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Abstract
Background: The objective of this work was to develop a model to predict malaria incidence in
an area of unstable transmission by studying the association between environmental variables and
disease dynamics.

Methods: The study was carried out in Karuzi, a province in the Burundi highlands, using time
series of monthly notifications of malaria cases from local health facilities, data from rain and
temperature records, and the normalized difference vegetation index (NDVI). Using autoregressive
integrated moving average (ARIMA) methodology, a model showing the relation between monthly
notifications of malaria cases and the environmental variables was developed.

Results: The best forecasting model (R2
adj = 82%, p < 0.0001 and 93% forecasting accuracy in the

range ± 4 cases per 100 inhabitants) included the NDVI, mean maximum temperature, rainfall and
number of malaria cases in the preceding month.

Conclusion: This model is a simple and useful tool for producing reasonably reliable forecasts of
the malaria incidence rate in the study area.

Background
Each year malaria affects over 100 million persons world-
wide, with an annual cost in human life exceeding one
million deaths, mainly children under five years of age in
sub-Saharan Africa [1]. The number of disability-adjusted
life years due to malaria, a measure of disease burden, was
estimated at 46,486,000 for 2002, 87.8% of which was in
sub-Saharan Africa [2]. Because of its strong epidemic
potential, malaria continues to be an important public
health problem in communities in semi-arid areas and in

the highlands of Africa. These populations are exposed to
factors that strongly influence the origin and magnitude
of malaria epidemics, such as weakened immunity of the
population associated with famine and massive displace-
ments, failures of control measures and epidemiologic
disease surveillance, and unstable environmental factors
such as rainfall, temperature and vegetation [3]. There
exist settings where malaria behaves as endemic malaria
and other ones where it does as epidemic malaria. The
attack rate and the case fatality rate of the malaria epidem-
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ics are also related with the level of partial immunity to
malaria due to the previous exposition of the population
to this infection that in the case of epidemic-prone set-
tings, as the African highlands, is very low or even null.
The collapse of health services during epidemics has been
estimated to increase case fatality rate for severe malaria
up to 25–50% [4]. It has been estimated that the popula-
tion living in malaria epidemic-prone areas in Africa,
nearly 125 million persons, suffers some 12.4 million
malaria episodes per year attributable to epidemics, or
about 4% of the annual number of malaria cases occur-
ring worldwide [5].

Due to the severe health impact of malaria epidemics
there is a growing need for methods that will allow fore-
casting, early warning and timely case detection in areas of
unstable transmission, such as the African highlands, so
that more effective control measures can be implemented
[5-7]. Studies of malaria epidemics in these areas have
shown their association with excess rainfall, temperature
and vegetation density measured by the normalized dif-
ference vegetation index (NDVI). This is seen in the direct
correlation between an abundance of Anopheles mosqui-
toes and rainfall [8,9], increased transmission and tem-
perature [10], and vegetation density and malaria
seasonality [11,12].

In late 2000, an epidemic of malaria from Plasmodium fal-
ciparum occurred in Burundi, with reported attack rates
exceeding 200% and an estimated annual malaria-specific
mortality of 1.6% (95% CI 0.9 – 2.8%) in children under
five years of age [13]. The present study focuses on the
province of Karuzi, in the highlands of Burundi. The
hypothesis stated in this paper is that malaria incidence in
a particular month can be predicted by rainfall, tempera-
ture and vegetation density – as factors that determine the
density and infectivity of Anopheles mosquitoes – and the
malaria incidence in the preceding month – as an estima-
tor of the human reservoir of the parasite and of popula-
tion susceptibility. The objective of this work was to study
the relation among these variables to develop a predictive
model that can forecast the incidence of malaria with rea-
sonable reliability using the reported case rate, rainfall,
temperature and vegetation density.

