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DNA barcode for the identification 
of the sand fly Lutzomyia 
longipalpis plant feeding 
preferences in a tropical urban 
environment
Leonardo H. G. de M. Lima1,2, Marcelo R. Mesquita2,3, Laura Skrip4, Moisés T. de Souza Freitas5, 
Vladimir C. Silva2, Oscar D. Kirstein6, Ibrahim Abassi6, Alon Warburg6, Valdir de Q. Balbino5 & 
Carlos H. N. Costa1,2

Little is known about the feeding behavior of hematophagous insects that require plant sugar to 
complete their life cycles. We studied plant feeding of Lutzomyia longipalpis sand flies, known vectors of 
Leishmania infantum/chagasi parasites, in a Brazilian city endemic with visceral leishmaniasis. The DNA 
barcode technique was applied to identify plant food source of wild-caught L. longipalpis using specific 
primers for a locus from the chloroplast genome, ribulose diphosphate carboxylase. DNA from all trees 
or shrubs within a 100-meter radius from the trap were collected to build a barcode reference library. 
While plants from the Anacardiaceae and Meliaceae families were the most abundant at the sampling 
site (25.4% and 12.7% of the local plant population, respectively), DNA from these plant families was 
found in few flies; in contrast, despite its low abundance (2.9%), DNA from the Fabaceae family was 
detected in 94.7% of the sand flies. The proportion of sand flies testing positive for DNA from a given 
plant family was not significantly associated with abundance, distance from the trap, or average crown 
expansion of plants from that family. The data suggest that there may indeed be a feeding preference of 
L. longipalpis for plants in the Fabaceae family.

Visceral leishmaniasis is a lethal vectorborne disease caused by protozoa from the genus Leishmania, and in 
recent decades, it has increasingly affected populations in urban settings of Brazil1. The first major urban outbreak 
took place in Teresina, Piauí State, in the early 1980s after a massive planting of acacias. It has thus been hypothe-
sized that the two events were connected.

The quantity and diversity of flora in a habitat are associated with the quality and availability of resources to 
insects2. Plants supply insects with food, protection against predators and adequate shelter to lay their eggs3,4. 
Accordingly, environmental changes related to plant types and abundance can modify the behavior of disease 
vectors5.

Interactions between sand flies, the vectors of Leishmania parasites, and vegetation have been considered6,7. 
Costa specifically suggested a relation between acacias, which attract sand flies of the species Lutzomyia longi-
palpis and offer protection against predators, and vector proliferation in areas where these plants are abundant8. 
The relationship between acacias and visceral leishmaniasis vectors has been previously considered since one of 
the largest known epidemics of the disease was observed in Sudan among displaced people living in areas with 
abundant acacia trees9.
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Sand flies require sugar as their energy source10–12. However, there is little information about specific sources 
of these sugars and about how sand flies are attracted to plants, especially under natural conditions7,13.

To extend current knowledge about the ecology of insects and plants, more information about insect-plant 
interactions is necessary14. Direct analysis of the plant content in an insect’s digestive tract is a precise approach 
to understanding feeding behavior15.

The use of the DNA barcode tool, a technique that is able to identify the food content in invertebrates, using 
short sequences obtained in conserved regions of the chloroplast, has been widely reported in the literature16–19. 
Specifically, the ribulose diphosphate carboxylase (rbcL) gene has been successfully used to identify food 
source14,20,21. This same locus was used by Junnila et al.22 to identify plant-derived food content in wild-caught 
Phlebotomus papatasi sand flies.

The DNA barcode approach can be used to identify relationships between presence of plant types and vec-
torial capacity or simply the likelihood of vector habitats in a particular area. One application of this technique, 
therefore, would be informing vector control measures, such as urban landscaping techniques, for leishmaniasis 
and other vectorborne diseases. Here, we describe a study designed to identify plant-based feeding preferences 
of L. longipalpis through the use of DNA barcode technology in a Brazilian city where visceral leishmaniasis is 
endemic.

