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Abstract 

Flaviviruses are enveloped viruses that infect multiple hosts. Envelope proteins are the outermost proteins in the 
structure of flaviviruses and mediate viral infection. Studies indicate that flaviviruses mainly use envelope proteins 
to bind to cell attachment receptors and endocytic receptors for the entry step. Here, we present current findings 
regarding key envelope protein amino acids that participate in the flavivirus early infection process. Among these 
sites, most are located in special positions of the protein structure, such as the α-helix in the stem region and the 
hinge region between domains I and II, motifs that potentially affect the interaction between different domains. 
Some of these sites are located in positions involved in conformational changes in envelope proteins. In summary, we 
summarize and discuss the key envelope protein residues that affect the entry process of flaviviruses, including the 
process of their discovery and the mechanisms that affect early infection.
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Introduction
The Flavivirus genus, a large genus of important global 
pathogens, includes broadly distributed human and ani-
mal pathogens such as Zika virus (ZIKV), West Nile 
virus (WNV), Japanese encephalitis virus (JEV), dengue 
virus (DENV), yellow fever virus (YFV), and tick-borne 
encephalitis virus (TBEV). Flaviviruses share similar 
genomic organization and replication patterns and can 
cause symptoms ranging from flu-like symptoms to 
severely fatal symptoms. With respect to disease impact, 
several flaviviruses are neurovirulent and cause cen-
tral nervous system damage [1, 2], and some member 
proteins cause increased vascular leakage in a tissue-
dependent manner [3], hemorrhage or encephalitis [4]. 
Flaviviruses pose a major health and economic burden 
to countries with infected populations [5–7]. In addi-
tion, concerns about the potential introduction of these 

pathogens into new environments, together with the 
severity of the diseases, have led to the need for further 
and deeper study of flaviviruses.

Flavivirus infection of host cells is a multistep pro-
cess. The virus goes through a complex lifecycle to com-
plete the replication and proliferation of the flavivirus 
(Fig. 1A). The first step of the lifecycle is viral binding and 
entry. Several cell surface molecules mediate this step [8]. 
Flaviviruses can utilize different receptors for different 
cell types and hosts [9, 10]. Following the entry step, fla-
viviruses are internalized via endocytosis pathways at low 
pH; then, viral nucleocapsids are released into the cyto-
plasm (Fig. 1B) [11]. The viral genome in the cytoplasm 
is used for the synthesis of polyproteins, which are pro-
cessed by viral and host proteins (Fig. 2A). Genomic RNA 
replicates in the replication complex within a rearranged 
endoplasmic reticulum (ER)-derived membrane vesicle 
(Fig. 2B). When genomic RNA and polyproteins (C, prM 
and E) are synthesized, they are assembled in the lumen 
of the ER and processed into immature virions. Sub-
sequently, the immature virions are transported to the 
trans-Golgi network (TGN) via a secretory pathway for 
reprocessing. In this step, the prM protein is processed 
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Fig. 1  The flavivirus replication cycle and the fusogenic conformational change in the E protein during cell entry. (A) Viral particles first interact 
with attachment factors that are required to bind the virion to the cell surface, which is followed by specific interactions with entry receptors. The 
attachment factors include DC-SIGN, HSP70, GAG, etc. Flaviviruses enter cells mainly through the clathrin-mediated endocytic pathway. In the 
low-pH environment of the endosome, conformational changes and rearrangements of the E protein of the virus are triggered that allow the fusion 
of viral and endosomal membranes, resulting in the release of viral RNA into the cytoplasm. The released positive-sense RNA ((+) RNA) initiates 
translation at the rough ER membrane and produces a single polyprotein. NS2B3 and cellular signal peptidases cleave the co- and posttranslational 
polyproteins into structural and nonstructural proteins. Nonstructural proteins participate in RNA replication in the replication complex (RC). (+) 
RNA can be incorporated into viral particles, which occur in the ER. Following the viral assembly step, the maturation of virions containing prM 
occurs along the release pathway by furin-mediated cleavage of prM. Mature virions are released by exocytosis. The asterisk indicates the lifecycle 
in which the E protein participates. (B) Schematic of the fusion process. The E dimer anchored in the viral membrane (first panel). The E dimer is 
separated under the low-pH conditions in endosomes; the fusion peptide is inserted in the endosomal membrane (second panel). Domain III shifts 
and rotates to create trimer contacts, causing the C-terminal portion of the E protein to fold back towards the fusion loop. The energy released 
by this refolding causes the membrane to bend (third panel). Generation of the final postfusion structure and opening of the fusion pore (fourth 
panel). This conformation enables the viral genome to be released into the cytoplasm
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into mature M by furin. Mature virions are released by 
exocytosis [12, 13].

