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INTRODUCTION 
 
Gastric cancer (GC) is one of the most common and 
malignant tumors of the digestive system [1] and is 
difficult to diagnose at an early stage [2]. Radiotherapy is 
a standard treatment for patients with advanced  
GC [3]. However, patients with GC receive limited 
benefit from radiotherapy, and most develop tolerance to 
radiotherapy [4]. Although numerous genes have been 
demonstrated to be related to radiosensitivity in different 
cancers [5, 6], the clear mechanisms of radioresistance in 
GC remain unknown. Therefore, the mechanisms  

 
of GC radioresistance must be clarified, and new 
radiosensitizers must be developed to treat GC. 
 
The main principle of radiotherapy is to induce cell death 
by damaging or rupturing the DNA double helix  
with ionizing radiation (IR) such as X-rays, neutrons, α-
rays, β-rays, and γ-rays [7, 8]. However, while killing 
tumor cells, radiation also influences the tumor 
microenvironment containing the tumor cells [9]. The 
tumor microenvironment consists of tumor cells, 
fibroblasts, vascular cells, immune cells and the 
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ABSTRACT 
 
Radiotherapy is used to treat gastric cancer (GC); however, radioresistance challenges the clinical outcomes of GC, 
and the mechanisms of radioresistance in GC remain poorly understood. Here, we report that the TGF-β receptor 
inhibitor, LY2109761 (LY), is a potential radiosensitizer both in vitro and in vivo. As per the Cancer Genome Atlas 
database, TGF-β overexpression is significantly related to poor overall survival in GC patients. We demonstrated that 
the TGF-β/SMAD4 signaling pathway was activated in both radioresistant GC cells and radioresistant GC patients. As 
a TGF-β receptor inhibitor, LY can enhance the activities of irradiation by inhibiting cell proliferation, decreasing 
clonogenicity and increasing apoptosis. Moreover, LY attenuated the radiation-induced migration and invasion, 
epithelial-mesenchymal transition (EMT), inflammatory factor activation, immunosuppression, and cancer stem cell 
characteristics of GC cells, thus leading to radiosensitization of the GC cells. We confirmed that LY reduced tumor 
growth, inhibited TGF-β/SMAD4 pathway activation and reversed irradiation-induced EMT in a tumor xenograft 
model. Our findings indicate that the novel TGF-β receptor inhibitor, LY, increases GC radiosensitivity by directly 
regulating the TGF-β/SMAD4 signaling pathway. These findings provide new insight for radiotherapy in GC patients. 
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extracellular matrix. Several studies have shown that 
interactions between multiple cells in the tumor 
microenvironment are the main cause of treatment 
tolerance to radiotherapy [10]. The epithelial-
mesenchymal transition (EMT) contributes to radio-
resistance in many malignant tumors by dys-regulating the 
EMT markers, E-cadherin and N-cadherin [11]. 
Inflammatory reactions are also positively correlated with 
tumor radioresistance. The inflammatory cytokines, 
interleukin (IL)1, IL2 and IL6, in the tumor 
microenvironment are activated after irradiation treatment 
in many tumors [12]. Moreover, the radio-therapy-
mediated immunosuppression in the tumor micro-
environment has been intensively investigated in many 
studies [13, 14]. In addition, cancer stem cells (CSC) in the 
tumor microenvironment play important roles in 
radioresistance and affect tumor development, 
invasiveness and metastatic dissemination. The TGF-β 
family includes polypeptides play important roles in 
regulating tumor cells, tumor-associated fibroblasts and 
immunorelated cells in the tumor microenvironment [15, 
16]. TGF-β1, -β2 and -β3 cytokines promote the 
progression of several cancers, including GC, by binding 
the TGF-β-type receptor (TβR) [17]. Research has shown 
that TGF-β expression is upregulated in the tumor 
microenvironment after radiotherapy [18, 19]. The 
mothers against decapentaplegic protein (SMAD4) in 
Drosophila is a member of the SMAD family and is 
activated by transmembrane serine-threonine receptor 
kinases in response to TGF-β signaling. Research has 
shown that TGF-β/SMAD4 signaling pathway activation 
promotes EMT, and the TGF-β signaling pathway 
modulates immune functions and activates inflammatory 
factors in diverse malignant neoplasms [20, 21]. Thus, GC 
initiation and progression promoted by the TGF-
β/SMAD4 pathway may be reversed by TGF-β inhibitors. 
LY2109761 (LY) is a novel selective TGF-β receptor type 
I/II inhibitor that completely inhibits TGF-β-induced 
SMAD2 phosphorylation and exhibits antitumor effects in 
various tumor models, such as glioblastoma [22], oral 
squamous cell carcinoma [23] and prostate cancer [24]. 
LY may thereby play an important role in GC therapy by 
inactivating the TGF-β/SMAD4 signaling pathway. 
 
