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Abstract
Many popular algorithms for searching the space of leaf-labelled (phylogenetic) trees
are based on tree rearrangement operations. Under any such operation, the problem
is reduced to searching a graph where vertices are trees and (undirected) edges are
given by pairs of trees connected by one rearrangement operation (sometimes called
a move). Most popular are the classical nearest neighbour interchange, subtree prune
and regraft, and tree bisection and reconnection moves. The problem of computing
distances, however, is NP-hard in each of these graphs, making tree inference and
comparison algorithms challenging to design in practice. Although ranked phyloge-
netic trees are one of the central objects of interest in applications such as cancer
research, immunology, and epidemiology, the computational complexity of the short-
est path problem for these trees remained unsolved for decades. In this paper, we settle
this problem for the ranked nearest neighbour interchange operation by establishing
that the complexity depends on the weight difference between the two types of tree
rearrangements (rank moves and edge moves), and varies from quadratic, which is
the lowest possible complexity for this problem, to NP-hard, which is the highest. In
particular, our result provides the first example of a phylogenetic tree rearrangement
operation forwhich shortest paths, and hence the distance, can be computed efficiently.
Specifically, our algorithm scales to trees with tens of thousands of leaves (and likely
hundreds of thousands if implemented efficiently).
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One of the major problems in computational biology is the reconstruction of evolu-
tionary histories, also known as phylogenetic trees, from sequence data such as RNA,
DNA, or protein sequences. Of particular interest in various applications is the order
of internal nodes in these trees, as these nodes represent evolutionary events and their
ranking models the order in which these events happened in time. For example in
species evolution, where internal nodes of trees correspond to speciation events, the
ranking of these nodes represents the order of divergence events in time. Fossils can
be used to rank and time divergence events in phylogenetic trees (Gavryushkina et al.
2014). Other research fields where ranked trees play an important role are viral epi-
demiology, where ranking gives the order of transmission events (Ypma et al. 2013),
and language evolution (Bouckaert et al. 2018; Gray et al. 2009), where phylogenetic
trees reveal how and when human populations expanded across different continents.
Recently, phylogenetic trees have become a popular tool to study cancer evolution
(Singer et al. 2018; Alves et al. 2019). In cancer phylogenies internal nodes can refer
to emergence of metastatic clones and their ranking shows in which order metastases
had been seeded in time (Lote et al. 2017).

Most commonly trees are inferred from sequences via maximum likelihood (Sta-
matakis 2006; Guindon et al. 2010), MCMC (Ronquist and Huelsenbeck 2003;
Suchard et al. 2018; Bouckaert et al. 2019), distance-, or parsimony-based approaches
(Tamura et al. 2011). A similarity measure between trees is required for the devel-
opment of algorithms implementing these methods and evaluating the accuracy of
reconstructed trees. Furthermore, summary or consensus tree methods (McMorris and
Steel 1994; Bansal et al. 2010; Whidden et al. 2014) often rely on a tree metric. Most
of the currently used distance measures for trees, however, do not take the order of
divergence events into account—only the tree topology. Moreover, popular tree dis-
tances are either hard to compute or lack biological interpretability (Whidden and
Matsen 2018).

Most tree inferencemethods rely on various tree rearrangement operations (Semple
and Steel 2003), the most popular of which are nearest neighbour interchange (NNI),
subtree prune and regraft (SPR), and tree bisection and reconnection (TBR).Under any
such operation, the tree inference problem can be formulated as a graph search, where
vertices are trees and edges are given by tree rearrangement operations. For search
algorithms to be efficient, it is important to understand the geometry of these graphs.
For example, basic geometric properties of the NNI graph have been successfully
leveraged to speed up themaximum likelihoodmethod (Nguyen et al. 2015). Themost
basic geometric characteristic that frequently arises in applications is the minimum
number of rearrangements necessary to transform one tree into another (Semple and
Steel 2003). The problem then amounts to computing the length of a shortest path
between trees in the NNI, SPR, or TBR graph. This can also be seen as computing the
distance between trees in the corresponding metric space.

Classical results in mathematical phylogenetics imply that these distances are NP-
hard to compute for all three rearrangement operationsNNI, SPR, andTBR (DasGupta
et al. 2000; Bordewich and Semple 2005; Hickey et al. 2008; Allen and Steel 2001).
Intuitively, the difference between them is how much change can be done to a tree
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by a single operation, with NNI being the most local type of rearrangement and TBR
the most global one. Remarkably, it took over 25 years and a number of published
erroneous attempts, as discussed in detail by DasGupta et al. (2000), to prove that
computing distances is NP-hard in NNI (DasGupta et al. 2000). Similarly, incorrect
proofs for SPR have been discussed in the literature (Hein et al. 1996; Allen and
Steel 2001), before Bordewich and Semple (2005) proved the NP-hardness result
for rooted trees and Hickey et al. (2008) utilised this proof to establish the result for
unrooted trees. To facilitate practical applications, fixed parameter tractable algorithms
(Downey and Fellows 2013) for computing the SPR distance have been developed over
the years (Whidden et al 2010; Bordewich and Semple 2005; Whidden and Matsen
2018). Computing the NNI distance is also known to be fixed parameter tractable
(DasGupta et al. 1999). Although important, these algorithms remain impractical for
large distances and are only applied to trees with a moderate number of leaves or those
with small distances (Whidden and Matsen 2018).