According to the structure and functions, flavivi-
rus envelope protein (E protein) monomers are divided 
into three domains (domain I, domain II and domain 
III) and two regions (stem region and transmembrane 
region). Domain I participates in E protein conforma-
tional changes and stability [14]. Domain II contributes 
to virus-mediated membrane fusion and contains cross-
reactive epitopes and NAb epitopes [15]. Domain III con-
tains linear antigenic epitopes, is used as an antigen [16, 
17], and involves E protein stability [18]. The stem region 
and transmembrane region are involved in virion assem-
bly and affect the prM-E interaction [19].

Flavivirus envelope protein structure and its 
functions
Flaviviruses are enveloped viruses containing an RNA 
genome of approximately 11  kb compounded with a 
capsid protein and surrounded by an icosahedral shell 
consisting of both the envelope glycoprotein and the 

membrane or precursor membrane protein anchored in 
a lipid membrane. On the surface of the mature virion, 
E is an antiparallel dimer with a fusion loop (Fig. 3A), 
and the dimer is connected by domain II and domain 
III. The E protein peptide chain folds into three dis-
tinct domains: a central β-barrel (domain I, DI), an 
elongated finger-like dimerization region (domain II, 
DII) that includes a fusion loop and is highly conserved 
in flaviviruses, and an immunoglobulin-like β-barrel 
structure (domain III, DIII) that is exposed on the viral 
surface and contains cellular-binding motifs [20, 21]. 
The C-terminus of DIII is a stem region that contains 
two α-helices (EH1 & EH2) and a conserved sequence 
(CS) between EH1 and EH2 (Fig. 3E). The stem region 
contains two transmembrane helix (TM1 & TM2) 
regions (Fig. 3B), which are involved in E protein reten-
tion in the ER, the processing and location of NS1, and 
the viral lifecycle [22–24]. The E protein also contains 
one or two glycosylated asparagine residues that are 
involved in the interaction between the cell surface and 
attachment factors [25].

Fig. 2  Flavivirus genome organization and membrane topology of mature viral proteins. (A) The genome of flaviviruses. Flaviviruses have a 
positive-sense (+) RNA genome of approximately 11 kb, which has a cap at the 5’ end. The genome of flaviviruses encodes three structural and 
seven nonstructural proteins that are translated from a single ORF. 5′ and 3′ UTRs are important for translation and RNA synthesis. Polyprotein 
cleavage by cellular signal peptidases is indicated by purple marks. Blue arrows denote cleavage by the viral protease NS3 and its cofactor NS2B, 
whereas the pink mark indicates cleavage by the furin protease. The question mark indicates that NS1 and NS2A are cleaved by an unknown 
protease. (B) Polyprotein topology and transmembrane domains of flaviviruses. Flavivirus polyprotein is integrated into the ER membrane. The viral 
proteins prM, E, and NS1 are mainly on the ER luminal side, and C, NS3 and NS5 are mainly on the cytoplasmic side. Proteins NS2A, NS2B NS4A and 
NS4B have several transmembrane regions spanning across the ER
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Fig. 3  Modeled structure, domain architecture, special structure and mutation sites of envelope protein. Flavivirus E protein diagram representation 
crystal structure is shown above. Domain I is highlighted in red, domain II is highlighted in limon, domain III is highlighted in purpleblue, stem 
region is highlighted in gray and transmembrane region is highlighted in orange. Amino acids involved in the early infection process are colored 
in blue and shown as spheres. The special structure is highlighted in light gray. (A) Top view of the Envelope protein monomer structure, JEV (PDB: 
5MV1) as the model template [53]. (B) Side view of the E dimer structure, ZIKV (PDB: 5IZ7) as the model template. (C) The interaction between H144 
and H319 is indicated by dashed lines. (D) N154 glycosylation site. (E) DI-DIII hinge region. (F) α-helix in stem region
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The multifunctional glycosylated E protein is a proto-
typical class II fusion protein that is an integral part of 
the virion, participates in viral virulence and virion mor-
phogenesis, and stimulates the production of NAbs [26, 
27]. One study showed that the specific motif VNDT 
(containing an N-linked glycosylation) in ZIKV is 
involved in mouse neuroinvasion [28]. A culture-adapted 
TBEV with decreased invasiveness showed a single muta-
tion (D483G) in the E protein, revealing the crucial role 
of the E protein in viral virulence [29]. In virion morpho-
genesis, proper folding of the E protein is necessary for 
prM-E cosynthesis [30], and the expression of E is crucial 
for the cleavage of the N-terminal signal sequence of the 
prM protein [31]. As the viral antigen, flavivirus E protein 
contains many neutralizing antibody targets, which exist 
in three distinct domains; therefore, the E protein is pri-
marily used as a target for drug therapy [32–34].