Here, we examined the activities of the TGF-β/SMAD4 
pathway in GC radioresistance and the potential role of 
TGF-β-receptor inhibitors in GC radiosensitivity in vivo 
and in vitro. 
 
RESULTS 
 
High levels of TGF-β were associated with poor 
overall survival (OS) of GC patients 
 
Analyzing the Cancer Genome Atlas database (Figure 1A) 
showed that GC patients with low TGF-β1 expression 

generally had a prolonged OS (median survival time 
undefined) and that upregulated TGF-β1 was significantly 
correlated with poor OS (median survival time: 19.32 
months, n=203, P=0.023). Figure 1B shows that GC 
patients with low TGF-β2 expression had a prolonged OS 
(median survival time 68.99 months) compared with that 
of patients with high TGF-β2 expression (median survival 
time 26.45 months, n=205, P=0.0409). These data showed 
that TGF-β may be a better prognostic marker than grading 
or tumor necrosis metastasis (TNM) staging (not 
significantly related to GC patient prognoses; 
Supplementary Figure 1A). 
 
Dysregulation of TGF-β and EMT markers in GC 
patients with radioresistance 
 
Twenty-four cancer tissue samples were harvested from 
GC patients before radiotherapy (diagnostic biopsies). 
Computed tomography images from before and two 
months after radiotherapy were reviewed to examine the 
radiosensitivity of these samples. Sixteen specimens 
responded completely to radiotherapy (radiosensitive 
tissue), while 8 were nonreactive after radiotherapy 
(radioresistant tissue). Table 1 lists the patients’ charac-
teristics. TGF-β1 and TGF-β2 were strongly up-
regulated in radioresistant GC patients compared with 
those in radiosensitive patients (Figure 1C). The 
downstream molecule, SMAD4, was downregulated, and 
EMT makers were dysregulated in radioresistant GC 
patients (E-cadherin was downregulated, and N-cadherin 
was upregulated). The staining indices differed 
statistically (Supplementary Figure 1B). 
 
Establishment of radioresistant GC cell line RR  
 
The radioresistant GC cell line RR (SGC-7901-R and 
AGS-R) were established by exposing parental GC cells to 
fractioned irradiation for 6 months at a total dose of 60 Gy 
and validated via colony-formation assays [25]. Colony 
formation and survival fractions were significantly 
increased in the RR cells compared with those of the 
parental GC cells (Figure 2A; P<0.05). The reactive 
oxygen species (ROS) levels in RR cells  
were significantly increased compared with those  
of the controls (Figure 2B; P<0.05). Real-time  
PCR (Supplementary Figure 2A) and western blot (Figure 
2C) showed that TGF-β1 and TGF-β2 were over-
expressed, SMAD4 and E-cadherin were downregulated, 
and N-cadherin was upregulated in RR cells. In addition, 
inflammatory factors IL-1β and IL-6 and immune 
checkpoint PD-L1 were significantly overexpressed, and 
the DNA double-strand break biomarker, γ-H2AX, was 
significantly lower in RR cells. The sphere-formation assay 
showed that RR cells generated sphere cells and showed 
self-renewal potential compared with the parental GC cells 
(Figure 2D). Flow cytometry showed that SGC-7901-R 
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cells possessed considerably enhanced expression of the 
putative CSC markers, CD24 (P<0.0001) and CD133 
(P=0.0018; Figure 2E). Cell apoptosis analysis showed that 
irradiation induced fewer SGC-7901-R cells into apoptosis 
(P=0.0006; Figure 2F). Wound-healing assays indicated 
that the wound-healing percentages were significantly 
increased in SGC-7901-R cells (mean ± SEM: 60.43% ± 
0.9563% vs 26.73% ± 1.099%, n=3, P<0.0001; Figure 2G). 
Transwell assays showed that the numbers of invaded cells 
were significantly increased in SGC-7901-R cells (449 vs 
335, n=3, P=0.0006; Figure 2H). The same phenotype was 
also observed in AGS-R cells (Supplementary Figure 2B–
2E). 

TGF-β inhibitor LY enhanced GC cell sensitivity to 
irradiation 
 
Since TGF-β was upregulated in RR, we examined 
whether the TGF-β inhibitor LY could lead to radio-
sensitivity in GC cells. CCK-8 assays (Figure 3A, 3B) 
indicated that RR clones were more sensitive to LY, and 
LY pretreatment inhibited GC cell proliferation dose- 
dependently following irradiation (P<0.01). Flow 
cytometry showed that LY combined with IR increased 
GC cell apoptosis compared with that of IR alone 
(P<0.0001; Figure 3C). Clonogenic assays showed that 
LY significantly reduced the clonogenic ability of GC  
 

 

 
 

Figure 1. Relationship between the TGF-β expressions with the overall survival and radioresistance in GC patients. (A) Kaplan-
Meier survival curves for high and low mRNA TGF-β1 expression level in GC patients. (B) Kaplan-Meier survival curves for high and low mRNA 
TGF-β2 expression level in GC patients. (C) Immunohistochemical analysis: representative immunohistochemistry images of the TGF-β1,  
TGF-β2, SMAD4, E-CA and N-CA expressions in biopsy samples of GC patients. (a) Specimen from a patient whose tumor sample showed a 
complete response to radiotherapy (radiosensitive GC patient). (b) Specimen from a patient whose tumor sample showed no change after 
radiotherapy (radioresistant GC patient). Original magnification, ×400. P<0.05. 
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Table 1. Clinical characteristics of patients. 