Methods
Study Area
Karuzi is a province in the central-eastern part of Burundi,
at an altitude of 1500 – 1900 m. The province has a trop-
ical climate characterized by a rainy season from October
through April and a dry season from May through Sep-
tember, with mean annual minimum temperatures of
10.5 – 13°C and maximum temperatures of 25.5 –
28.5°C. Vegetation in the province consists primarily of
palm and banana trees, with pine forests in the hills and

cereal crops in the valleys. The mean NDVI is 0.36 from
July through October and 0.53 from November through
June. The population of Karuzi is 302,062, and the prov-
ince is subdivided into seven communes. The health infra-
structure consists of one 100-bed hospital and 11 health
centers with a total of 311 beds [14].

Data collection
Incidence of malaria
A case of malaria was defined as a patient seeking medical
attention with fever over 38°C and no signs of acute res-
piratory infection, urinary infection, otitis, meningitis,
measles or abscesses. This is the definition for a "case of
malaria" used in all Burundi health facilities at the time of
the study and for notification purposes. No changes of
this definition were performed during the study period.
Only 5 – 20% of clinical cases had microbiological confir-
mation in non-epidemic periods and no more than 2%
during outbreaks, depending on the health facility. The
health services compile all notifications of malaria consul-
tations on a monthly basis. The cumulative number of
notifications is as the numerator for the incidence rate,
and the denominator is the total population of the prov-
ince according to the population census adjusted for the
growth factor which is 1.32 for the period 1995–2000 and
3.29 for the period 2000–2005 [15]. For this study there
were used the 1997–2003 series of these incidence rates
per 100 inhabitants of Karuzi.

Rainfall
Monthly cumulative precipitation for 1997–2003 was
obtained from the Karuzi meteorological station of the
Burundi Geographic Institute, measured in millimeters of
rain fallen.

Temperature
Minimum and maximum monthly temperatures for
1997–2003, measured in degrees centigrade, were
obtained from the same source as the rainfall data.

Vegetation density
The mean NDVI per month in Karuzi for 1997–2003 was
obtained from images taken with the Advanced Very High
Resolution Radiometer (AVHRR) sensor on board the
National Oceanographic and Atmospheric Administra-
tion satellites, with a resolution of 8 km, on a scale of 0–
0.7 [16].

Epidemiological assumptions
The relation between malaria transmission and various
factors was described by MacDonald in 1957 [17]. The
main factors affecting transmission are vector population
density, transmission capacity (based on vector survival
and duration of the extrinsic incubation period – EIP) and
immunity of the susceptible human host. Other factors
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such as strain virulence are of negligible importance. Of
the meteorological data available in this study, rainfall
influences the vector population (by increasing the capac-
ity of larva production and maturation) and is reflected in
the vegetation index, and temperature influences the
transmission capacity (with higher temperatures shorten-
ing the EIP). This hypothesis is based on the fact that in
tropical areas at altitudes over 1200 m, the most impor-
tant factor limiting malaria transmission is the minimum
temperature, because parasite development (sexual repro-
duction and development of sporozoites) is interrupted at
temperatures lower than 16°C.

Generally, there are tropical areas between 25N-25S lati-
tudes, at elevations of 1000–2000 m that have enough
rainfall to maintain abundant marshy areas where the vec-
tor larvae develop, so that rainfall is often not the limiting
factor. In epidemic situations, some of the factors that
could plausibly explain fluctuations in transmission are:
1) higher minimum temperature, permitting prolonga-
tion of seasonal transmission and a "staircase" effect of
repeated superinfections with increased parasitemia and
anaemia up to clinical thresholds; 2) higher maximum
temperature, shortening the EIP and producing an expo-
nential effect on vector transmission capacity; 3) more
abundant rainfall, with a consequent increase in vegeta-
tion density, resulting in a larger vector population and a
linear increase in transmission, and 4) increased popula-
tion reservoir of the parasite, which induces increased
speed of transmission.

