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Abstract

Ghrelin plays a pivotal role in the regulation of food intake, body weight and energy 
metabolism. However, these effects of ghrelin in the lateral parabrachial nucleus (LPBN) 
are unexplored. C57BL/6J mice and GHSR−/− mice were implanted with cannula above the 
right LPBN and ghrelin was microinjected via the cannula to investigate effect of ghrelin 
in the LPBN. In vivo electrophysiological technique was used to record LPBN glucose-
sensitive neurons to explore potential udnderlying mechanisms. Microinjection of ghrelin 
in LPBN significantly increased food intake in the first 3 h, while such effect was blocked 
by [D-Lys3]-GHRP-6 and abolished in GHSR−/− mice. LPBN ghrelin microinjection also 
significantly increased the firing rate of glucose-excited (GE) neurons and decreased the 
firing rate of glucose-inhibited (GI) neurons. Additionally, LPBN ghrelin microinjection 
also significantly increased c-fos expression. Chronic ghrelin administration in the LPBN 
resulted in significantly increased body weight gain. Meanwhile, no significant changes 
were observed in both mRNA and protein expression levels of UCP-1 in BAT. These results 
demonstrated that microinjection of ghrelin in LPBN could increase food intake through 
the interaction with growth hormone secretagogue receptor (GHSR) in C57BL/6J mice, and 
its chronic administration could also increase body weight gain. These effects might be 
associated with altered firing rate in the GE and GI neurons.

Introduction

Ghrelin is a 28 amino acids acylated peptide, which 
was first discovered as an endogenous natural ligand for 
the growth hormone secretagogue receptor(GHSR) 1α 
by Kojima et al. in 1999 (1). Ghrelin was first described 
to stimulate the release of growth hormone from the 
pituitary (1, 2, 3). Then it was reported to be also involved 
in the regulation of feeding (4), body weight (5), and 

energy metabolism (6). A key role had been established for 
ghrelin in energy metabolism regulation. Ghrelin acts on 
its receptor GHSR, a G-protein-coupled receptor in diverse 
central and peripheral areas to exert multiple effects (7). 
In peripheral, circulatory ghrelin is primarily produced by 
X-A cells in stomach (8) and its main orexigenic effects 
are exerted in the brain. In central, ghrelin-producing 
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neurons are located in the hypothalamus (1, 9, 10), while 
GHSR were expressed dispersedly and widely in forebrain, 
hypothalamus and hindbrain (11, 12), indicating that 
ghrelin might act as a neuroregulatory transmitter in 
various brain regions. Previous studies have shown 
that ghrelin injection into hypothalamic nuclei such as 
arcuate nucleus (ARC), paraventricular nucleus (PVN) 
and lateral hypothalamic nucleus (LH) could induce 
polyphagia and body weight gain (13). These effects were 
also observed following ghrelin injection into the fourth 
ventricle and dorsal vagal complex (DVC) in brainstem 
(14). Additionally, GHSR mRNA has been detected in the 
lateral parabrachial nucleus (LPBN) (11, 15). However, 
whether LPBN ghrelin-signaling mediates the regulation 
of energy balance remains unknown.

LPBN is a brain structure located in the dorsolateral 
pons that surrounds the superior cerebellar peduncle (16), 
and the latter has become an increasingly recognized 
region involved in the control of food intake and energy 
balance. Abundant direct nerve projections are present 
between LPBN and hypothalamus or brainstem. Moreover, 
many feeding relevant peptides including PYY (17), leptin 
(18) and glucagon-like peptide-1 (GLP-1) (19) are involved 
in the control of food intake in the LPBN. Besides, our 
recent research showed that administration of anorexia 
peptide nesfatin-1 in rats’ LPBN could modulate food 
intake, body weight and enhance uncoupling protein1 
(UCP-1) expression in brown adipose tissue (BAT) (20). 
However, the acute and chronic effects and mechanisms 
of ghrelin in the LPBN on feeding behavior and energy 
expenditure are yet to be elucidated.