Characteristics number of patients(%) 
Age, year 36–79 
Median age 51 
Gender  
Male 15(62.5) 
Female 9(37.5) 
TNM stage, III + IV 18(75) 
Tumor reduction(>2/3) 16(66.7) 
Lymph node metastasis, yes 20(83.3) 

 

cells when combined with IR (P=0.0021 and P=0.0005; 
Figure 3D). The wound-healing (Figure 4A) and trans-
well assays (Figure 4B) confirmed that LY significantly 
decreased GC cell migration and invasion abilities after 
irradiation treatment (P<0.05). 
 
LY inhibited the TGF-β/SMAD4 pathway and 
altered the expression of other downstream 
molecules in GC cells 
 
To determine the potential mechanism of LY in GC 
radioresistance, we detected several TGF-β-related 
signaling pathways in GC cell lines. PCR (Sup-plementary 
Figure 2F), western blotting (Figure 5A) and enzyme-
linked immunosorbent assay (ELISA; Figure 5B) revealed 
that LY decreased TGF-β1 and TGF-β2 overexpression 
after irradiation treatment. LY enhanced SMAD4 
expression, reversed the irradiation-induced EMT in GC 
cells and decreased the expressions of inflammatory-
related factors IL-1β and IL-6 and immune checkpoint 
PD-L1. Pretreating SGC-7901 cells with cycloheximide to 
inhibit protein synthesis showed that TGF-β protein 
stability was significantly increased in the IR group 
compared with that in the control group (Figure 5C). 
Immunofluorescence images showed that LY inhibited 
phospho-SMAD2 expression after IR treatment (Figure 
6A). Flow cytometry assays showed that LY significantly 
reduced the overexpression of CSC markers CD24 and 
CD133 in irradiated GC cell lines (P<0.05; Figure 6B and 
Supplementary Figure 3A). 
 
LY enhanced the radiosensitivity of a GC xenograft 
tumor model in vivo  
 
To verify the radiosensitization effect of LY on GC in 
vivo, we established SGC-7901 subcutaneous xenograft 
tumor models in BALB/c nude mice and examined the 
effect of LY alone, IR alone, and a combination of LY 
with IR on the growth of subcutaneous xenograft tumors. 
The tumor volume was measured twice weekly, and the 
tumor volumes of the control, LY, and IR-alone groups 
were larger than those of the LY with IR group (Figures 
7A and 7B). Tumor growth was inhibited in mice treated 

with LY and IR combination (approximately 85% 
inhibition at day 18) and tumor growth curves were 
delayed in IR and LY with IR group, (the tumor doubling 
time of control and LY group was 9 days and 15 days, 
respectively, and the tumor stopped growing and the tumor 
volume gradually decreased in IR and LY with IR group 3 
days after treatment; P<0.0001; Figures 7C). The tumor 
weight in the LY with IR group was significantly reduced 
compared with that of the IR group (P<0.0001; Figures 
7D). 
 
LY affected the radiation-induced genetic expression 
in vivo 
 
TUNEL assay indicated that apoptotic cells were 
increased in the LY with IR group compared with those 
of the IR-alone group (Figure 7E). The expressions of 
TGF-β1, TGF-β2, SMAD4, E-cadherin, N-cadherin and 
Ki-67 in tumor xenografts were detected via immune- 
histochemical staining. Figure 7F from left to right shows 
the control, LY-alone, IR-alone and LY with IR groups. 
TGF-β1, TGF-β2, and N-cadherin expressions were 
significantly upregulated in tumor xenografts treated 
with IR alone but were decreased after LY with IR 
treatment. The expressions of SMAD4 and E-cadherin 
were significantly downregulated in tumor xenografts 
with IR treatment alone and were restored in the LY 
pretreatment group. The LY with IR group showed 
decreased Ki-67 expression. The staining indices 
differed statistically (Supplementary Figure 3B). These 
results were consistent with the in vitro results and 
confirmed that LY enhanced GC radiosensitivity via 
TGF-β/SMAD4 signaling pathways and promoted EMT 
reversal in vivo. 
 