Modelling assumptions
Taking the above-mentioned epidemiological assump-
tions into account, the following general form of the
model is proposed to estimate the expected malaria inci-
dence rate: let It represent the malaria incidence rate in
month t; Rt is the cumulative level of precipitation for that
month; Tt is either the mean minimum temperature or
mean maximum temperature for that month; Vt is the
mean vegetation density for that month, p is the seasonal
period of oscillation for the previous three variables; and,
It+k is the malaria incidence rate for a future month that is
k months from t. Then, the relation of influence among
these variables, remain as follows:

∑αIt >* ∑βsin [(2π/p)Rt *  Tt * Vt] → It+k (1)

This relation expresses that a linear or cumulative combi-
nation of previous values of the incidence rate, as an esti-
mator of population reservoir, and the cumulative
combination of past levels of rain, temperature and vege-
tation density, as estimators of vector capacity, combine
to influence future values of the incidence rate. The term
that includes rainfall, temperature and vegetation density
implies that the malaria incidence oscillates with a period

that is proportional to their common seasonality. In
expression (1) α is the linear regression coefficient for the
incidence rate, and β is a parameter that determines the
amplitude of seasonal oscillation estimated by regression.
The use of * as an operator to link the components
expresses the lack of a priori knowledge of how they are
interrelated – interrelations that will be determined by
trial and error. The model combines all those terms hav-
ing significant autocorrelation and cross-correlation coef-
ficients with the incidence rate in their corresponding lags
at a significance level of p ≤ 0.05.

Data processing
The following steps were carried out: a) exploration of
serial incidence rates, temperatures, precipitation and veg-
etation, to identify regularities; b) trend analysis and per-
iodogram of the incidence rate with Fast Fourier and
Tukey Transforms to identify the periodic oscillations to
be modeled, so the last seasonal periods sub-series gets
separated for validation purposes, shortening also the
rainfall, temperature and vegetation series accordingly; c)
correlograms of the simple autocorrelation function
(ACF) and partial autocorrelation function (PACF) for the
incidence rate, with lags equal to their period of oscilla-
tion. Identification, adjustment and evaluation of the
autoregressive integrated moving average (ARIMA) equa-
tion that explains the rate by its previous values, to use as
a term in model (1); d) periodograms with Fast Fourier
Transform of serial rainfall, temperature and vegetation,
to identify seasonal oscillations and their period p in (1),
and cross-correlations of these three data series with the
ARIMA residuals in the serial incidence rate to identify
lags in the influence; e) combination of ARIMA terms and
oscillatory component to shape model (1), and estima-
tion of the linear regression coefficients of the terms and
goodness-of-fit of the model; f) successive entry in the
model of serial incidence rates, rainfall values, tempera-
ture and vegetation, in their corresponding lags, to obtain
the expected malaria incidence rates for each point of the
temporal window of the series; g) the model was tested
using the sub-series of malaria incidence rates separated,
and its reliability was tested by comparing each predicted
rate with that observed for the corresponding month.

The reliability criteria for the forecast consisted in verify-
ing that: i) the difference between the predicted and
observed value is white noise, or a normal random varia-
ble with a mean of 0 and standard deviation of 1; the ran-
domness of the difference is tested based on the
periodogram of the data and the runs test, and normality
is tested with the histogram and the Kolmogorov-Smirnov
test; ii) the differences do not exceed the limits of the 95%
confidence interval by more than 5%; values falling out-
side the confidence interval are counted in the scattergram
of the difference (y axis) with respect to the observed rate
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(x axis); and iii) the differences do not tend to increase or
decrease when the observed rate increases, that is, the pre-
cision of the forecast does not depend on the magnitude
of the rate. To test this, the correlation between the differ-
ence and the observed rate is estimated by the Pearson lin-
ear correlation coefficient. Trend analysis is used to test
the statistical significance of the slope of the trend of the
difference with respect to the observed rate.