Another popular tree distance measure that does not rely on a tree rearrangement
method is theRobinson–Foulds distance (Robinson andFoulds 1981). In contrast to the
tree rearrangement-based distances mentioned above, this distance can be computed
efficiently. A downside of this approach however is a lack of biological interpretabil-
ity. The Robinson–Foulds distance is not motivated by a biological process, unlike for
example SPR, where the tree rearrangement operation can be used to model hybridisa-
tion and other horizontal events. This pattern is quite common—tree distancemeasures
that are easy to compute lack biological interpretability, while those that are biologi-
cally meaningful are often hard to compute (Whidden and Matsen 2018).

In this paper, we consider a generalisation of the NNI operation to ranked trees
introduced by Gavryushkin et al. (2018), which is called RNNI (for Ranked Nearest
Neighbour Interchange). We show that the shortest path problem in RNNI is com-
putable inO(n2), where n is the number of tree leaves. This makes RNNI the first tree
rearrangement operation under which shortest paths and distances between trees are
polynomial-time computable. Our proof of this result (Theorem 1) is constructive—
we provide an algorithm called FindPath that computes shortest paths in the RNNI
graph in O(n2) time. Our algorithm is optimal as shortest paths often have length
quadratic in the number of leaves n. The algorithm is practical as it takes seconds
on a laptop to compute the distance between trees with thousands of leaves, while in
the closely related NNI graph the tractable number of leaves is well below twenty (Li
et al. 1996;Whidden andMatsen 2017). Furthermore, FindPath reveals the following
property of the RNNI graph, which is desirable for tree distances from a biological
point of view. If two trees share some information, more specifically a cluster, there is
a shortest paths in RNNI that preserves this information (the cluster). In other words,
shortest paths in RNNI maintain clusters, an important property that is not true in
NNI (Li et al. 1996). This implies in particular that trees that share an evolutionary
hypothesis in form of a common subtree are closer to each other than they are to a
tree not sharing a subtree with them. For a cancer phylogeny this can be interpreted
as two trees supporting the emergence of one particular metastatic clone are closer to
each other than a phylogeny that does not support this hypothesis.

Because NNI can be seen as a special case of RNNI, we investigate whether there
exists a threshold at which the complexity of the shortest path problem shifts from
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NP-hard to polynomial. Specifically, we introduce an edge weight parameter ρ in
the RNNI graph and consider a parametrised graph RNNI(ρ). More precisely, the
RNNI operations that change the ranking, but not the tree topology, weigh ρ, while
moves that change the topology weigh one. We show that the shortest path problem
is NP-hard in RNNI(0) and quadratic in RNNI(1), so the complexity changes with ρ.
We hence propose to characterise the complexity classes of the problem RNNI(ρ) for
values of ρ ≥ 0.

The biological interpretation of this characterisation problem is as follows. In many
large-scale applications two or more different methods are used to reconstruct an
evolutionary process—one tomodel and reconstruct the branching process and another
one to time or rank the evolutionary events (Lote et al. 2017). Often this results in
different support probabilities for the inferred tree topologies and for the ranking of
events. A comparison method for trees inferred this way has to have different penalties
for conflicts in the tree structure and the ranking. This difference can be quantitatively
modelled using our ρ parameter. For example, if the tree topology estimate is more
certain than the ranking, ρ should be chosen to be less than one. An efficient algorithm
to compare trees for such values of ρ is hence desirable.

1 Definitions and background results

Unless stated otherwise, by a tree in this paper we mean a ranked phylogenetic tree,
which is a binary tree where leaves are uniquely labelled by elements of the set
{a1, . . . , an} for a fixed integer n, and all internal (non-leaf) nodes are uniquely ranked
by elements of the set {1, . . . , n−1} so that each child has a strictly smaller rank than its
parent. All leaves are assumed to have rank 0 but we only refer to the ranks of internal
nodes throughout. In total there are (n−1)!n!

2n−1 such trees on n leaves (Gavryushkin et al.
2018). Two trees are considered to be identical if there exists an isomorphism between
them which preserves edges, leaf labels, and node rankings. For example, trees in
Fig. 1 are all different.