DISCUSSION 
 
As one of the most common treatments for GC, 
radiotherapy prolongs patients’ survival and improves 
their prognoses [26]. However, it also negatively affects 
the surrounding normal tissues by producing ROS and GC 
patients continue to develop resistance to radiotherapy 
[27]. Since increased ROS can influence the tumor 
microenvironment and activate TGF-β expression, we 
predicted that high TGF-β expression was related to 
radioresistance. Our study evidenced that the TGF-
β/SMAD4 pathway is activated after radiotherapy for GC, 
and blocking the TGF-β/SMAD4 pathway with  
the TGF-β-receptor inhibitor LY can reverse GC radio-
resistance. 
 
The TGF-β signaling pathway is involved in the tumor 
microenvironment and influences many cellular 
processes [28], including cell growth, differentiation and 
apoptosis, in both tumor and normal tissues. High TGF-β 
expression is associated with poor survival among cancer
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Figure 2. Different biological characteristics in radioresistant RR and parental GC cells. (A) Clonogenic survival assay: the ability of 
colony formation between RR and parental GC cells after a range of radiation doses. (B) Flow cytometry analysis: ROS levels between RR and 
parental GC cells. (C) Western blot analysis: representative results of the TGF-β1, TGF-β2, SMAD4, E-CA, N-CA, IL-1β, IL-6, PD-L1 and γ-H2AX 
expressions in RR and parental GC cells. (D) Sphere formation assays: captured images of sphere formation assays in RR and parental GC cells. 
(E) Flow cytometry analysis: the expressions of the CSC markers CD24 and CD133 between SGC-7901 and SGC-7901-R cells. (F) Flow cytometry 
analysis: cell apoptosis between SGC-7901 and SGC-7901-R cells after irradiation treatment. (G) Cell migration assay: captured images of wound 
healing assay of SGC-7901 and SGC-7901-R cells, columns indicated the percentage of wound healing width of SGC-7901 and SGC-7901-R cells. 
(H) Cell invasion assay: captured images of transwell assay of SGC-7901 and SGC-7901-R cells, columns indicated the invaded cell percentage 
of SGC-7901 and SGC-7901-R cells. All data represent three independent experiments, mean ± SEM, **P<0.01, ***P<0.001, ****P<0.0001. 
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patients [29]. Generally, upon binding the TGF-β-type 
receptor type I and type II, the TGF-β-receptor complex 
phosphorylates and activates SMAD2 or SMAD3 and 
forms complexes with SMAD4, then translocates into the 
nucleus, mediates various gene expressions and affects a 
range of biological functions in the tumor micro-
environment. We found that ROS levels were upregulated 
in our established radioresistant GC cell line RR and the 
TGF-β/SMAD4 signaling pathway was activated in 

radioresistant GC patients and in RR cells. Therefore, 
ionizing radiation results in the upregulation of ROS 
then activates the TGF-β signal in radioresistant GC cell 
lines. In addition, the TGF-β/SMAD4 signaling 
pathway was activated in the GC cell lines after 
irradiation exposure, and the TGF-β receptor inhibitor 
LY increased the radiosensitivity of GC by inhibiting 
TGF-β/SMAD4 pathway activation both in vitro and in 
vivo.  Invasion and migration abilities  are  indicators of 

 

 
 

Figure 3. Effects of LY on radiosensitivity of GC cell lines. (A) CCK-8 assay: the proliferation of RR and parental GC cells influenced by LY. 
(B) CCK-8 assay: the proliferation of GC cells influenced by LY with or without irradiation treatment. (C) Flow cytometry analysis: the cell 
apoptosis in GC cells influenced by LY with or without irradiation treatment. (D) Clonogenic survival analysis: the clonogenic ability of GC cells 
influenced by LY with or without irradiation treatment. All data represent three independent experiments, mean ± SEM, **P<0.01, ***P<0.001, 
****P<0.0001. 
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the degree of malignancy of tumor cells. Some 
researchers have shown that tumor cells become more 
aggressive after irradiation treatment [30]. In the present 
study, the radioresistant GC cell line RR, exhibited 
stronger invasive and migratory abilities than did the 
parental GC cell line. AGS and SGC-7901 cells became 
more invasive and migratory when exposed to irradiation, 
and LY reduced the increased invasion and migration 
abilities in this process. 
 
Evidence has shown that EMT is associated with 
radioresistance [31], and EMT in GC promotes tumor 
development [32]. This process involves converting 
epithelial cells into mesenchymal cells in the tumor 
microenvironment with decreased E-cadherin and 
increased N-cadherin. Studies have shown that TGF-β is 
involved in mediating EMT through various mecha-nisms 
promoting GC cell migration and invasion and conferring 
resistance to chemotherapy [33, 34]. As expected, we 
determined that E-cadherin expression was highly 
downregulated in radioresistant GC patients and 
radioresistant GC cell lines accompanied by upregulated 
N-cadherin. The parental GC cells and GC xenografts 
exhibited EMT characteristics after irradiation treatment, 

and LY reversed the EMT in vitro and in vivo to confer 
radiosensitization. 
 