Although the E protein is not involved in the replica-
tion of genomic RNA, it is responsible for the formation 
of virions in different lifecycle steps (Fig. 1A, asterisk). In 
the beginning of flavivirus infection, the E protein serves 
as the primary bridge to complete host-virus interac-
tions, also participating in membrane fusion and virion 
uncoating [35]. When the structural protein is trans-
lated, the structural protein and the newly replicating 
viral genome work together in subsequent assembly and 
release steps [36]. The first step of viral infection of host 
cells or viral recognition by target cells depends on the 
interaction between the viral surface and the cellular 

plasma membrane [8]. In general, cell surface attachment 
factors are responsible for contact with viral glycopro-
teins, but their binding is not specific. Each virion can 
attach one or more factors, such as heparan sulfate and 
Annexin II [37–39]. This attachment step concentrates 
virions on the cell surface and facilitates specific interac-
tions between the E protein and entry factors. After the 
viral particles are combined with the cell surface, the viral 
particles enter the cell through the endocytic pathway. 
Once inside the endosome, the viral E protein undergoes 
low-pH-induced conformational changes, triggering the 
fusion of host endosomal membranes and viral mem-
branes (Fig.  1B) [40, 41]. Following membrane fusion, 
viral RNA is released into the cytoplasm.

The key amino acids of the E protein involved 
in flavivirus early infection
The E protein is essential for multiple steps of infec-
tion and is structurally located on the outermost side of 
the virion [42]. Substitutions in the amino acids of the 
E protein may alter the conformation of the flavivirus 
in various stages of its lifecycle, such as binding, entry, 
assembly, or release. The change in conformation can be 
represented as attachment or entry obstacle/enhance-
ment. Changes in these two processes may result in a 
strength/decrease in the infectivity of the virus or in 
binding to certain cell receptors (Fig. 3, Tables 1 and 2) 
[43].

Table 1  Summary of the effects of amino acids on virus attachment/entry

The table counts the amino acids known to affect the early life cycle of flavivirus E protein. Meanwhile, the structural positions and potential functions of these amino 
acids are also displayed

Amino acids Amino acid localization Structural position/functional site Viruses References

154 (DENV, 153) Domain I Glycosylation site DENV, WNV, JEV, ZIKV [44–47]

398, 405, 429, 436 Stem region α-helix in stem region DENV [48]

424–445 Stem region Stem region ZIKA [49]

138 Domain I Virulence attenuated site JEV [50–53]

390 Domain III RGD motif MVE [54]

277 Between domain I & domain II Hinger region MVE [55]

325, 380 Domain III Top layer of virion YFV [56, 57]

19–22 Domain I HspA9 binding motif TMUV [58]