Because internal nodes of a tree T are ranked uniquely, we can address the
node of rank t ∈ {1, . . . , n − 1}, and we write (T )t to denote this node. An inter-
val [(T )t , (T )t+1] is defined by two nodes of consecutive ranks. A cluster C ⊆
{a1, . . . , an} in a tree T is a subset of leaves that contains all leaves descending from
one internal node of T . We then say that this internal node induces the cluster C , and
that the subtree rooted at this node is induced by C . Trees can uniquely be specified
using the cluster representation, that is a list of all clusters induced by internal nodes of
that tree ordered according to the ranks of internal nodes. For example, the cluster rep-
resentation of tree T in Fig. 1 is [{a1, a2}, {a1, a2, a3}, {a4, a5}, {a1, a2, a3, a4, a5}].
For a set S ⊆ {a1, . . . , an} and tree T we denote the most recent common ancestor of
S in T , that is the node of the lowest rank in T that induces a cluster containing all
elements of S, by (S)T . Note that (C)T = (T )t if the cluster C is induced by the node
of rank t in T .

Our main object of study is the following class of graphs RNNI(ρ) indexed by
a real-valued parameter ρ ≥ 0. Vertices of the RNNI(ρ) graph are trees as defined
above. Two trees are connected by an edge (also called an RNNI move) if one results
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from the other by performing one of the following two types of tree rearrangement
operation (see Fig. 1):

(i) A rank move on a tree T exchanges the ranks of two internal nodes (T )t and
(T )t+1 with consecutive ranks, provided the two nodes are not connected by an
edge in T .

(ii) Trees T and R are connected by an NNI move if there are edges e in T and f in
R both connecting nodes of consecutive ranks in the corresponding trees, such
that the (non-binary) trees obtained by shrinking e and f into internal nodes are
identical.

The parameter ρ ≥ 0 is the weight of the rank move operation, an NNI move weighs
1.

The weight of a path in RNNI(ρ) is the sum of the weights of all moves along the
path. The distance between two trees in RNNI(ρ) is the weight of a path with the
minimal weight, which we will call a shortest path. When ρ = 1 we assume that the
graph is unweighted.

We consider the following class of problems parametrised by a real number ρ ≥ 0.

RNNI(ρ)-SP
INSTANCE: A pair of trees T and R on n leaves
FIND: A path of minimal weight between T and R in RNNI(ρ)

Since RNNI(ρ) is a connected graph, there always exists a solution to RNNI(ρ)-SP.
Furthermore, the size of every solution to an instance of RNNI(ρ)-SP is bounded by
a polynomial in n, despite the search space being super-exponential. This is because
the diameter of the RNNI(1) graph is bounded from above (Gavryushkin et al. 2018)
by n2 − 3n − 5/8.

Fig. 1 Trees in the RNNI graph with three NNI moves on the left and a rank move on the right
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Our main goal is to prove that RNNI(1)-SP can be solved in polynomial time. We
will see later in the paper that it follows from a classical result (DasGupta et al. 2000)
that RNNI(0)-SP is NP-hard. To be consistent with notations used in the literature
(Gavryushkin et al. 2018), we will denote the graph RNNI(1) by RNNI.

2 FINDPATH algorithm

In this section we introduce an algorithm called FindPath that computes paths
between trees and is quadratic in the number of leaves.

An input of the FindPath algorithm is two trees T and R in their cluster represen-
tation. We denote the representation of R by [C1, . . . ,Cn−1]. The algorithm considers
the clusters C1, . . . ,Cn−2 iteratively in their order and produces a sequence p of trees
which becomes a shortest path from T to R after the algorithm terminates. During
each iteration k = 1, . . . , n−2 new trees are added to p if necessary, and we will refer
to the last added tree as T1. In iteration k, the rank of (Ck)T1 is decreased by RNNI
moves until Ck is induced by the node of rank k in T1. In Proposition 1 we show that
FindPath is a deterministic algorithm with running time quadratic in the number of
leaves n. In particular, there always exists a unique move that decreases the rank of
(Ck)T1 as described above.

Note that if two trees share a cluster, every tree on the path computed by FindPath
contains this cluster as well. An implementation of this algorithm is available on
GitHub (Collienne et al. 2019). Note that the version of FindPath implemented in
(Collienne et al. 2019) outputs a shortest path as a list of trees. The algorithm that
outputs the length of a shortest path can be implemented so that the wall clock running
time on a generic laptop is under 30 s for trees with tens of thousands of leaves.

Algorithm 1 FindPath(T , R)
1: T1 := T , p := [T1], [C1, . . . ,Cn−1] := R
2: for k = 1, . . . , n − 2 do
3: while rank((Ck )T1 ) > k do
4: if (Ck )T1 and node u with rank one less than (Ck )T1 in T1 are connected by an edge then
5: T2 is T1 with the rank of (Ck )T1 decreased by an NNI move
6: else
7: T2 is T1 with ranks of u and (Ck )T1 swapped
8: T1 = T2
9: p = p + T1
10: return p

Proposition 1 FindPath is a correct deterministic algorithm that runs inO(n2) time.