Inflammation is an important biological marker of cancer 
in the tumor microenvironment and can influence cellular 
activities such as proliferation, reproduction and 
apoptosis [35]. Considerable research has indicated that 
chronic inflammation contributes to tumor development 
via cellular mediation of immune cells [36]. IL-1β and IL-
6 from the IL-1 cytokine family are important mediators 
of the inflammatory response and are correlated with GC 
development [37, 38]. The present results showed an 
increase in inflammatory cytokines IL-1β and IL-6 in GC 
cells after irradiation exposure, but LY markedly reduced 
the inflammatory response and increased radiosensitivity 
in GC cells. Thus, the TGF-β-receptor inhibitor LY 
enhanced the radiosensitivity of GC cells by exerting anti-
inflammatory effects. 
 
Research has shown that a loss of innate immunity or 
attenuation of acquired immunity are fundamental to 
many malignant tumors, including GC [39]. With the 
mechanism of immune escape, immune cells were 
regulated via related signaling pathways to exert

 

 
 

Figure 4. Effects of LY on the migration and invasion abilities of irradiation induced GC cell lines. (A) Cell migration assay: captured 
images of wound healing assay in GC cells influenced by LY with or without irradiation treatment, columns indicated the percentage of wound 
healing width in four groups. (B) Cell invasion assay: captured images of transwell assay in GC cells influenced by LY with or without irradiation 
treatment, columns indicated the invaded cell percentage in four groups. All data represent three independent experiments, mean ± SEM, 
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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Figure 5. Effect of LY with or without irradiation on the gene expression of GC cell lines. (A) Western blot analysis: representative 
results of the TGF-β1, TGF-β2, SMAD4,E-CA, N-CA, IL-1β, IL-6, PD-L1 and γ-H2AX expressions in GC cells after LY with or without irradiation 
treatment. (B) ELISA: the expression of TGF-β1, TGF-β2 and IL-6 in culture medium of GC cells after LY with or without irradiation treatment. 
(C) Western blot analysis: the protein stability of TGF-β1 and TGF-β2 regulated in response to irradiation. All data represent three independent 
experiments, mean ± SEM, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.  
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immunosuppression, thereby affecting tumor cell growth, 
progression and metastasis in the tumor 
microenvironment [40]. Research has indicated that 
immune system inhibition is closely linked to radio-
resistance in some malignant tumors such as lung cancer 
[41] and cervical cancer [42], but the association between 
GC radioresistance and immunosuppression was unclear 
until now. PD1 and PD-L1 encode the immune-inhibitory 
ligand and receptor, respectively, and the interaction 
between those two molecules provides an immune escape 
for tumor cells through cytotoxic T-cell inactivation to 
attenuate antitumor immunity in tumors [43]. In the 
present study, we confirmed that the expression of 
immune checkpoint inhibition molecule PD-L1 was 
upregulated in GC cells after irradiation treatment, and 
LY reduced the immunosuppression by decreasing PD-

L1 expression and played an important role in increasing 
radiosensitivity. 
 
CSCs in the tumor microenvironment are reported to 
participate in sustaining initiation, propagation, 
heterogeneity, and self-renewal in tumors and have been 
confirmed to be closely associated with radioresistance 
and chemoresistance [44, 45]. Many CSC markers, 
including CD24, CD44, CD90, CD133, vimentin and 
aldehyde dehydrogenase 1 (ALDH1), are essential for 
maintaining stemness properties [46]. In our study, RR 
cells generated sphere cells and showed self-renewal 
potential, the CSC markers CD24 and CD133 were 
upregulated in GC cells when exposed to irradiation, and 
LY decreased their high expressions. Thus, the 
radioresistant cell line, RR, and irradiation-treated GC   
  

 
 

Figure 6. Effect of LY with or without irradiation on the expression of p-Smad2 and CSC markers in GC cell lines.  
(A) Immunofluorescence assay: representative results of the p-Smad2 expressions in GC cells after LY with or without irradiation treatment. 
(B) Flow cytometry analysis: the representative results of the expressions of the putative stem cell markers CD24 and CD133 in GC cells with or 
without LY and irradiation treatment.
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cells exhibit CSC characteristics, and the TGF-β-receptor 
inhibitor LY reduced CSC marker expression and 
enhanced the radiosensitivity of GC cell lines to exert its 
antitumor effect. 
 