245–252 Domain II

304 Domain III Virulence attenuated site TMUV [59]

367 Domain III Virulence attenuated site TMUV [60]

144 Domain I Participating domain I-domain III interaction JEV [61]

319 Domain III

258 Domain II Potentially participating post-fusion step

410 Domain III

291 Domain III Participate in electrostatically mediated interactions DENV [62]

295
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Domain I and Domain II
DC-SIGN is a C-type lectin receptor expressed on anti-
gen-presenting cells and dendritic cells (DCs) [63]. An 
early study found that primary human DCs and cell 
lines transfected with DC-SIGN show extensive infec-
tion with DENV [64]. Subsequent studies confirmed 
that DC-SIGN mediates the infection of DCs by DENV 
and WNV and mediates the infection of mosquito cells 
by JEV [46, 65]. In DENV, DCs showed no susceptibil-
ity to a viral strain containing two mutations in the E 
protein (N67 & T155), which demonstrated that DENV 
glycosylation sites are crucial for DC-SIGN-mediated 
infection [66]. JEV infects human DCs via the interac-
tion between DC-SIGN and E protein glycosylation sites 
[46]. In general, most flaviviruses have two glycosylation 
sites. The importance of envelope protein glycosylation in 
host-virus interactions was represented in a ZIKA study 
[67]. In systematically studying the glycosylation sites of 
ZIKV, the depletion of E glycosylation attenuated ZIKV 
in A129 mice (Fig. 3D). C6/36 cells were incubated with 
equal amounts of mutant N154Q or wild-type virus, 
and viral RNA was detected at different time points post 

infection. The results showed that the N154Q mutation 
improved ZIKV attachment, assembly, and infectivity in 
an in vitro study [44]. Raji cells insensitive to DENV were 
used as an infection model to compare the infectivity of 
DENV in naive Raji cells and Raji cells stably expressing 
DC-SIGN (Raji-DC-SIGN cells). Changing the glycosyla-
tion site at asparagine-67 (N67Q) decreased the infectiv-
ity of Raji-DC-SIGN cells. This result also occurred in 
DENV and DENV E-N67Q infection of immature DC 
cells, indicating that the N-linked glycan at position 67 
plays a role in the DC-SIGN-mediated DENV entry pro-
cess [45]. Another study characterized the amino acids 
(E-152/156/158) surrounding the ZIKV N-glycosylation 
site to explore the role of the glycosylation motif region 
in viral infectivity. Unlike glycosylation sites, a role of 
E-152/156/158 in viral attachment was not demonstrated. 
However, the author incubated the virus with cells for 
1  h at 4  °C to allow viral attachment, and then chloro-
quine (an agent that inhibits endosome acidification and 
restricts viral replication through the inhibition of pH-
dependent steps) was added for a 2-h period to restrict 
pH-dependent endocytosis [68] and quantify intracellu-
lar viral RNA [69]. The results showed that these residues 
affected the viral membrane fusion step. Furthermore, 
to investigate the effect of E-152/156/158 mutations on 
the conformation of the E protein, the authors expressed 
either wild-type or mutant E proteins in mammalian 
cells, and then performed immunoblotting using struc-
ture-specific antibodies (4G2: recognizes fusion loop of 
most flaviviruses). It was found that 4G2 does not rec-
ognize the mutant E protein but the wild-type E protein, 
indicating that the conformation of the E protein will be 
altered after the E-152/156/158 change [69]. According 
to the above studies, we can conclude that E protein gly-
cosylation sites in some flaviviruses (such as JEV, DENV, 
and ZIKV) or E protein neighboring amino acids play an 
important role in early infection.

ZIKV, DENV, and JEV are human pathogenic flavivi-
ruses, and vaccine development is an effective method 
to protect people from these pathogens [70]. A common 
strategy for obtaining a live vaccine is to pass the iso-
lated wild strains in serial passages to generate attenu-
ated strains with mutations in certain residues, and the 
attenuated strains are candidates for vaccines [71, 72]. 
Usually, attenuated strains will differ from the wild type 
in many ways, for example, by influencing the secre-
tion of the virus and decreasing viremia levels and the 
efficiency of replication in major target organs [60, 73]. 
JEV attenuated strain SA14-14–2 (JEV SA14-14–2) is 
a vaccine strain with good protection effectiveness and 
safety [74, 75]. By comparing the sequences of multiple 
JEV attenuated strains, researchers confirmed a high fre-
quency of E138 mutation, and a study confirmed that 