Glucose is crucial to the central control of energy 
homeostasis (21). The neuronal glucosensation was 
first defined by Mayer in 1953 as that certain neurons 
could regulate food intake by transducing glucose level 
fluctuations into neural signals (22). Glucose-sensitive 
(GS) neurons possess the ability to alter their firing rates 
in response to fluctuating ambient glucose concentrations 
(23) as well as participating in food intake regulation 
(24, 25). GS neurons are classified as glucose-excited 
(GE) neurons and glucose-inhibited (GI) neurons. 
The GI neurons play especially important roles in the 
counterregulatory response to hypoglycemia (25, 26). A 
recent study showed that ghrelin is permissive for the 
counterregulatory response (27), indicating that ghrelin 
signaling might be closely related to the physiological 
function of GS neurons. In fact, these specific neurons 
distribute widely in the central nervous system (CNS), and 
our previous studies have demonstrated that they were 
involved in the mechanisms of feeding regulations in PVN, 

LH and ventromedial nucleus (VMH) (24), as well as DVC 
in brainstem (25). Recently, LPBN was proposed to serve as 
a novel glucose-sensitive territory in the brain, in addition 
to the well-known hypothalamic and hindbrain centers 
(28, 29), which aroused our interest. Our previous studies 
proposed that ghrelin could influence the excitability 
of GS neurons in rats and take part in regulating food 
intake in hypothalamic nucleus (PVN, VMH, LH) (30). 
With the addition of our recent finding that GS neurons 
were associated with the feeding and energy regulation in 
LPBN (20).

In the current study, we investigated the influence 
of LPBN ghrelin in the firing rate of GS neurons by the  
in vivo electrophysiological technique. Then we explored 
whether LPBN ghrelin could increase the cumulative food 
intake and body weight and whether GS neurons were 
involved in the mechanism of ghrelin’s effects mentioned 
previously.

Materials and methods

Animals

Adult male wild-type (GHSR+/+) and GHSR-knockout 
(GHSR−/−) mice (on a C57BL/6J background) were 
housed in standard rodent cages. The original GHSR−/− 
mice were purchased from Shanghai Research Center 
For Model Organisms Of China, and the GHSR−/− mice 
were obtained from crosses between heterozygous and 
homozygous knockout animals that were backcrossed 
over 10 generations (31). Animals (ages 8 weeks) were 
housed in a temperature-controlled (23 ± 2°C) animal 
room (illumination from 7:00 to 19:00), with free access 
to standard food and tap water for at least 1 week to adapt 
to their surroundings. The experimental protocols were 
approved by the Qingdao University Animal Care and Use 
Committee and Animal Welfare Committee (No. QYFY 
WzLL25734) in accordance with the National Institutes 
of Health guidelines.

Reagents

Ghrelin was purchased from Tocris Bioscience (No. 
1463/1). [D-Lys3]-GHRP-6 (GHSR antagonist) was 
purchased from APEXBIO (No. B5234). Pontamine sky 
blue (C8679) and glucose (G7528) were purchased from 
Sigma-Aldrich (for electrophysiology experiment). 0.9% 
NaCl and glucose were obtained from Qingdao University 
hospital. The chloral hydrate was purchased from Tianjin 
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Ruijinte chemical company. All other chemicals are of the 
highest grade obtainable. 

Surgery

C57BL/6J mice and GHSR−/− mice were anesthetized with 
a combination of chloral hydrate (400 mg/kg, i.p.) and 
ketorolac (1 mg/kg, i.m.) (32) and then positioned in a 
stereotaxic apparatus (SN-3; Narishige, Tokyo, Japan) for 
implantation of a 26-gauge chronic guide cannula above 
the right LPBN without damaging the target area. The 
placement coordinates for the LPBN were: anteroposterior 
5.0 mm, lateral 1.2 mm and ventral 3.3 mm. After surgery, 
mice were individually housed and allowed to recover for 
7 days before further experiments.

Experimental procedures

Experiment 1: Effects of LPBN ghrelin microinjection 
on nocturnal food intake in C57BL/6J mice and 
GHSR−/−- mice
To measure the effects of LPBN ghrelin microinjection on 
nocturnal food intake in C57BL/6J mice, mice (n = 13) were 
randomly assigned into two groups: NS (0.5 μL normal 
saline, n = 7) or ghrelin (0.5 μL, 300 pmol/mouse, n = 6) 
(33). On the day of experiment, mice were fasted for 2 h, 
from 16:00 to 18:00. At 18:00, mice were administrated NS 
or ghrelin with a finer injector via a microsyringe extended 
below the guide cannula. Then, 12 h food intake after 
refeeding was measured using an electronic scale (TE412-L; 
110 Sartorius, Gottingen Germany). Schematic diagram of 
catheterization and method for determination of injection 
site were both as described in our previous study (20).