Proof To show thatFindPath is a deterministic algorithm (see the pseudocode above),
we have to prove that tree T2 constructed in the while loop (line 3) of the algorithm
always exists and is uniquely defined. If T2 is obtained in line 7 from T1 by a rank
move, the tree exists and is unique because there always exists exactly one rank move
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on any particular interval that is not an edge. It remains to show that an NNI move that
decreases the rank of (Ck)T1 always exists and is unique. To prove this we consider
cases k = 1 and k > 1 separately.

Case k = 1. In this case Ck consists of two leaves {x, y}. Since we assumed that the
while condition is satisfied, the node v = ({x, y})T1 has rank r > 1.
Consider the node u with rank r − 1 in T1. Assume without loss of
generality that x is in the cluster induced by u, so y has to be outside this
cluster. Consider the following three disjoint subtrees of T1: the subtree
T11 induced by a child of u and containing x , the subtree T12 induced by
the other child of u, the subtree T13 induced by a child of v and containing
y. Now observe that out of two NNI moves possible on the edge [u, v]
in T1, only the one that swaps T12 and T13 does decrease the rank of the
most recent common ancestor of {x, y}. Hence T2 exists and is unique in
this case.

Case k > 1. In this case Ck = Ci ∪ C j for i, j < k. In this case the subtree of T1
induced by (Ci )T1 is identical to the subtree of R induced by (Ci )R , and
the same is true for (C j )T1 and (C j )R . Hence, we can reduce this case to
k = 1 by suppressing Ci and C j in both T1 and R to new leaves ci and c j
(of rank zero) respectively. As in Case k = 1, exactly one of two possible
NNI moves deceases the rank of the most recent common ancestor of ci ,
c j in T1, so the same is true for the most recent common ancestor (Ck)T1 ,
and T2 is unambiguously defined.

Thus, FindPath is a deterministic algorithm.
To prove correctness, note that the algorithm starts by adding T to the output path,

and every new tree added to the output path is an RNNI neighbour of the previously
added one (see line 5 and 7). To see that the output path terminates in R, observe that
after k iteration of the for loop (line 2) of the algorithm, the first k clusters of T1 and
R must coincide, and so after n − 2 iterations a path between T and R is constructed.

The worst-case time complexity of FindPath is quadratic in the number of leaves,
as there can be at most n − 2 executions of the for loop (line 2) and in every iteration
of the for loop at most n − 2 while loops (line 3) are executed. Here and throughout
the paper we assume that the output of FindPath is encoded by a list of RNNI moves
rather than an actual list of trees. This is because writing out a tree on n leaves takes
time linear in n and the complexity of FindPath becomes cubic. ��

3 FINDPATH computes shortest paths in optimal time

In this section we prove the main result of this paper, that RNNI(1)-SP is polynomial.
Specifically we prove that paths returned by FindPath are always shortest. We also
show that FindPath is an optimal algorithm, that is, no sub-quadratic algorithm can
solve RNNI(1)-SP.

The main ingredient of our proof is to show that a local property (see (1) in the
proof) of the FindPath algorithm is enough to establish that the output paths are
shortest. The property can intuitively be understood as FindPath always choosing
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Fig. 2 Trees T , T ′, and R as in
inequality (1). Paths
FP(T , R) = [T , T1, T2, . . . , R]
and FP(T ′, R) =
[T ′, T ′

1, T
′
2, . . . , R] are indicated

by arrows

the best tree possible to go to. Importantly, this result can be used for an arbitrary
vertex proposal algorithm in an arbitrary graph to establish that the algorithm always
follows a shortest path between vertices in the graph, hence our proof technique is of
general interest.

Theorem 1 The worst-case time complexity of the shortest path problem in the RNNI
graph on trees with n leaves isO(n2). HenceRNNI(1)-SP is polynomial time solvable.

Proof We prove this theorem by showing that for every pair of trees T and R, the path
computed by the FindPath algorithm is a shortest RNNI path. We denote this path by
FP(T , R) and its length by |FP(T , R)|. By d(T , R) we denote the length of a shortest
path between T and R, that is, the RNNI distance between trees. We hence want to
show that |FP(T , R)| = d(T , R) for all trees.

Assume to the contrary that T and R are two treeswith aminimumdistance d(T , R)

such that d(T , R) 	= |FP(T , R)|, that is, d(T , R) < |FP(T , R)|. Let T ′ be the first
tree on a shortest RNNI path from T to R. Then d(T ′, R) = d(T , R) − 1, implying
that the distance between T ′ and R is strictly smaller than that between T and R. This
implies that |FP(T ′, R)| = d(T ′, R) = d(T , R) − 1 < |FP(T , R)| − 1 and hence,
|FP(T ′, R)| < |FP(T , R)| − 1. We finish the proof by showing that no trees satisfy
this inequality.