Table 2  Summary of putative receptors for flavivirus

The table summarized the identified flavivirus putative receptors

Molecule Cells Viruses References

DC-SIGN THP-1 DENV1-4 [123]

Heparin sulfate BHK21, DEF TMUV [38]

Heparan sulfate Vero, CHO DENV2 [37]

Hsp70 Huh-7, HepG2 DENV2 [124, 125]

Hsp70 Huh7.5 ZIKV [126]

Hsp70 Neuro2a JEV [127]

GRP78 Neuro2a, Huh7 JEV [128]

GRP78 HepG2 DENV2 [129]

Hsp90β Vero JEV [130]

Hsp90 HepG2 DENV2 [125]

HspA9 DF-1 TMUV [82]

NKp44 NK WNV [131]

Integrin αvβ5 GSC ZIKV [132]

TIM-1, TIM-4 CHO DENV2 [133]

TIM-1 HEK293T, A549 JEV [134]

Axl Human Glial Cells ZIKV [9]

CD300a HEK293T, HeLa DENV1-4, YFV [135]

α2,3-linked sialic Huh7 ZIKV [136]

Mannose receptor NIH3T3, Mono-
cytes, Mac-
rophages

DENV1-4 [137]

Prohibitin 1/2 SH-SY5Y, CHME-3 DENV3 [138]

37/67-kDa high-
affinity laminin 
receptor

HepG2 DENV1 [139]

PLVAP and GKN3 Neuro2a JEV [140]
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E138 is related to neurovirulence [50, 51]. Further study 
of E138 revealed that the acidity/alkalinity of E138 has 
an effect on the binding of the virus to multiple types of 
neuronal cells. JEV E138 was replaced with aspartic or 
histidine (especially histidine), giving JEV a better abil-
ity to bind to mouse brain primary cells, Neuro-2a cells 
and SK-N-SH cells. In addition, this research found that 
when JEV E138 was substituted with an arginine amino 
acid (E138R), its susceptibility to heparin-treated cells 
was enhanced, which indirectly suggested that E138 
could contribute to the interaction between the virus and 
cell surface GAGs [52, 53]. The E protein structure of the 
SA14-14–2 strain was analyzed to explain the influence 
of E138 on early infection from another perspective. The 
E138 change triggers the inversion of the residue at posi-
tion 279, thus hindering the transition of domain I and 
domain III to domain II when the E protein matures [76]. 
Moreover, 138 and 279 residues cooperatively altered the 
fusion activity [76]. These studies explored the role of 
E138 in infection and its influence on virulence from dif-
ferent perspectives.

Under low-pH conditions, the protonation of histidine 
is indispensable for membrane fusion [77]. The key his-
tidine 323 of TBEV functions as a pH sensor in this pro-
cess, and histidine residues 248, 287 and 323 play a role 
in stabilizing the structure of the E protein trimer after 
fusion [61]. During the process of the conformational 
change of the envelope protein from dimer to trimer, the 
interaction of domain I and domain III is supported by 
some conserved amino acids, such as H144 in domain 
I and H319 in domain III (Fig.  3C) [21]. In JEV, the 
destruction of these two residues resulted in a significant 
decrease in the entry activity of the virus [78]. The most 
likely cause of this result is that the mutation affects the 
viral membrane fusion process [78].

The hinge region is a linker of domain I and domain 
II (Fig.  3E), and it has been identified to be the epitope 
of multiple flavivirus NAbs; because of the specificity of 
its structure, the hinge region is thought to be associ-
ated with entry [79, 80]. Moreover, the hinge region was 
considered to be relevant to neurovirulence in mice and 
monkeys in a chimeric vaccine study [26]. The effects 
of the substitution of amino acids at E277 on different 
attributes of Murray Valley encephalitis virus (MVE) 
showed that substitution at this residue had an effect 
on viral growth kinetics. Further analysis of phenotypes 
showed that substitution at E277 with different AAs had 
no significant effect on the binding of the virus to Vero 
cells. However, hydrophobic AA substitutions at E277 
caused a complete (serine to isoleucine, S → I) or marked 
(serine to valine, S → V; serine to proline, S → P) loss of 
HA activity, and the HA assay serves as a measure of the 
ability of viruses to fuse with the host cell membrane 

[55]. Therefore, compared to mutations that change viral 
binding ability, the more likely reason is that the muta-
tion disrupts the stability of the E protein β-turn struc-
ture near E277.