Here, the TGF-β/SMAD4 signaling pathway was highly 
upregulated in radioresistant GC patients and radioresistant 
GC cell lines. The mechanism by which TGF-β was 
involved in radioresistance may be determined by affecting 

the EMT, the cytokine-related signaling pathway, 
immunocheckpoint and CSC maintenance in GC cells. 
Inactivation of the TGF-β/SMAD4 signaling pathway with 
the specific TGF-β-receptor inhibitor LY contributed to the 
sensitivity of GC both in vitro and in vivo. Our findings 
suggested that TGF-β levels in GC patients may help predict 
the response to irradiation treatment, and LY combined with 
radiotherapy may enable personalized therapeutic 
strategies. 

 

 
 

Figure 7. Effects of LY on radiosensitivity of gastric cancer in vivo. (A and B) Changes in tumor sizes: images of BALB/c nude mice with 
tumors and resected tumors after LY with or without irradiation treatment. (C) Changes in tumor volumes: the statistical curves of gastric tumor 
volumes influenced by LY with or without irradiation treatment. (D) Changes in tumor weights: the final tumor weight after LY with or without 
irradiation treatment for 18 days. (E) TUNEL assays: representative images of the apoptostic cells in GC xenografts influenced by LY with or 
without irradiation treatment. (F) Changes in genetic expression in GC xenografts: the immunohistochemical analysis of the TGF-β1, TGF-β2, 
SMAD4, E-CA, N-CA and Ki-67 expressions in GC xenografts influenced by LY with or without irradiation treatment. Original magnification, ×400. 
*P<0.05, ****P<0.0001. 
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MATERIALS AND METHODS 
 
Patient data sources and clinical patient specimens 
 
TGF-β mRNA expression and related clinical data on 416 
GC patients were obtained from TCGA database. 
Matching analysis was conducted to select 100 GC 
patients with low TGF-β1 expression, 103 GC patients 
with high TGF-β1 expression, 102 GC patients with low 
TGF-β2 expression and 103 GC patients with high TGF-
β2 expression. Survival curves were drawn according to 
the patients’ survival information. 
 
The study population consisted of 24 patients with 
advanced GC diagnosed at the Department of Radiation 
and Medical Oncology in Zhongnan Hospital of Wuhan 
University from 2012 to 2018. The study was conducted 
in accordance with the recommendations of the Zhongnan 
Hospital Ethics and Scientific Committee, and written 
informed consent was received from each patient before 
tissue acquisition. We determined 8 radioresistant GC 
patients (no tumor reduction after radiotherapy and no 
response to radiotherapy) and 16 radiosensitive GC 
patients (obvious tumor reduction after radiotherapy or 
complete response to radiotherapy) according to computed 
tomography imaging results 2 months after radiotherapy. 
Tissue samples were obtained from gastroscopic 
diagnostic biopsies before radiotherapy. 
 
Immunohistochemistry analysis of tumor tissues in 
GC patients  
 
Immunohistochemistry staining was used to assess gene 
expression in radioresistant and radiosensitive GC 
patients. Paraffin-embedded patient tissue sections were 
subjected to antigen retrieval using 0.01 M citrate buffer 
(pH 6.0). After blocking the endogenous peroxidase, the 
tissue sections were incubated with primary antibody 
overnight in a 4 °C wet box. The antibodies used were as 
follows: TGF-β1 (#ab179695, Abcam, 1:200), TGF-β2 
(#P61812, CUSABIO, 1:100), SMAD4 (#46535, CST, 
1:200), E-CA (#3195, CST, 1:200), and N-CA (#13116, 
CST, 1:200). After washing the sections  
with phosphate-buffered saline (PBS), horseradish 
peroxidase (HRP)-labeled secondary antibody was added 
to incubate at 37 °C for 20 minutes. Color development, 
counterstaining, dehydration and sealing were performed 
in sequence, and the results were observed under an 
optical microscope and judged by three pathologists. 
 
Cell culture and treatments 
 
The human GC cell lines, AGS and SGC-7901, were 
purchased from the Type Culture Collection of the 
Chinese Academy of Sciences (Shanghai, China). The 
radioresistant GC cell line, RR, was obtained via sublethal 

dose of irradiation using the Small Animal Radiation 
Research Platform (PXI X-RAD 225Cx, CT, USA). Cells 
were cultured in RPMI-1640 (HyClone, USA) 
supplemented with 10% fetal bovine serum (Gibco, USA) 
and 1% penicillin-streptomycin sulfate (Invitrogen, 
USA). TGF-β inhibitor LY2109761 was purchased from 
Selleckchem (Houston, TX, USA), constituted in 
dimethyl sulfoxide and stored at -80 °C. All cells were 
planted and irradiated with 12-Gy X-rays (pretreated with 
LY 10 μmol/L or not), and cells were exposed to LY 2 h 
prior to irradiation. 
 