To investigate whether these effects of LPBN ghrelin 
on nocturnal food intake were mediated through GHSR, 
C57BL/6J mice (n = 22) were randomly assigned into four 
groups: NS (0.5 μL normal saline, n = 5) or ghrelin (0.5 
μL, 300 pmol/mouse, n = 7) or [D-Lys3]-GHRP-6 (GHSR 
antagonist, 0.5 μL, 10 nmol/mouse, n = 5) or co-injection of 
ghrelin and [D-Lys3]-GHRP-6 (0.5 μL, n = 5). GHSR−/− mice 
(n = 7) were randomly assigned into two groups: NS (0.5 μL 
normal saline, n = 3) or ghrelin (0.5 μL, 300 pmol/mouse, 
n = 4). The experimental treatment is the same as described 
previously, 3 h food intake after refeeding was measured.

Experiment 2: Effects of LPBN ghrelin microinjection 
on long-term body weight gain in C57BL/6J mice
To investigate the effects of chronic LPBN ghrelin 
administration on long-term body weight gain, two 

groups–C57BL/6J mice (NS (0.5 μL normal saline, n = 7) as 
control group and ghrelin (0.5 μL, 300 pmol/mouse/day, 
n = 6)) as treatment group were injected with NS or ghrelin 
(13). Mice were fasted for 2 h before daily monitor of their 
body weight before the injection. Ghrelin injections were 
administered at 18:00 daily from day 1 and lasted for 7 
days. On the 8th day’s morning, animals were killed.

Experiment 3: Effects of ghrelin microinjection on 
glucosesensitive neurons in the LPBN
C57BL/6J mice (n = 44) were anesthetized with urethane 
(1 g/kg body weight, i.p.) and positioned on a stereotaxic 
apparatus. The placement coordinates for the LPBN were: 
anteroposterior 5.0–5.2 mm, lateral 1.0–1.2 mm and 
ventral 3.3–3.4 mm.

Four-barrel glass microelectrodes (total tip 
diameter 3–10 Am, resistance 5–20 MV) were used for 
electrophysiological recording and micro-pressure injection 
(20, 30): 5 mM glucose solution , 0.9% NaCl , 1.5 × 10−8 
M ghrelin and 0.5 M sodium acetate in 2% pontamine 
sky blue for recording. During the electrophysiological 
recording, the first three microelectrodes were connected 
to a four-channel pressure injector (PM2000B; Micro Data 
Instrument, Inc., USA) to inject drugs by gas pressure 
(30). Drugs were directly ejected on the surface of firing 
cells with short pulse gas pressure (1500 ms, 5.0–15.0 
psi) (34). The recorded electrical signals were amplified 
and displayed on a Memory Oscilloscpe (VC-11, Nihon 
Kohden) as described in our previous study (35). The 
acquired analog signals were fed into a signal analyzer and 
then relayed to computer for analysis with Histo software. 
Although the firing frequencies of neurons vary, the 
sampling threshold was set to twice the background noise 
level, signals below which were considered as background 
noises and therefore not recorded to improve the accuracy 
of the measurements.

After recording the firing frequencies of neurons in 
the LPBN, we injected 5 mM glucose solution to identify 
whether they were glucose-sensitive neurons. After the 
firing frequencies returned to baseline, 0.9% NaCl was 
given as a control. Next, the 1.5 × 10−8 M ghrelin was 
administered to investigate the effects of ghrelin on 
glucose-sensitive neurons in the LPBN. At the end of each 
experiment, pontamine sky blue was injected through the 
electrode to confirm positions of the recording electrode.

To distinguish between GE and GI neurons, the 
spontaneous firing frequency before and after injection 
of 5 mM glucose solution were recorded and analyzed. 
Neurons with an elevation of firing rate greater than 
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20% were identified as GE neurons, while those with a 
reduction of firing rate greater than 20% were identified 
as GI neurons. Cells with firing rate changes less than 20% 
were classified as glucose-insensitive neurons. 

After the spontaneous firing frequency of identified 
GS neurons had returned to the baseline, ghrelin was 
injected. If more than 20% changes in spontaneous firing 
frequency were observed (increased or decreased), the 
neurons were recorded and analyzed. 