By establishing the crystal structure of the virus, 
researchers can actively study sites among E proteins. In 
the TBEV crystal structure, Q260 and T406 (Q258 and 
T410 in JEV) form a hydrogen bond at the beginning of 
the α-B helix of domain II [81]. In addition, JEV Q258 
and T410 are considered to potentially participate in the 
zippering reaction in the postfusion conformation. Ala-
nine mutations at these sites affect viral entry activity 
[61]. Thus, a disruption of the nature of the two amino 
acids that form the hydrogen bond leads to a change in 
viral entry activity [61].

Although the study of site-directed mutations can 
identify sites that affect early infection, from the viral 
perspective, it is difficult to find a relationship with spe-
cific receptors. Understanding the position of the E pro-
tein that binds to the receptors is conducive to targeted 
intervention for viral infection. Given this, research-
ers directly analyzed the binding region of the E pro-
tein using short peptides synthesized in  vitro. HspA9 is 
a member of the Hsp70 family, and it is reported to be 
an attachment factor of TMUV (Tembusu virus, an avian 
flavivirus) [82]. By expressing three domain proteins and 
performing a coimmunoprecipitation assay, researchers 
positioned the binding determinants of HspA9 at domain 
I and domain II, further shortening the length of the pep-
tides, and finally determined that two short peptides (19–
22 in domain I and residues 245–252 in domain II) were 
the key motifs for binding [58].

Domain III
The crystal structure of the flavivirus E protein revealed 
that domain III contains four loops, and two (the DE and 
FG loops) of them are exposed on the viral surface [83]. 
In a study of these two external loop structures, BHK21 
cells were infected with JEV after preincubation with DE 
loop peptides, and the results showed that the DE loop 
can inhibit JEV attachment to BHK21 cells [84]. Using 
a similar method to study the FG loop, the results show 
that the FG loop has the ability to prevent DENV2 bind-
ing to C6/36 cells [85]. For most mosquito-borne flavivi-
ruses, the domain III FG loop contains an Arg-Gly-Asp 
(RGD) motif that is related to virulence [86, 87]. The 
RGD motif of many viruses, including rotavirus, hantavi-
ruses and WNV, binds to integrins (heterodimeric trans-
membrane proteins that consist of α and β subunits and 
mediate adhesion to the extracellular matrix and cell–cell 
contact) on the cell surface [88–90]. Researchers char-
acterized the MVE RGD motif by inducing mutations in 
infectious clones. This study found that the replacement 
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of Asp390 with histidine showed better entry capac-
ity into SW13 cells [54]. In addition, heparin sulfate has 
been identified as an attachment factor on various fla-
viviruses [37, 91, 92]. By comparing the sensitivities of 
different mutant variants to heparin sulfate inhibition of 
viral attachment, it was found that the glycine mutation 
exhibited more inhibition sensitivity in Vero, SW13 and 
BHK-21 cells, and this result showed that E390 is related 
to viral attachment [54].

Flavivirus E protein domain III is considered to be a 
receptor binding region [93]. Some studies on vaccine 
strains have focused on amino acid changes in this area 
to explore the impact on viral phenotypes [94], such as 
the YFV 17D strain [95]. A complicated passaging pro-
cess was required for the acquisition of YFV17D, and 
during this process, changes in 32 amino acids changed 
the entire viral protein [96]. Among these differences, 
residues 325 and 380 located in domain III were shown to 
be related to virulence in mice [56, 57, 97]. Site-directed 
mutations at residues 325 and 380 of wild-type YFV were 
used to determine the effect of the mutation site on the 
binding ability of the virus to attachment factors (GAGs); 
the two substitutions significantly reduced sensitivity to 
heparin inhibition, implying a role in viral attachment 
[98]. Furthermore, most flaviviruses, including the YFV 
Asibi strain, exhibit clathrin-mediated endocytosis into 
the cytoplasm, as mentioned above [40, 41, 99]. Inter-
estingly, the 17D strain E protein mutation changed the 
mechanism of endocytosis, which no longer depends on 
clathrin but on dynamin [100]. The above studies have 
shown that the mutation of the E protein of the 17D vac-
cine strain greatly changes the viral infection process 
from attachment to endocytosis.