Specifically, we will show that

for all trees T , R, and T ′ such that T ′ is oneRNNImove away from T ,

|FP(T ′, R)| ≥ |FP(T , R)| − 1
(1)

We will use Fig. 2 to demonstrate our argument.
Assume to the contrary that T and R are trees for which there exists T ′ violating

inequality (1). Out of all such pairs T , R choose one with the minimal |FP(T , R)|.
Denote FP(T , R) = [T , T1, T2, . . . , R] and FP(T ′, R) = [T ′, T ′

1, T
′
2, . . . , R], and let

[(T )t , (T )t+1] be the interval in T on which the RNNI move connecting T and T ′ is
performed. Let Ck be the cluster of R such that the node (Ck)T is moved down by
the first move on FP(T , R). If the rank of (Ck)T is not in {t, t + 1} then (Ck)T and
(Ck)T ′ induce the same cluster, so FindPath would make the same rearrangement
in both trees T and T ′ in the first move along FP(T , R) and FP(T ′, R) resulting in
trees T1 and T ′

1 which are RNNI neighbours, as in Fig. 2. In this case, paths FP(T1, R)

and FP(T ′
1, R) violate inequality (1) but FP(T1, R) is strictly shorter than FP(T , R),

contradicting our minimality assumption. Hence, the first move on FP(T , R) has to
involve an interval incident to at least one of the nodes (T )t , (T )t+1.

Moreover, becauseCk is the first cluster satisfying thewhile condition ofFindPath
applied to T and R, all clusters C j with j < k have to be present in T . And since the
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Fig. 3 NNI move between T and
T ′ on the edge [(T )t , (T )t+1]
indicated in bold, and the third
RNNI neighbour resulting from
a move on this edge

first move on FP(T , R), which decreases the rank of (Ck)T , involves nodes with ranks
not higher than t +2, the most recent common ancestor of Ck has rank not higher than
t +1 after this move. Hence k ≤ t +1. Furthermore, clustersC j for all j ≤ k−2 have
to be present in T ′ as well as T , because all clusters induced by nodes of rank t − 1 or
lower coincide in these two trees. Cluster Ck−1, however, might not be induced by a
node in T ′ if k − 1 = t . Therefore, the first move on FP(T ′, R) can decrease the rank
of the most recent common ancestor of either Ck−1 or Ck .

We will distinguish two cases depending on whether T and T ′ are connected by an
NNI or a rank move. For each of these we will further distinguish all possible moves
between T and T1. Note that in all figures illustrating possible moves on FP(T , R)

and FP(T ′, R) below, the position of the tree root is irrelevant, so we have positioned
roots to simplify our figures.

Case 1. T and T ′ are connected by an NNI move. So [(T )t , (T )t+1] is an edge
in T—see Fig. 3. Denote the clusters induced by the children of (T )t
by A and B and the cluster induced by the child of (T )t+1 that is not
(T )t by C , and assume that the NNI move between T and T ′ exchanges
the subtrees induced by clusters B and C . Additionally, if (T )t+2 is the
parent of (T )t+1 (Cases 1.2 and 1.3), we denote the cluster induced by
the child of (T )t+2 that is not (T )t+1 by D—see Fig. 3.

We now consider all possible moves FindPath can perform to go from T to T1 that
involve a node of rank t or t + 1, that is, we will consider three intervals in total.

1.1 RNNI move (either type) on interval [(T )t , (T )t+1]. This move has to be the
NNI move that is different from the NNI move connecting T and T ′. In this
case, the cluster B ∪ C is built in T1, as depicted in the bottom of Fig. 3. Hence
the first cluster Ck that satisfies the while condition of FindPath must contain
elements from both B and C but not from A, and the rank of (Ck)R has to be
at most t . But then FindPath applied to T ′ and R has to decrease the rank of
(Ck)T ′ in its first step implying that T ′

1 = T1, so |FP(T ′, R)| = |FP(T , R)|. This
contradicts our assumption that |FP(T ′, R)| < |FP(T , R)| − 1.
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(a) (b)

Fig. 4 Comparison of paths FP(T , R) and FP(T ′, R) if T and T ′ are connected by an NNI move on edge
[(T )t , Tt+1] in T . The bottom row displays all possibilities for T2 and T ′

2, depending on the position of
cluster Ck that satisfies the while condition of FindPath: case Ck intersects B and D is on the left, Ck
intersects A and D is in the middle, and Ck intersects C and D is on the right

1.2 NNI move on (edge) interval [(T )t+1, (T )t+2] that swaps the subtrees induced
by clusters C and D. This move is shown in Fig. 4a by an arrow from T to the
leftmost tree in the middle row. In this case, the first cluster Ck that satisfies the
while condition of FindPath computing FP(T , R) must intersect D but not C .
Additionally,Ck must intersect A, or B, or both of them. Hence, wewill consider
each of these three cases individually, and demonstrate them in Fig. 4.