Experiment 4: Effects of chronic LPBN ghrelin 
administration on UCP-1 expression in brown 
adipose tissue
In order to assess the UCP-1 expression at both mRNA 
and protein levels, BATs from interscapular region 
were collected soon after the mice were killed in  
experiment 2.

Western blot

The BATs were homogenized in RIPA buffer (P0013B, 
Beyotime, Beijing, China) supplemented with 1:100 
protease inhibitors (P1005, Beyotime, Beijing, China) and 
centrifuged at 14,000 g, 10 min. Protein concentrations 
were adjusted with BCA assay (P0012, Beyotime, Beijing, 
China), denatured in SDS sampling buffer (95°C, 5 min) 
and then subjected to 12% SDS-PAGE. Protein samples 
were then electrotransferred to a polyvinylidene fluoride 
membrane (Millipore Corp.) for 2 h. After blocking with 
5% fetal bovine serum (FBS) for 2 h at room temperature, 
membranes were incubated with primary antibodies: UCP-1 
(ab10983, 1:2000; Abcam); β-actin (#4967, 1:4000 CST, 
Danvers, MA, USA) at 4°C overnight and with secondary 
antibodies (goat anti-rabbit IgG H&L (HRP (ab6721, 
Abcam, 1:2000)) at room temperature for 1 h. Bands were 
visualized with Immobilon Western chemiluminescent 
substrate (Millipore, cat. no. WBKLS0100, 200 µL) and UVP 
810 gel-imager (UVP, Upland, CA, USA), and the intensities 
were analyzed using Image J software (NIH, USA).

Real-time PCR

TRIzol reagents (135306; Ambion) were used to extract 
RNA from BATs. We used 4× gDNA Wiper Mix to rinse 
genomic DNA, and used 5× HisScript II qRT SuperMix 
II form RNA reverse-transcription. Relative mRNA levels 
were determined using the SYBR Green RT-PCR Kit 
(Q311; Vazyme Biotech Co., Ltd., Nanjing, China) and 
the Realplex Real Time PCR Thermocycle Instrument 

(Realplex 4; Eppendorf, Westbury, NY, USA). Primer 
sequences we used in this study were as follows: UCP-1: 
5′-A C T G C C A C A C C T C C A G T C A T T-3′, 5′-C T T  
T G C C T C A C T C A G G A T T G G-3′; β-actin: 5′-A G G  
C C C A G A G C A A G A G A G G T A-3’, 5’-G G G G T G 
T T G A A G G T C T C A A A C A-3′ (32). Real-time PCR 
data were analyzed using the 2–∆∆Ct method. Ribosomal 
L32 mRNA levels were used as the internal control.

Experiment 5: Effects of LPBN ghrelin microinjection 
on c-fos expression in LPBN.
C57BL/6J mice (n = 6) were killed 2 h after injection of NS 
(n = 3) or ghrelin (n = 3) into the LPBN. Then brains were 
carefully dissected for subsequent immunohistochemistry. 

Immunohistochemistry

Brains samples were fixed with 4% paraformaldehyde for 
24 h and were transferred into 30% sucrose at 4°C for 12 
h. Samples were then cryo-sectioned into 15 μm sections 
by microtome (CM1860; Leica) and dried at 60°C in an 
incubator (DHG-9101; SANFA, Yangzhou, China) for 4 h. 
Sections were then hydrated in 0.01 M PBS for 15 min, 
antigen retrieval was performed following manufacturer’s 
instructions (P0083, Beyotime, Beijing, China). Sections 
were further washed with 0.01 M PBS for three times, 
blocked with 0.1% FBS for 1 h at 37°C, and then incubated 
with a c-fos primary antibody (rabbit antimouse, ab190289, 
1:1000; Abcam) for 2 h at 37°C and HRP (horse radish 
peroxidase) secondary antibody (PV-6001, 1:200; Zsbio, 
Tianjin, China) for 20 min at 37°C. Between incubation 
by antibody and after incubation by secondary antibody, 
sections were washed as described previously. A DAB 
kit (ZLI-9018; Zsbio) was used to develop the staining. 
Morphology was assessed using a light microscope (CX31; 
OLYMPUS). According to the mouse brain in stereotaxic 
coordinates (36), LPBN is located in the dorsolateral pons 
that surrounds the superior cerebellar peduncle (scp), 
which we considered as the neuroanatomical landmark 
to delimit LPBN in this work. By using ImagePro Plus 
6 (Media Cybernetics, Inc. USA), the number of c-fos 
immunopositive neurons within LPBN were counted. 