Results
We used rbcL PCR to detect and identify plant DNA in the guts of 100 L. longipalpis captured during 5 days in 
the tropical urban environment of Teresina, Piauí State. Fifty-seven percent of the flies were found positive for 
plant DNA. In the vicinity of the trapping location, we identified 22 species of plants belonging to 14 families 
(Supplementary Table S1). DNA from the ubiquitous plant family Fabaceae was most prevalent and was identi-
fied in 94.7% (54/57) of sand flies in which plant DNA was detected. On average, each sand fly was positive for 
the DNA of 2.1 ± 1.4 plant families. To consider whether plant availability or proximity may have contributed 
to observed feeding trends among sand flies, relationships between plant characteristics and frequency of plant 
DNA detection in sand fly guts were assessed. The proportion of sand flies testing positive for DNA of a given 
plant family was not significantly correlated with local abundance of plants from that family, average distance 
of plants from the trap, or average crown expansion of plants in the family (Fig. 1). A statistically significant, 
negative correlation was found between the average distance between plants from a family and the trap and their 
average crown expansion (Pearson r = −0.77; p = 0.002) (Fig. 1 and Supplementary Table S1).

On each of the five trap days, DNA from four to eight of the plant families was detected in the flies captured 
and analyzed (Table 1). Although there was little variation in measurements of abiotic factors (i.e., temperature, 
air velocity, relative humidity) across the sampling period, humidity was highest on the two days with lower tem-
peratures (Day 1 and Day 4). DNA from 7.5 plant families on average was detected in sand flies captured on these 
two cooler, more humid days, while DNA from 5 plant families on average was detected in sand flies captured on 
the warmer, less humid days.

Figure 1.  Correlations between the proportion of sand flies testing positive for DNA from a given 
plant family and plant characteristics. Red represents a negative correlation and blue represents a positive 
correlation. Larger circles represent stronger correlations. Relationships are presented for (A) proportion of 
sand flies testing positive for DNA from a given plant family, (B) average distance of plants from a given family 
to a trap, (C) average crown expansion of plants from a given family, and (D) local abundance of plants from a 
given family. A strong negative correlation was observed between the distance of plants from a given family to 
the trap and the average crown expansion of plants from that family.
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Discussion
This study verified the feasibility of detecting plant DNA in the digestive tracts of L. longipalpis using a barcode 
approach. The successful application of this approach is consistent with previous studies investigating feeding 
behavior of P. papatasi22. Furthermore, detection of plant DNA in sand fly guts is biologically plausible as sand 
flies feed directly from the plant’s tissue23,24 to obtain sugars that will be used as energy sources25.

However, despite the success of the approach presented here in distinguishing L. longipalpis feeding sources, 
plant DNA was not detected in nearly half of the caught sand flies. This may be explained by factors such as DNA 
degradation by enzymes in the digestive tract—a process that occurs with blood DNA ingested by females during 
blood feeding26,27 — or due to sugar acquisition from honeydew excreted by aphids and coccidians28,29.

At the sand fly trapping site, plant species belonging to 14 families were collected and identified. The Fabaceae 
family was the most frequently detected food source of L. longipalpis (Table 2) despite the low abundance (2.9% 
of local plants) and relatively high average distance from the trap of plants from this family. Additionally, DNA 
from plant families, specifically Anacardiacea and Meliaceae, that were most represented in the area (i.e., plants 
from these families had the highest abundance) was found in fewer insects than DNA from the Fabaceae family 
(Table 2 and Supplementary Table S1). Of further note, some plant families (i.e., Rutacea and Annonacea) with 
abundance higher than that of Fabaceae were found in none of the sand flies (Table 2). This attests to the fact that 
sand flies have a feeding preference for certain plants or plant families.