The images of the vegetation index were processed using
WinDisp 4. Data processing was performed using the sta-
tistical packages SPSS™ 13.0 from SPSS Co., and Stat-
graphics Plus© 5.1 from Statistical Graphics Co. A 2-tailed
significance level of 0.05 was established for all tests.

Results
Exploration of the malaria rate, precipitation, tempera-
tures and vegetation for 1997–2003 shows no clear trend,
and suggests a seasonal dependency in the series, with a 6-
month period for the rate, and a 12-month period for
rainfall, temperatures and vegetation, indicating a rhyth-
mic oscillation of the four variables (Figure 1).

According to the results of the trend analysis and periodo-
grams, the rate shows no trend or periodic oscillation. The
1997–2001 period is taken as base series for the incidence
rate, and the same for rainfall, temperature and vegeta-
tion, leaving as complementary the 2002–2003 period for
model validation. The next steps of the analysis are per-
formed on the 1997–2001 period. The correlograms of
the rate show a non-seasonal configuration with signifi-
cant coefficients only in lag 1 (ACF = 0.82, PACF = 0.82,
both p < 0.05) indicating that ARIMA model (1,0,0) rep-
resents the influence of each value of the rate on the fol-
lowing one.

The cross correlation function between monthly values of
the incidence rate and temperature for twelve lags in the
1997–2001 derivation model period, only showed statis-
tical significance in the first lag, with a coefficient of 0.25
(95%CI:0.02,0.48) for the mean minimum temperature,
and a -0.16 (95%CI: -0.49, -0.02) for the mean maximum
temperature. The periodograms of serial precipitation,
temperature and vegetation show 12-month seasonal
oscillations, therefore term (1) of the model takes the
form β sin (0.52 RtTtVt). Cross correlation of this term
with the residual left in the rate by ARIMA(1,0,0) shows
that only the lag 1 coefficient is significant, therefore the
environmental influence on the malaria rate becomes β
sin(0.52Rt-1Tt-1Vt-1). After adding the autoregressive term
and the term representing seasonal influence of the envi-
ronmental variables, and adjusting by linear regression,
the model acquires the final form:

It = 0.80It-1 + 0.99sin (0.52Rt-1 Tt-1 Vt-1), (2)

where It is the rate for any month t, It-1 is the observed rate
in the preceding month, Rt-1 is the cumulative rainfall in
the preceding month, Tt-1 is the mean maximum temper-
ature of the preceding month, and Vt-1 is the mean vegeta-
tion density in the preceding month.

This model explains a substantial percentage of the
observed variability in the malaria rate (R2 

adj = 82%, F =
165, df = 2, p < 0.0001) with a coefficient of 0.80 for the
autoregressive term and 0.99 for the environmental term
(Table 1). The model leaves a base rate residual in the
form of white noise which is normally distributed with a
mean of 0 and standard deviation of 0.98.

The values predicted by the model and the observed val-
ues for the malaria incidence rates in 1997–2001 are
shown in Table 2 and graphically in Figure 2. And the
same values for the 2002–2003 period are shown on
Table 3 and Figure 3. Analysis of the difference between
the observed and predicted values of the malaria rate
shows a periodogram with notable amplitudes in the
whole frequency range; both this result and that of the
runs test show typical white noise behaviour. The histo-
gram of the differences and the Kolmogorov-Smirnov test
indicate that this noise closely follows a normal probabil-
ity distribution with a mean of -0.1 and standard devia-
tion of 1.2.

Figure 4 shows a scatterplot of the difference between the
predicted and observed rates with respect to the observed
rate, with the arithmetic mean and 95% confidence inter-
val for the difference. About 4.8% (4/83) of the differ-
ences are above the 95% confidence interval of ± 4 cases
per 100 inhabitants, and 2.4% (2/83) are below. The cor-
relation between the difference and the observed rate is
0.03 (p = 0.451), and the slope of the trend of the differ-
ence with respect to the observed rate is 0.02 (p = 0.967).
Taken together, these results suggest that the model can
adequately forecast the monthly malaria incidence rate.