Electrostatic interactions between negatively charged 
sulfates (such as GAGs) and basic residues on viral pro-
teins are thought to mediate virus-host interactions 
[101]. In the DENV study, five highly conserved lysine 
residues in domain III were selected to study the effect 
of potential electrostatic effects on virus-cell interactions. 
Researchers introduced alanine mutations at these posi-
tions, expressed recombinant domain III proteins and 
conducted the GAG-binding ELISA. The results showed 
that the recombinant protein containing K291 or K295 
mutations significantly reduced the binding to GAGs. 
Furthermore, the ability of the two recombinant proteins 
to bind to Huh7 cells was reduced, but their ability to 
bind to C6/36 cells did not. These assays demonstrated 
that the K291 and K295 residues are important for viral 
binding in human cell lines but not in insect cell lines 
[62]. The passage of an attenuated strain of TMUV shows 
that E-304 is very important to the neurovirulence and 
neuroinvasiveness of TMUV, and the charged condition 
of this amino acid plays a key role in the binding affinity 

between the E protein and GAGs; another study found a 
similar situation at the E-367 residue [59, 60].

Stem region
When determining the impact of amino acids on the life-
cycle of viruses, more can be learned with the choice of 
the right method. The packaging system is a powerful 
tool in the study of lifecycle processes, as well as vac-
cine candidates [102]. In flavivirus packaging systems, 
flavivirus replicon-containing reporter genes and trans-
supplied structural proteins (CprME or prME) generate 
SRIPs [103]. By modifying the packaging components 
and infecting the cells with the modified SRIPs, whether 
these changes affect the attachment or entry process can 
be confirmed. In addition, the packaging system can also 
be used to study the interaction between structural pro-
teins, viral assembly and the screening of viral inhibitors 
[104–106].

In a DENV study, researchers used proline or alanine 
to scan mutations in the stem region and used the pack-
aging system to study the entry process. DENV2 CprME 
containing each mutation (I398, T405, F429 and L436) 
was cotransfected with the replicon into BHK21 cells 
(Fig.  3F). After excluding the effect of mutations on 
structural protein expression by Western blotting, the 
same number of wild-type or mutant SRIPs were infected 
into a new round of cells, and then the entry activity of 
different mutant viruses was indirectly explained by 
comparing the luciferase activity. After four amino acids 
were mutated to proline, the entry signal level declined 
[48]. The reason for the decline in entry activities may be 
due to the introduction of proline destroying the helical 
structure. An analysis of the WNV E protein structure by 
cryo-electron microscopy showed that the stem region 
extended in the early stage of the membrane fusion pro-
cess, and this conformational change can give the E pro-
tein more space to facilitate rearrangement into a trimer 
[107]. Therefore, residue alteration may destroy this pro-
cess and then change the entry ability. Corresponding to 
this area, a peptide from the ZIKV stem region (E424-
445) has antiviral activity in  vitro, and this finding may 
indirectly imply the importance of the stem region in 
viral entry [49].

Implication of E protein mutation on vaccine 
development
The NAb produced by the humoral immune response 
can protect against viral infections in the long term. 
Central to most vaccination approaches against flavi-
virus infections is the E protein. The E protein is the 
major target of NAbs and contains major neutralizing 
epitopes [7, 108]. In the development of vaccines, reason-
able antigen design may allow vaccines to obtain better 
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immunogenicity and/or improve the safety of the vaccine 
[109].