1.2.1 Ck intersects A, B, and D but not C . In this case, since we assumed
[(T1)t , (T1)t+1] to be an edge in the tree, no move on T1 can decrease the
rank of (Ck)T1 . It follows from the proof of Proposition 1 that this can happen
only when the subtrees induced by (Ck)T1 and (Ck)R in the corresponding
trees coincide. That is, the while condition of FindPath must be false after
this first move for all j ≤ k. This implies that t = k − 1 and Ck−1 = A∪ B.
But since the rank of (Ck−1)T ′ is t +1 > k−1, Ck−1 has to be the first clus-
ter for which the while condition of FindPath applied to T ′ and R is met.
Hence the first move on FP(T ′, R) must decrease the rank of (Ck−1)T ′ by
building the cluster A ∪ B, in which case T ′

1 = T . This however contradicts
|FP(T ′, R)| < |FP(T , R)| − 1.

1.2.2 Ck intersects A and D but not B orC . Starting from T , FindPath exchanges
first subtrees induced by clusters C and D and then by B and D. This results
in trees T1 and T2—see the path leading to the tree in the middle of the
bottom row in Fig. 4a. This implies that the rank of (Ck−1)R is lower than t ,
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so the first cluster that satisfies the while condition of FindPath applied to
T ′ and R is Ck . Hence, starting from T ′, FindPath exchanges first subtrees
induced by B and D and then by C and D. This results in trees T ′

1 and T ′
2—

see the path leading to the tree in the middle of the bottom row in Fig. 4b.
It follows that T2 and T ′

2 are connected by an RNNI move on the interval
[(T2)t+1, (T2)t+2] (indicated by dotted edges in the corresponding trees in
Fig. 4). This together with the facts that |FP(T2, R)| = |FP(T , R)| − 2 and
|FP(T ′

2, R)| = |FP(T ′, R)| − 2 contradicts the assumption that FP(T , R) is
of minimal length violating inequality (1).

1.2.3 Ck intersects B and D but not A or C . This case is analogous to the previous
one. The two initial segments of FP(T , R) and FP(T ′, R) are the paths
leading to the leftmost trees in the bottom row of Fig. 4a and b, respectively.
Note that the rank swap leading from T ′

1 to T ′
2 is required because the rank

of (Ck)R is at most t as implied by the move leading from T1 to T2. The
corresponding trees T2 and T ′

2 are again RNNI neighbours.

1.3 NNI move on (edge) interval [(T )t+1, (T )t+2] that builds a cluster C ∪ D in T1.
This move is shown in Fig. 4a by an arrow from T to the second leftmost tree
in the middle row. In this case, Ck intersects C and D but not A or B. And we
have the following two possibilities to consider.

1.3.1 The ranks of (Ck)T1 and (Ck)R coincide. In this case, the previous cluster
Ck−1 of R has to be A ∪ B. Since A ∪ B is not a cluster in T ′, the first
RNNI move on FP(T ′, R) builds the cluster A ∪ B by swapping subtrees
induced by cluster B and C . This move results in T ′

1 = T contradicting
|FP(T ′, R)| < |FP(T , R)| − 1.

1.3.2 The rankof (Ck)T1 is strictly higher than that of (Ck)R . In this case,FindPath
decreases the rank of (Ck)T1 in the second step. This results in the path from
T to the rightmost tree in Fig. 4a. Hence, FP(T ′, R) also has to begin with
two moves that decrease the rank of (Ck)T ′ twice, resulting in the rightmost
path in Fig. 4b. Similarly to case 1.2.2, we arrive at a contradiction that trees
T2, T ′

2, and R violate inequality (1) and |FP(T2, R)| < |FP(T , R)|.
1.4 Rank move on interval [(T )t+1, (T )t+2]. This case is analogous to case 1.3 (see

Fig. 5). If the ranks of (Ck)T1 and (Ck)R coincide then Ck−1 = A ∪ B, and
applying FindPath to T ′, R we get T ′

1 = T . If the rank of (Ck)T1 is strictly
higher than that of (Ck)R then FindPath decreases the rank of (Ck)T1 in the
second step. Recall that the interval between nodes of rank t and t +1 is an edge
in both T and T ′. Hence, the first two moves on FP(T ′, R) decrease the rank of
(Ck)T ′ twice resulting in T ′

2 which is an RNNI neighbour of T2 as depicted in
Fig. 5. As before, this contradicts our minimality assumption.

1.5 RNNI move (either type) on interval [(T )t−1, (T )t ]. In this case Ck ⊆ A ∪ B
and the rank of (Ck)R is at most t − 1. This implies that Ck is the first cluster to
satisfy the while condition for T ′ and the first move on FP(T ′, R) decreases the
rank of (Ck)T ′ by exchanging the subtrees induced by B and C . This results in
T ′
1 = T .
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Case 2. T and T ′ are connected by a rank move. We assume that the rank move is
performed on the interval [(T )t , (T )t+1]. Denote the cluster induced by
(T )t by A, the clusters induced by the children of (T )t by A1 and A2, the
cluster induced by (T )t+1 by B, and the clusters induced by the children
of (T )t+1 by B1 and B2—see Fig. 6.