Discussion
The model constructed in this work attempts to provide a
simple tool to obtain a reliable estimate of the expected
incidence of malaria one month in the future based on the

Table 1: Regression modelling results

Model term Regression 
Coefficient

SE 95% CI p-Value

It-1 0.80 0.01 0.68 – 0.95 < 0.0001
sin(0.52Rt-1x Tt-

1x Vt-1)
0.99 0.19 0.97 – 1.00 < 0.0001

SE: Estimated regression coefficient standard error
95%CI: Confidence interval at 95% level for estimated regression 
coefficient
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Monthly malaria notification rates (MMNR) per 100 inhabitants in Karuzi province, Burundi, from January 1997 to December 2003 (heavy bold solid line); monthly cumulative rainfall in mm (light bold solid line); maximum monthly temperature in °C (bold dashed line); minimum monthly temperature in °C (light dashed line); and normalized difference vegetation index-NDVI (light solid line)Figure 1
Monthly malaria notification rates (MMNR) per 100 inhabitants in Karuzi province, Burundi, from January 1997 to December 
2003 (heavy bold solid line); monthly cumulative rainfall in mm (light bold solid line); maximum monthly temperature in °C 
(bold dashed line); minimum monthly temperature in °C (light dashed line); and normalized difference vegetation index-NDVI 
(light solid line).
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observed incidence rate and a combination of climatic
factors (temperature, rainfall and vegetation index) for the
current month. This procedure is based on the hypothesis
that the incidence rate in any particular month, provided
there are no major variations on access to health services
such as changes in user fees or in the criteria used for clin-
ical and/or parasitological diagnosis, is an excellent esti-

mator of the parasitic reservoir in a population of unstable
malaria transmission, and is the most important factor
affecting the rate during the following month.

Malaria Early Warning Systems (MEWS) usually monitor
meteorological conditions such as rainfall and tempera-
ture; and early detection is based on routine clinical sur-

Table 3: Expected malaria incidence by forecasting model and observed monthly malaria notification rates per 100 inhabitants of 
Karuzi, Burundi, in the validation period 2002–2003.

Month Expected Observed Month Expected Observed

Jan 2002 6.2 8.4 Jan 2003 2.7 4
Feb 7.3 5.4 Feb 3.3 3
Mar 5.8 5.2 Mar 4.3 3.4
Apr 5.8 3.8 Apr 3.9 3.6
May 3.3 4.4 May 4 4.3
Jun 5.5 4.3 Jun 4.7 3.7
Jul 4.5 4.3 Jul 4 4.1
Aug 4.5 3.1 Aug 3.3 2.4
Sep 3.5 4.1 Sep 3.7 2.6
Oct 4.1 4.7 Oct 2.7 3.1
Nov 5.5 3.2 Nov 4.2 1.5
Dec 4.4 3.2 Dec 1.3 1.1

Table 2: Expected malaria incidence by forecasting model and observed monthly malaria notification rates per 100 inhabitants of 
Karuzi, Burundi, in the derivation period 1997–2001.