Statistical analysis

Data are expressed as means ± s.e.m. Statistical analyses 
were performed using a commercially available statistical 
package (SPSS 17.0). Normal distribution was confirmed 
with Shapiro–Wilk test, and homogeneity of variances was 
determined with Levene’s test. We applied Student’s t-test 
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to analyze statistical differences between two groups, to 
compare firing rates before and after drug treatment, and 
one-way ANOVA for multiple groups. Data were analyzed 
using repeated measures analyses of variance where 
appropriate. Degree of freedom and the statistic's value 
were also reported. In all cases, P < 0.05 was considered to 
be significant.

Results

Effects of ghrelin injection in the LPBN on 
nocturnal feeding in mice

Comparing with the 0.9% NaCl group, ghrelin (300 
pmol) injection into the LPBN significantly increased 
the cumulative food intake at 1st, 2nd and 3rd h (1st h 
0.81 ± 0.07 vs 0.31 ± 0.09, P < 0.05; 2nd h 1.10 ± 0.09 
vs 0.64 ± 0.05, P < 0.05; 3rd h 1.40 ± 0.13 vs 1.04 ± 0.09, 
P < 0.05; Fig. 1A).

The orexigenic effect of ghrelin was blocked by 
[D-Lys3]-GHRP-6 when comparing co-injection group 
with ghrelin only group (1st h 0.67 ± 0.10 vs 0.43 ± 0.05, 
P < 0.05; 2nd h 0.98 ± 0.12 vs 1.03 ± 0.10, P > 0.05; 3rd 
h 1.82 ± 0.15 vs 1.57 ± 0.12, P > 0.05; Fig. 1B). And it 
was further abolished in GHSR−/− mice when comparing 
GHSR−/− mice injected with ghrelin to GHSR−/− mice 
injected with NaCl (1st h 0.48 ± 0.17 vs 0.23 ± 0.05, 
P > 0.05; 2nd h 0.94 ± 0.20 vs 0.70 ± 0.14, P > 0.05; 3rd h 
1.37 ± 0.34 vs 1.24 ± 0.08, P > 0.05; Fig. 1C).

Effects of ghrelin injection in LPBN on chronic body 
weight gain in mice

For mice treated with 300 pmol ghrelin daily for 7 days, 
their body weight gain was significantly higher relative to 

mice treated with 0.9% NaCl injection starting from the 
4th day (4th day 1.45 ± 0.15 vs 0.82 ± 0.22, P < 0.05; 5th 
day 1.97 ± 0.26 vs 1.17 ± 0.25, P < 0.05; 6th day 2.19 ± 0.28 
vs 1.12 ± 0.20, P < 0.05; Fig. 2).

Effects of ghrelin on the LPBN glucosesensitive 
neurons in vivo

Forty-four GS neurons were investigated in the LPBN, 
among which 40.9% were GE neurons and 38.6% were 
GI neurons (Table 1). The general average spike frequency 
of GE neurons in the absence and presence of glucose 
were 3.74 and 8.16 Hz, respectively, and the data of GI 
neurons were 4.40 and 1.88 Hz. Treatment with ghrelin 
(1.5 × 10−8 M) significantly increased the firing rates of GE 
neurons (3.19 ± 0.64 to 6.56 ± 1.21 Hz, P < 0.05; Fig. 3A) 
and decreased the firing rates of GI neurons relative to 
the control group (3.66 ± 0.77 to 1.51 ± 0.34 Hz, P < 0.05; 
Fig. 3B).

Figure 1
Effects of ghrelin injection in LPBN on nocturnal feeding in mice. (A) Ghrelin increased food intake in 1, 2, 3 h after injection of ghrelin in LPBN. (B) [D-Lys3]-
GHRP-6 blocked the effects of LPBN ghrelin on food intake in 2, 3 h after injection of ghrelin in LPBN. (C) Ghrelin receptor knockout abolished the effects of 
LPBN ghrelin on food intake in 1, 2, 3 h after injection of ghrelin in LPBN. *P < 0.05 ghrelin vs 0.9% NaCl, #P < 0.05 GHRP-6+ghrelin vs GHRP-6.