We again consider all possible moves FindPath can perform to go from T to T1 that
involve a node of rank t or t + 1.

2.1 Rank move on [(T )t , (T )t+1]. This move results in T1 = T ′.
2.2 NNI move on (edge) interval [(T )t+1, (T )t+2]. The following two sub-cases are

analogous to case 1.3.

2.2.1 (T )t+2 is a parent of (T )t . The first move on FP(T , R) builds a cluster A∪B1
or A ∪ B2, and we assume without loss of generality that it is the former, as
in Fig. 6. This implies that Ck intersects A and B1 but not B2 If the ranks
of (Ck)T1 and (Ck)R coincide then the previous cluster Ck−1 of R has to
be A. Therefore, the first move on FP(T ′, R) decreases the rank of (A)T ′ ,
which results in T ′

1 = T . If the rank of (Ck)T1 is strictly higher than that of
(Ck)R then FindPath decreases the rank of (Ck)T1 in the second step. Due
to the symmetry we can assume that Ck ⊆ A1 ∪ B1, which implies that the
move between T1 and T2 exchanges the subtrees induced by A2 and B1, as
depicted on the left of Fig. 6. Ck ⊆ A1 ∪ B1 implies that the first two moves
on FP(T ′, R) result in a tree T ′

2 that is an RNNI neighbour of T2—see Fig. 6.
This is a contradiction to the minimality assumption on |FP(T , R)|.

2.2.2 (T )t+2 is not a parent of (T )t . In this case, there exists a cluster C induced
by the child of (T )t+2 which is different from the one that induces B—see
Fig. 7. We can assume without loss of generality that Ck ⊆ C ∪ B1 and the
first move on FP(T , R) builds a new cluster C ∪ B1. If the ranks of (Ck)T1
and (Ck)R coincide then Ck−1 = A, which implies that A is induced by the
node of rank t in both T and R. So T ′

1 = T . If the rank of (Ck)T1 is strictly
higher than that of (Ck)R then FindPath decreases the rank of (Ck)T1 in
the second step—see Fig. 7. The corresponding first moves on FP(T ′, R)

are shown on the right in Fig. 7, and we again get that T2 and T ′
2 are RNNI

neighbours.

2.3 Rank move on interval [(T )t+1, (T )t+2]. Again, depending on whether or not
the ranks of (Ck)T1 and (Ck)R coincide, we arrive at the conclusion that either
T ′
1 = T or T2 and T ′

2 are RNNI neighbours, similarly to case 1.4.
2.4 RNNI move (either type) on interval [(T )t−1, (T )t ]. In this case Ck ⊆ A and

the first move on FP(T ′, R) must be a rank swap resulting in T ′
1 = T .

Since all possible cases result in a contradiction, we conclude that inequality (1) is
true for all trees, which completes the proof of the theorem. ��

We finish this section by showing that no algorithm has strictly lower worst-case
time complexity than FindPath. We again assume here that the output of an algorithm
for solving RNNI(1)-SP is a list of RNNI moves. Requiring the output to be a list of
trees would result in cubic complexity while maintaining the optimality of FindPath.
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Fig. 5 Comparison of paths FP(T , R) and FP(T ′, R) if there is an NNI move between T and T ′ and a rank
move on the interval above this edge follows on FP(T , R)

Corollary 1 The time-complexity of the shortest path problem RNNI(1)-SP is �(n2).

Proof We prove this by establishing the lower bound on the output size to the problem,
that is, the length of a shortest paths.

Consider two “caterpillar” trees T = [{a1, a2}, {a1, a2, a3}, . . . , {a1, a2, . . . , an}]
and R = [{a1, an}, {a1, an, an−1}, . . . , {a1, an, . . . , a2}]. Applied to these trees
FindPath executes an NNI move in each of the n−k−1while loops (line 3) in every
iteration k of the for loop (line 2). Hence the length of the output path of FindPath is∑n−2

k=1 k = (n−1)(n−2)
2 and therefore quadratic in n. Theorem 1 then implies that this

path is a shortest path. It follows that the worst-case size of the output to RNNI(1)-SP
is quadratic. ��

4 For what � is RNNI(�)-SP polynomial?

As we have seen in Sect. 2, the shortest path problem RNNI(1)-SP is solvable in
polynomial time. In this section, we will show that a classical result in mathematical
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Fig. 6 Rank move between T and T ′ and possible initial segments of FP(T , R) and FP(T ′, R) when
[(T )t+1, (T )t+2] is an edge. We use notations A = A1 ∪ A2 and B = B1 ∪ B2

phylogenetics implies that RNNI(0)-SP isNP-hard.Wewill also discuss RNNI(ρ)-SP
for other values of ρ.

Theorem 2 (DasGupta et al. 2000) RNNI(0)-SP is NP-hard.