Month Expected Observed Month Expected Observed

Jan 1997 --- 1.7 Jul 8.5 6.9
Feb 1.4 1.6 Aug 6.5 4.4
Mar 3.2 1.7 Sep 5.5 5.7
Apr 1.7 2.2 Oct 5.5 7.6
May 1.9 2.3 Nov 8 8.9
Jun 3.3 3.8 Dec 7.9 8.1
Jul 3.6 4.9 Jan 2000 8.2 7.9
Aug 4.9 2.1 Feb 7.8 6.5
Sep 1.7 1.9 Mar 7.2 4.2
Oct 3.5 2.3 Apr 4 3.5
Nov 1.9 2.4 May 3.4 6.5
Dec 3.8 2.8 Jun 5.2 10.4
Jan 1998 2.6 2.7 Jul 9.3 6.8
Feb 2.2 4.1 Aug 6.5 5.6
Mar 5 4.1 Sep 5.5 5.4
Apr 3.5 4 Oct 4.3 9.5
May 4.2 2.3 Nov 7.7 41.6
Jun 1.8 2.7 Dec 34.5 42.2
Jul 3.3 2.4 Jan 2001 34.4 35.3
Aug 2.9 2.1 Feb 29.4 24.4
Sep 2.7 2.8 Mar 21.4 25.9
Oct 3.9 3.4 Apr 22.4 13.2
Nov 3 4.3 May 12.2 11.4
Dec 4.3 4.2 Jun 9.8 7.7
Jan 1999 5.3 4.5 Jul 7.2 6.2
Feb 4.1 3.8 Aug 6.6 6
Mar 5 4.1 Sep 5.5 4.3
Apr 3.6 2.2 Oct 5.2 5
May 2.9 5.6 Nov 5.9 5.9
Jun 5.5 9.4 Dec 4.8 6
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Expected and observed monthly malaria notification rates (MMNR) in the derivation period 1997–2001Figure 2
Expected and observed monthly malaria notification rates (MMNR) in the derivation period 1997–2001.

Expected and observed monthly malaria notification rates (MMNR) in the validation period 2002–2003Figure 3
Expected and observed monthly malaria notification rates (MMNR) in the validation period 2002–2003.
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veillance. Roll Back Malaria (RBM) has supported the
development of a simple tool to monitor epidemic risks
in marginal transmission areas based on anomalies in
rainfall and temperature as identified from satellite obser-
vations and predictions point to at risk areas where epi-
demics might occur around six weeks after the detected
meteorological change (the risks are displayed on maps
which are updated every 10 days and can be freely
accessed via the RBM or Africa Data Dissemination Service
web sites). This is working well in Southern Africa but has
not yet proven to be accurate in highland areas [18].

Factors related with population vulnerability are also crit-
ically important in malaria transmission. The presence of
parasite resistance to the usual antimalarials and to insec-
ticides, population movements and the presence of other
underlying infections (e.g., HIV) are responsible for a
large part of the variability in the incidence of malaria.
Including these factors in models to predict malaria inci-
dence is complex and not yet well understood. This has
led some authors to develop models in which incidence
rates are standardized with respect to non-climatic varia-
bles so that the influence of climate on fluctuations in the
malaria rate can be seen more clearly [19].

The model derived in this paper implicitly assumes popu-
lation vulnerability factors in the term influence of the

malaria rate in the preceding month, combining it with
influence of the climatic variables as factors predisposing
transmission. Incidence in children less than five years of
age may be a more accurate proxy for reservoir load as this
age group bears the major charge of gametocytes. The
results show the relation of the incidence rate with rainfall
and vegetation density in the preceding month. A number
of authors have found a strong correlation between the
incidence rate and variations in these environmental vari-
ables during several preceding months [20], or with inter-
annual variations in these variables [19,21]. The model
derived in the present study uses the absolute value of
rainfall and vegetation density, assuming that these fac-
tors have a directly proportional influence on vector den-
sity and capacity with a one month interval, which is
sufficient to complete the incubation interval or mini-
mum generation time: the complete gametocyte-to-game-
tocyte cycle.

A strong correlation between the incidence rate and the
maximum temperature in the preceding month was
found; however, no association was seen with the mini-
mum temperature. An explanation for this finding could
be that the mean minimum monthly temperature may
consistently exceed the level needed for a viable sexual
cycle of the parasite in the vector. Thus, the slight fluctua-
tions observed at temperatures higher than that level do
not have a significant influence on the extrinsic incuba-
tion period, in contrast to what occurs with the maximum
temperature. The situation may be different in higher alti-
tude areas, where variations in the minimum temperature
under 10°C could block the sexual cycle of P. falciparum,
and significantly affect incidence levels and cycles, popu-
lation immunity and the age-distribution of cases.