Figure 2
Effects of ghrelin injection in LPBN on long-time body weight gain in mice. 
After the injection of ghrelin, body weight gain was increased from the 
4th day. *P < 0.05 ghrelin vs 0.9% NaCl.
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Effects of long-term LPBN ghrelin on UCP-1 
expression in BAT

After the administration of 300 pmol ghrelin in LPBN for 7 
days, no remarkable differences were observed in the BAT 
expression of UCP-1 at either protein level (1.97 ± 0.24 vs 
2.18 ± 0.32, P > 0.05; Fig. 4A) or mRNA level (2.12 ± 0.44 
vs 1.00 ± 0.69, P > 0.05; Fig. 4B) relative to those of 0.9% 
NaCl injection.

Effects of LPBN ghrelin on c-fos expression in LPBN

Comparing with the 0.9% NaCl injection group, 
injection of 300 pmol ghrelin significantly increased c-fos 
expression in the LPBN (179.64 ± 10.76 vs 129.88 ± 14.67, 
P < 0.05; Fig. 5).

Discussion

The underlying mechanism for regulation of feeding 
and body weight is crucial in understanding obesity 
pathogenesis. Since 2000, when ghrelin was found to 
promote food intake and body weight gain in rodents 
(37), numerous studies have corroborated these findings 
by administering ghrelin to rodents either peripherally or 
centrally (13, 37, 38).

Microinjection minimized drug diffusion in brain, 
thus facilitates the investigation of the drug effects on a 
specific nucleus. In the current study, ghrelin injection in 
LPBN significantly increased nocturnal cumulative food 
intake in the first 3 h, which was blocked by [D-Lys3]-
GHRP-6 and abolished in GHSR−/− mice. Therefore, our 
results demonstrated that ghrelin acted through GHSR to 
play orexigenic effect in the LPBN, which was consistent 
with the previously observed effects in the forebrain (13). 
An interesting phenomenon was presented in Fig. 1C 
that GHSR−/− mice tend to have a small size food intake 
compared with the wide type C57 mice though the 
difference was not significant. This may resulted from 
the truth that GHSR was knocked out, which prevented 
endogenous ghrelin from orexigenic effect. However, it is 
worth noting that the sensation of forebrain and pons to 
ghrelin was different. Wren et al. (13) used various doses 
of ghrelin, and reported that the lowest dose of ghrelin 
to significantly stimulate food intake was 30 pmol, but 
they indeed resorted to 300 pmol to confirm whether 
nuclei were really nonresponsive or just requires a higher 
dose. In our preliminary experiments, we took the 300 
pmol to confirm whether LPBN should be considered 
nonresponsive or just needs stronger stimulation. 
Interestingly, as reported, PVN, a nucleus that projects 
LPBN is among the nucleus in hypothalamus that 

Figure 3
Effects of ghrelin on LPBN glucose-sensitive 
neurons in vivo. (A) Ghrelin of LPBN affects the 
activity of glucose-excited neurons. (B) Ghrelin of 
LPBN affects the activity of glucose-inhibited 
neurons. The first arrow indicates the addition of 
5 mM glucose, the second arrow indicates the 
0.9% NaCl-treated control, and the third arrow 
indicates ghrelin (1.5 × 10−8 M) application. (a) 
Baseline before glucose application. (b) Firing rate 
after glucose application. (c) Firing rate recovered 
to baseline before 0.9% NaCl application. (d) 
Firing rate after 0.9% NaCl application and the 
baseline before ghrelin application. (e) Firing rate 
after ghrelin application.

Table 1 Numbers of LPBN neurons responsive to glucose (5 mM) and ghrelin (1.5 × 10−8 M).

LPBN neurons (n = 44) 
Ghrelin responsive

Ghrelin nonresponsiveExcited Inhibited 

GE neurons (n = 18; 40.9%) 10 (55.6%)  4 (22.2%) 4 (22.2%)
GI neurons (n = 17; 38.6%)  3 (17.6%) 11(64.7%) 3 (17.6%)
Glucose-insensitive neurons (n = 9; 20.4%)  3 (33.3%)  1 (11.1%) 5 (55.6%)

GE neurons, glucose-excited neurons; GI neurons, glucose-inhibited neurons.
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only responded to 300 pmol but not 30 pmol ghrelin, 
suggesting that ghrelin signaling in LPBN probably is 
associated with PVN.