Proof Because two trees with the same tree topology but different rankings have
distance 0 in RNNI(0), this graph corresponds to a pseudo-metric space. The length
of the path required in an instance of RNNI(0)-SP is equal to the minimum number
of NNI moves necessary to convert one tree into another tree, as rank moves weigh 0.
Therefore, the distance in RNNI(0) equals the NNI distance between trees where the
rankings of internal nodes are ignored and NNI moves are allowed on every edge. The
corresponding shortest path problem is known to be NP-hard (DasGupta et al. 2000).

��
In the light of Theorems 1 and 2 the following problem is natural.

Problem 1 Characterise the complexity of RNNI(ρ)-SP in terms of ρ.

This problem is also of applied value. For example, trees might come from an
inferencemethodwith higher certainty of their branching structure and lower certainty
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Fig. 7 Comparison of paths FP(T , R) and FP(T ′, R) if there is a rank move between T and T ′ and an NNI
move on the edge below the corresponding (rank) interval follows on FP(T , R)

of their nodes order. A comparison method for such trees should have higher penalty
for NNI changes and lower penalty for rank changes, which in our notations requires
ρ < 1.

In the rest of this section, we show that the FindPath algorithm substantially relies
on the fact that the rank move and the NNI move have the same weight in the RNNI
graph. This suggests that a non-trivial algorithmic insight is necessary to extend our
polynomial complexity result to other values of ρ.

Proposition 2 FindPath does not compute shortest paths in RNNI(ρ) for ρ 	= 1.

Proof For ρ > 1 a counterexample is given by the following trees (see Fig. 8)

T = [{a1, a2}, {a1, a2, a3}, {a1, a2, a3, a4}] and
R = [{a3, a4}, {a2, a3, a4}, {a1, a2, a3, a4}].

Applied to these treesFindPathproceeds fromT to [{a1, a2}, {a3, a4}, {a1, a2, a3, a4}],
then to [{a3, a4}, {a1, a2}, {a1, a2, a3, a4}], and then to R. This path consists of
two NNI moves with one rank move in between them and therefore has weight
2 + ρ. However, the path from T to [{a2, a3}, {a1, a2, a3}, {a1, a2, a3, a4}] to
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Fig. 8 Path computed by FindPath (top) and a shorter path (bottom) for ρ > 1

Fig. 9 Path computed by FindPath (top) and a shorter path (bottom) for ρ < 1

[{a2, a3}, {a2, a3, a4}, {a1, a2, a3, a4}] to R consists of three NNI moves and is hence
shorter.

For ρ < 1 a counterexample is given by the following trees (see Fig. 9)

T = [{a1, a2}, {a3, a4}, {a1, a2, a3, a4}] and
R = [{a1, a3}, {a1, a3, a4}, {a1, a2, a3, a4}].

Applied to these trees FindPath proceeds from T to [{a1, a2}, {a1, a2, a3}, {a1, a2,
a3, a4}], then to [{a1, a3}, {a1, a2, a3}, {a1, a2, a3, a4}], and then to R. This path con-
sists of three NNI moves and therefore has weight 3. However, the path from T
to [{a3, a4}, {a1, a2}, {a1, a2, a3, a4}] to [{a3, a4}, {a1, a3, a4}, {a1, a2, a3, a4}] to R
consists of one rank move followed by two NNI moves and is hence shorter. ��

5 Additional open problems

The idea utilised by DasGupta et al. (2000) to prove that computing distances in NNI
is NP-hard stems from a result that shortest paths in NNI do not preserve clusters (Li
et al. 1996), that is, sometimes a cluster shared by two trees T and R is shared by
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no other tree on any shortest path between T and R. This counter-intuitive property
eventually led to the computational hardness result in NNI. Moreover, this property
makes little sense biologically as trees clustering the same set of sequences into a
subtree should be closer to each other than to a tree that does not have that subtree.
Indeed, a shared cluster means that both trees support the hypothesis that this cluster
has evolved along a subtree. In light of this biological argument, the NP-hardness
result can be interpreted as RNNI(ρ)-SP being hard only when the graph RNNI(ρ) is
biologically irrelevant. From this paper we know that RNNI(1)-SP can be solved in
polynomial time by an algorithm that preserves clusters. This however does not mean
that every shortest path in RNNI preserves clusters. The following question is hence
natural.

(1) For which values of ρ does RNNI(ρ) have the cluster property? How do those
compare to the values of ρ for which RNNI(ρ)-SP is efficient?

Other natural questions that arise in the context of our results are the following.

(2) The questions we have considered for ranked NNI can be studied in other
rearrangement-based graphs on leaf-labelled trees, such as the ranked SPR graph
and the ranked TBR graph (Semple and Steel 2003). What is the complexity of
the shortest path problem there?

(3) Can our results be used to establish whether the problem of computing geodesics
between trees with real-valued node heights is polynomial-time solvable? This
geodesic metric space is called t-space and an efficient algorithm for computing
geodesics in t-space would be of importance for applications (Gavryushkin and
Drummond 2016).
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