The recognition of viral particles by NAbs is closely 
related to the structure of the E protein. The fusion 
loop epitope is present at domain II, and its amino acid 
sequence is highly conserved across flaviviruses. There-
fore, many flaviviruses could share the fusion loop 
epitope and be recognized by specific NAbs (such as the 
2A10G6 mAb) [20]. However, cross-reactivity may bring 
potential risks, causing ADE effects in DENV infection 
[110]. Artificial modification of E protein amino acids 
within the fusion loop could reduce this cross-reactivity 
while retaining the immune response [111]. Domain III 
has several epitopes due to the particularity of its struc-
ture (IgG-like domain). The fully exposed epitope in the 
maturation virion is the LR epitope, which is accessible 
for the binding of mAbs. Another two epitopes, the C–C’ 
loop and ABDE sheet region, were identified in the same 
study [112, 113]. Furthermore, a variety of NAbs that 
recognize domain III have been identified [114, 115]. In 
addition to the above epitopes, the E dimer is crucial for 
membrane fusion, and some mAbs bind to the epitope to 
inhibit conformational changes [116]. Some mAbs iso-
lated from patients can also recognize epitopes with E 
monomers or dimers as structural units [117–119].

Since the NAbs produced after flavivirus infection usu-
ally recognize the E protein, the design or modification 
of the E protein to produce NAbs after immunization 
is a popular strategy for vaccine research. A ZIKV VLP 
vaccine that displayed only E protein domain III induced 
high levels of antibodies, and the antibodies were able 
to neutralize ZIKV without cross-activity with DENV 
[120]. Another ZIKV vaccine was designed based on the 
E dimer as the antigen, in which three cysteine muta-
tions at E-107, 264 and 319 were introduced to stabilize 
the E dimer and to reduce the exposure of the fusion loop 
epitope [121]. In summary, general studies have shown 
that NAbs that can recognize the E protein are easy to 
obtain [122]. Therefore, current research is more focused 
on providing good antibody protection while reducing 
adverse cross-reactivity. In addition to designing bet-
ter vaccine strategies, this goal may be achieved through 
amino acid modification.

Conclusions
Despite differences in the sequences encoding viral 
proteins, flavivirus E protein has a conserved structure 
and function. For all flaviviruses, the E protein is closely 
related to antigenicity, pathogenicity, tissue tropism, 
NAb recognition and so on. In its own lifecycle, the E 
protein is involved in the early and late steps of viral 
infection, such as attachment, entry, membrane fusion, 
assembly and release. Although some domains affecting 

the viral lifecycle have been identified, more specific 
locations or residues participating in these processes 
need to be studied further. By studying vaccine strains 
or attenuated strains, amino acids that play a crucial 
role in the attachment/entry process have been found. 
Furthermore, packaging systems and site-directed 
mutagenesis can help us actively search for residues 
that may be involved in early infection. In addition, the 
emergence and development of cryo-electron micros-
copy has helped researchers analyze key sequences or 
residues in the E protein more conveniently and intui-
tively. The peptide designed by the E protein itself can 
also help us indirectly verify the region of the E pro-
tein that influences the early step of infection. In HCV, 
amino acids associated with certain cell receptors have 
been identified. However, in flaviviruses, binding or 
entry receptors have not been clearly studied and need 
further investigation, and we summarized the currently 
studied putative flavivirus receptors in Table 2.

As the most important flavivirus antigen, the E pro-
tein has been selected as the target gene in a variety of 
vaccine development strategies. An in-depth under-
standing of the E protein can help us achieve better 
antigen design. At the same time, the establishment 
and development of the reverse genetic system has 
produced a variety of new flavivirus vaccine strategies, 
such as chimeric vaccines, codon pair deoptimization 
strategies, and specific mutagenesis of viral determi-
nants of virulence. Although these strategies have sig-
nificant advantages, it must be noted that the safety of 
these strategies needs to be further evaluated. In the 
process of vaccine design and validation, the virulence 
of the vaccine strain determines whether there is the 
possibility of continued development and the subse-
quent inoculation dose. Hence, from the point of view 
of viruses, the determination of the parts related to the 
attachment/entry process can provide some help for 
subsequent study of virus-host interactions and vaccine 
development. Given this, we summarized the E protein 
amino acids that are known to participate in the entry 
process.
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