Moreover, the present study demonstrated that LPBN 
ghrelin injection increased the number of Fos-positive 
neurons in the LPBN for the first time, corroborated 
that ghrelin could increase food intake and body weight 
through GHSR in the LPBN. To the best of our knowledge, 
some of the GHSR-expressing sites, such as the Arc, have 
direct access to ghrelin circulating in the blood stream, 
as peripheral ghrelin and ghrelin mimetic administration 
induce c-fos expression there (39, 40, 41). However, the 
GHSR expression in CNS is fairly widespread. One possible 
explanation for GHSR expression in those sites without 
immediate access to the blood–brain barrier comes from 
the observations of ghrelin-producing central neurons (1, 
42, 43). Those neurons were observed to produce ghrelin 
centrally, which would be readily available for those GHSR-

expressing nuclei without access to circulating ghrelin. Our 
experiments provided evidences of central ghrelin’s effect 
in energy metabolism regulation as a neurotransmitter. 
However, the source(s) and physiological significance of 
central nerves system ghrelin remain to be determined.

In the current study, we focused on a group of 
specialized neurons in LPBN called GS neurons. Brain 
glucose regulation is crucial for the maintenance of cell 
activities, neurotransmitter synthesis, and nerve synapses 
(44, 45), in which the GS neurons play major roles. 
Significant increase in the firing rate of GE neurons and 
decrease in the firing rate of GI neurons were observed 
following administration of ghrelin in LPBN, along with 
increased food intake. These findings suggest that GS 
neurons in the LPBN might be involved in regulation of 
food intake. Our findings revealed that ghrelin’s effect 
is at least partially associated with GS neurons in LPBN. 
Our finding expanded the knowledge about the neuronal 
mechanism of LPBN mediated food intake regulation as 
well as the area/function of ghrelin. While the route of 

Figure 4
Effects of long-term LPBN ghrelin on UCP-1 expression in BAT UCP-1 
protein expression in BAT had no change in ghrelin group (n = 7) 
compared to 0.9% NaCl group (n = 6) (A), UCP-1 mRNA expression in BAT 
had no change in ghrelin group (n = 5) compared to 0.9% NaCl group  
(n = 4) (B) (P > 0.05).

Figure 5
Effects of LPBN ghrelin on c-fos expression in LPBN. Microinjection of 
ghrelin in LPBN increased c-fos expression in LPBN, ghrelin group (n = 3), 
0.9% NaCl group (n = 3). *P < 0.05 ghrelin vs 0.9% NaCl. scp, superior 
cerebellar peduncle; MPBN, medial parabrachial nucleus.
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administration used in electrophysiology experiment 
achieved ghrelin treatment on single targeted neuron and 
measured responses, further evidences, such as utilization 
of knockout mice as control and/or investigate specific 
current with in vitro patch clamp technique are necessary 
before a conclusion may be reached regarding whether 
such effect is a direct effect or indirect through the release 
of other peptides. Further investigations are planned.

Maintaining energy balance is about reaching the 
balance between energy intake and expenditure. The 
changes in body weight result from changes in such balance 
(46). In the current study, chronic administration of 
ghrelin in the LPBN did not result in remarkable differences 
in either protein level or mRNA level of UCP-1 in brown 
adipose tissue, implying that the ghrelin treatment for 7 
days was not enough to translate into a robust expression 
change of UCP-1 in BAT. Notably, the mean mRNA levels 
seemed to be elevated in ghrelin-treated samples (not 
statistically significant). This effect will be further pursued. 
Studies have raised that ghrelin administration increased 
body weight gain through promoting a positive energy 
balance which led to high food intake and low energy 
expenditure (4, 38). Additionally, ghrelin was found to 
promote adipose accumulation, reduce storage of lipids 
and then reduce energy expenditure (47, 48). The next 
step could be studying its effect on fat mass.

Conclusion

Ghrelin in the LPBN could increase nocturnal cumulative 
food intake through the interaction with GHSR in 
C57BL/6J mice, and influence the firing rate of GS neurons 
in the LPBN. Long term ghrelin administration increased 
the body weight gain. It was also found to promote c-fos 
expression in the LPBN.
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