Establishment and validation of radioresistant GC 
cell line 
 
The GC cell lines were irradiated with 2-Gy X-rays at 300 
cGy/min and an irradiation range of 20 cm × 20 cm to 
establish the radioresistant GC cell line, RR. The total 
exposure time was up to 6 months, and the total exposure 
dose was 60 Gy. After stable passage, a colony-formation 
assay was used to measure the radioresistance of the RR 
cells. Cells were seeded into six-well culture plates and 
exposed to a range of radiation doses (2–10 Gy). Ten days 
after irradiation, cell colonies were fixed with 4% 
paraformaldehyde and stained with 0.5% crystal violet. 
The colonies were counted (up to 50 cells were counted 
as one colony). The plating efficiency (PE) and survival 
fraction (SF) were calculated as follows: PE = (colony 
number/number of inoculated cells) × 100%; 
SF = colonies counted/(cells seeded × [PE/100]). 
 
Detection of ROS levels 
 
The collected parental GC cells and radioresistant GC cell 
lines were incubated with dichlorofluorescein diacetate 
(DCFH-DA) dye (Beyotime, China) for 25 min at 37 °C, 
and the ROS levels were detected via flow cytometry (BD 
Biosciences, USA). 
 
Sphere formation assays 
 
Sphere-formation assays were conducted to detect GC 
cell self-renewal. Briefly, 2×104 cells were inoculated in 
a 10-cm ultra-low-adhesive culture dish, and 10 mL of 
Dulbecco’s modified Eagle’s medium (DMEM)/F12 
containing B27 (1×) and 5 ng/mL epidermal growth 
factor was added and incubated for 5–7 days to determine 
spheroid cell growth. 
 
Cell proliferation assay 
 
A Cell Counting Kit-8 (CCK-8) assay (Dojindo, Japan) 
was used to measure cell proliferation. GC cells were 
plated into 96-well plates and treated with an increasing 
concentration gradient of LY or irradiation (pretreated 
with LY at 10 μmol/L or not) with a range of radiation 
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doses. After 48 h of incubation, cell viability was 
measured with CCK-8 following the manufacturer’s 
instructions. Data are expressed as the percentage of cell 
proliferation relative to the nonradiated control group 
and the percentage of cell activity reduced by LY. 
 
Cell apoptosis assay 
 
Cells were treated as described above. After 24 h of 
incubation, apoptosis was measured via flow cytometry 
with 5 μL annexin V and 10 μL propidium iodide cell 
stains (Multi Sciences, China). Data are expressed as the 
percentage of apoptotic cells. 
 
Colony-formation assay 
 
Cells were planted in 6-well plates (600/well). After 
treatment, the colony-formation ability was detected as 
described above. Data are expressed as the percentage of 
the nonradiated control group. 
 
Cell migration and invasion assessment 
 
Cell migration ability was examined using wound-healing 
assays. Cells were cultured for 24 h and grown until 
confluency. Confluent cell monolayers were disrupted by 
standardized wound scratching with a sterile 200-μL 
pipette tip, then treated as described above and incubated 
in 1% FBS medium for 48 h. Cell images of the wound 
area were captured with an optical microscope (Olympus, 
Japan). Data are expressed as the percentage of the 
wound-healing width. Cell invasion ability was detected 
via transwell assay. At 48 h after treatment, 1 × 104 cells 
were collected and seeded into the upper chamber, which 
was precoated with Matrigel (BD Bioscience, USA). 
Medium containing 10% FBS was added to the lower 
chamber. After 24 h of incubation, cells that migrated to 
the lower surface were fixed in methanol, stained and 
counted under a microscope (Olympus, Japan). Data are 
expressed as the percentage of the control. 
 
Flow cytometry assay for putative stem cell markers 
 
Expression of putative stem cell markers CD24 and 
CD133 in GC cell lines were evaluated by fluorescence-
activated cell sorting (FACS) analysis. After treatment, 
cells were washed with cooled PBS, resuspended, and 
stained with CD24 and CD133 antibodies (Biolegend, 
USA). The putative stem cell markers, CD24 and CD133, 
were detected using a flow cytometer (BD Biosciences, 
USA). Data are expressed as the percentage of the CD24+ 
or CD133+ cells. 
Western blot 
 
Cells were washed with PBS, lysed in 200 μL of protein 
lysate (containing 100 mg/L phenylmethanesulfonyl 

fluoride) at 4 °C for 30 min, then the supernatant was 
centrifuged. The protein was quantified using a BCA 
Protein Assay kit (Beyotime Institute of Biotechnology, 
China). Protein (20 μg) was thoroughly mixed with 
loading buffer, boiled for 5 min, separated by 7.5% sodium 
dodecyl sulfate-polyacrylamide gel and transferred onto a 
PVDF membrane (0.22 µm; Millipore). After blocking 
with 5% skim milk powder for 1 h, the membranes were 
incubated with the following primary antibodies: TGF-β1 
(#ab179695, Abcam, 1:1000), TGF-β2 (#P61812, 
CUSABIO, 1:600), SMAD4 (#46535, CST, 1:1000), E-
CA (#3195, CST, 1:1000), N-CA (#13116, CST, 1:1000), 
PD-L1 (#MA878942A1m, CUSABIO, 1:600), IL-1β 
(#PA003023, CUSABIO, 1:600), IL-6 (#PA06757A0Rb, 
CUSABIO, 1:600), γ-H2AX (#155226, mlbio, 1:600) 
and β-actin (#60008-1-Ig, Proteintech, 1:5000). 
 
