respect to the
quinolone. cNo CuI was used. d20 mol % of LA was used.
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several functional groups in both the quinolone and alkyne
reagents and complements the previously developed arylation

and alkylation reactions of quinolones. We have also
demonstrated the feasibility of an enantioselective version
and applied the current methodology to the synthesis of the
enantioenriched Hancock alkaloid (+)-cuspareine. Further
studies are under way, aiming to improve the enantioselective
variant and shed light on the underlying mechanism.
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Scheme 2. Scope of the Reactiona

aReaction conditions: quinolone 1 (0.1 mmol), CuI (10 mol %),
toluene (1 mL), alkyne 2 (1.3 equiv), DIPEA (1.6 equiv),
TBDMSOTf (1.2 equiv).

Scheme 3. Enantioselective Alkynylation of Quinolonesa

aReaction conditions: quinolone 1a (0.1 mmol), CuI (10 mol %), I
(11 mol %), toluene (1 mL), alkyne 2 (1.3 equiv), DIPEA (1.6
equiv), TBDMSOTf (1.2 equiv). ee values were determined by chiral
high-performance liquid chromatography (HPLC) or supercritical
fluid chromatography (SFC).

Scheme 4. Scaling Up and Synthetic Applications of
Quinolone Derivatives 3
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