Extrapolation of the results obtained in this work can nei-
ther be affirmed nor ruled out to other areas of equal alti-
tude for a particular latitude (where rainfall is an
important factor) or even for similar latitudes with differ-
ent epidemiologic factors, for example, the parasite spe-
cies and the characteristics of the local vector species.
Other authors who have developed transmission models
have noted the importance of maximum ambient temper-
ature in malaria transmission in certain areas [22]. The
model created by Loevinsohn [20] for an area of unstable
malaria transmission in Rwanda included minimum tem-
perature in the preceding one and two months, and rain-
fall in the preceding two and three months, and was
found to explain a considerable part of the variability in
malaria incidence. This author did not take into account
the influence of the malaria incidence rate in the preced-
ing month. In the method used by Abeku et al [23], the
variable malaria incidence was log transformed to avoid
the potential problems related with techniques that
assume normally distributed data. However, it seems that

Scatterplot of difference between expected (by model) and observed malaria notification rates and observed incidence rateFigure 4
Scatterplot of difference between expected (by model) and 
observed malaria notification rates and observed incidence 
rate.
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this procedure reduces the sensitivity and the transparency
of the resulting model.

This study is subject to various limitations. The first is the
assumption that data collection methods did not change
during the study period; in a 7-year period there could
well have been changes in the way cases were reported and
registered. The second limitation arises from the defini-
tion of a case as notification of a patient consultation for
malaria without microbiological confirmation in most
cases, which affects the representativeness of the system.
In this regard, what is important is not to represent the
volume of what is really occurring, but rather the upward
or downward movements that can be observed with the
historic stability of this form of reporting.

Another limitation is that rainfall and temperature data
were gathered in the only station with measuring instru-
ments located in the same place. It is true that the geo-
graphical diversity of Burundi can mean a limitation due
to fluctuation of these variables in small distances, but it
was accepted to gather these data for the following rea-
sons: a) the record of these variables from 1997 to 2003
has remained uniform, with the same measurement
instruments, the same calibration and the same precision;
b) impossibility to have access to instrumental records in
different parts of the Karuzi province during the research
period; and c) other authors have used environmental var-
iables with similar or greater space resolution than the
one used for this research in environments with similar
geographical diversity to study its influence in the epide-
miology of transmissible diseases and/or creation of inci-
dence prediction models bearing in mind such variables
[19,24]. The fourth limitation is that in the model created
the minimum surveillance period for the detection of sub-
stantial variations in the incidence is one month. As with
most epidemiological surveillance systems in rural areas
of Africa, it is very difficult to obtain weekly reporting of
malaria cases, which would permit monitoring of shorter
time intervals and an earlier system of alert; this is what
health facilities in these areas should perform for an
opportune surveillance. Teklehaimanot et al [25] have
proposed and evaluated these types of models using as
entry data weekly reports of both malaria cases and the
percentages of positive parasitemia in areas of Ethiopia,
but their models do not take into account the influence of
climatic factors, which are difficult to obtain with this
periodicity.

Despite these limitations, the model derived in this paper
may give a more accurate prediction of malaria epidemics
by taking into account a readily available proxy (previous
month incidence) for malaria reservoir, combined with
key environmental factors. However, that information
would narrow the prediction time of six weeks of the envi-

ronmental-based MEWS and would require improved
communication and reaction strategies.

Conclusion
In summary, in this paper it has been developed a model
to predict the expected incidence of malaria in a highland
area of Africa one month in the future based on the
observed incidence rate and a combination of climatic
factors (temperature, rainfall and vegetation index) for the
current month. Although the model is reasonably reliable,
especially with regard to the magnitude of the prediction,
it requires active field evaluation to test its behaviour in
real life situations. The model is open to modification to
try to achieve adequate and timely forecasting of malaria
epidemics, with the ultimate aim of reducing the suffering
caused by this disease in inhabitants of the African high-
lands.
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