ELISA 
 
The amounts of TGF-β1, TGF-β2 and IL-6 secreted in the 
culture medium were detected with ELISA kits 
(DAKEWE, China) following the manufacturer’s 
instructions. Data are expressed as the quantity of secreted 
protein in the culture medium. 
 
Immunofluorescence 
 
phospho-SMAD2 expressions were detected via 
immunofluorescence assays. Cells were collected, fixed 
with 4% paraformaldehyde, permeabilized with Triton X-
100 and washed with PBS. Primary antibody (bioss, 
China) was added and incubated in a wet box at 37 °C for 
2 h. Secondary antibodies to the corresponding species of 
the primary antibody were added and incubated for 50 min 
in the dark. The cells were stained with DAPI for 5 min, 
then viewed under an inverted fluorescence microscope to 
observe and collect images. 
 
Animal model establishment and treatment  
 
Four- to six-week-old BALB/c male nude mice were fed 
at the animal experiment center of Zhongnan Hospital, and 
all procedures were approved by the Animal Care and Use 
Committee of Wuhan University. A total of 1×106 SGC-
7901 cells were injected subcutaneously in the left hind 
limbs of the mice. Twenty mice were randomly divided 
into 4 groups: the control, LY, IR, and LY plus IR at 
n=5/group. Treatments started after 20 days when the 
tumors had reached at least 200 mm3. Tumors in the IR 
and LY plus IR groups were irradiated with fractionated 
radiotherapy (4×6 Gy, twice weekly); the LY and LY plus 
IR groups were treated with LY orally twice daily (50 
mg/kg, on days 1–5 each week) until the animals were 
sacrificed. Tumor volume was directly measured twice 
weekly using a Vernier caliper (volume=length × width × 
width × 0.5). 
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TUNEL assays and tumor immunohistochemistry in 
the mice 
 
All animals were sacrificed via carbon dioxide inhalation 
after 18 days of treatment, and the tumor tissues were 
removed and measured. The tissues were sectioned, 
TUNEL assays (Roche, China) were used  
to detect cell apoptosis in vivo following the 
manufacturer’s instructions, and gene expression at the 
protein level was detected via immunohistochemistry as 
described above. 
 
Statistical analysis 
 
Each experiment was performed at least three times to 
ensure the repeatability of the results. Statistical analysis 
was performed using GraphPad Prism 7.0 (GraphPad 
Software). The results were analyzed using Student’s t-test 
when two groups were compared or one-way analysis of 
variance when more than two groups were compared. OS 
curves were plotted using the Kaplan-Meier method and 
compared using a log-rank test. Differences were 
considered statistically significant at P<0.05. 
 
Ethics approval 
 
The study was conducted in accordance with the 
recommendations of Zhongnan Hospital Ethics and 
Scientific Committee and written informed consent was 
received from each patient before tissue acquisition 
(Ethical approval number: 2019165). All the procedures in 
animal experiments were approved by the Animal Care and 
Use Committee of Wuhan University. 
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SUPPLEMENTARY MATERIALS 
 
 
 
 

 
 

Supplementary Figure 1. (A) The relationship between the TNM stage and grade with the overall survival in GC patients. (B) The 
immunohistochemistry staining index of related gene in radiosensitive and radioresistant GC patients. 
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Supplementary Figure 2. (A) The TGF-β1 and TGF-β2 expressions in parental GC cells and radioresistant GC cells detected by PCR analysis. 
(B) the expressions of the CSC markers CD24 and CD133 between AGS and AGS-R cells. (C) Flow cytometry analysis: cell apoptosis between 
AGS and AGS-R cells after irradiation treatment. (D) Cell migration assay: captured images of wound healing assay of AGS and AGS-R cells, 
columns indicated the percentage of wound healing width of AGS and AGS-R cells. (E) Cell invasion assay: captured images of transwell assay 
of AGS and AGS-R cells, columns indicated the invaded cell percentage of AGS and AGS-R cells. (F) LY inhibited the TGF-β1 and TGF-β2 
expressions in irradiated GC cells. 
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Supplementary Figure 3. (A) the representative results of the expressions of putative stem cell markers CD24 and CD133 in GC cells (isotype 
controls). (B) The immunohistochemistry staining index of related gene in GC xenografts. 