The plant families Fabaceae, Anacardiaceae, Meliciaeceae, Rutaceae and Annonacea have pantropical dis-
tributions. The Fabaceae family, commonly known as legumes, is considered to be the third largest angiosperm 
family30. The species belonging to this family have carbohydrate heterogeneity, varying from simple sugar to 
complex heteropolysaccharides31. The Anacardiaceae family is known for having many fruit trees of high eco-
nomic value, due to their wood and their production of substances used in industry or medicine32. The Meliaceae 
family includes trees producing meliacin, known for its insecticidal properties33. Plants from the Rutaceae family 
have a large variety of secondary metabolites, as alkaloids, coumarins, flavonoids, limonoids, and volatile oils34. 
Species belonging to the Annonaceae family produce bio compounds with medicinal, allelopathic or pesticide 
properties35.

The attraction of sand flies to certain plants, as well as to certain honey odors, has been reported in different 
studies36–39. According to Muller and Schlein12 sand flies seeking sugar sources are primarily guided by attractive 
factors. These factors can be the carbohydrate composition of certain plants or plant families, high CO2 emission 
which can be detected by the insect40, or even the release of a phytochemical affecting the olfactory system41,42.

Trap day Temperature (°C) Air velocity (m/s) Relative humidity
Number of sand flies 
caught and analyzed

Total number of plant families 
detected in the sand fly guts

1 23 0 92 12 7

2 26 1 78 12 6

3 26 0 83 12 5

4 24 1 92 12 8

5 26 0 81 9 4

Table 1.   Abiotic factors and sampling frequency per day of trapping.

Plant Family
Abundance (% of local 

plant population)
Average Distance 

from Trap (meters)
Average Crown 

Expansion (meters)
N (%) Flies 
with DNA

Anacardiaceae 52 (25.4) 62.3 8.41 2 (3.5)

Bignoniaceae 2 (1.0) 50 9.27 2 (3.5)

Caricaceae 13 (6.3) 72.5 1.68 8 (14.0)

Fabaceae 6 (2.9) 62 8.43 54 (94.7)

Malpighiaceae 17 (8.3) 69.4 3.54 21 (36.8)

Meliaceae 26 (12.7) 62 4.14 1 (1.8)

Myrtaceae 5 (2.4) 60.8 3.97 7 (12.3)

Oxalidaceae 3 (1.5) 60 3.5 22 (38.6)

Rubiaceae 4 (2.0) 73.3 2.52 1 (1.8)

Annonaceae 18 (8.8) 53.4 2.58 0 (0.0)

Musaceae 13 (6.3) 73.1 2.9 0 (0.0)

Rutaceae 25 (12.2) 63.8 3.88 0 (0.0)

Sapindaceae 1 (0.5) 25 12.2 0 (0.0)

Poaceae** 20 (9,8) 14.4 1.09* 0 (0.0)

Table 2.  Characteristics of plants by family and frequency of sand fly feeding. *Average leaf area expansion. 
**The only species belonging to the Family Poaceae in this study was Zea mays (maize), which does not make a 
crown.
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Muller et al.13 who evaluated the P. papatasi attraction index for different plant species, found that phyto-
chemicals serve as potential attractants for insects. Magalhaes-Junior et al.43 additionally verified that volatile 
plant compounds, 1-octen-3-ol, 1-nonanol and 1-heptanol, can act as attractive factors for insects from the  
L. longipalpis species. It is worth noting that the compounds 1-octen-3-ol44 and 1-nonanol45 have been identified 
in different species belonging to the Fabaceae family.

Through an assessment of the relationship between abiotic factors and the number of families detected in sand 
flies per collection day, it was evidenced that more plant families were used as a feeding sources on those days 
with lower temperatures and higher relative humidity. However, no reports were found in the literature about 
how these factors might influence the dynamics of sugar acquisition in these insects. Currently, it is known that 
abiotic factors such as temperature and relative humidity influence the population dynamics in the different sand 
fly species46–48 including L. longipalpis49.

Accordingly, our study suggested there is indeed a feeding preference by L. longipalpis for the Fabaceae family, 
represented in this study by specimens of the species Albizia niopoides, Anadenanthera macrocarpa, Cenostigma 
macrophyllum and Tamarindus indica. At the same time, the data suggests that L. longipalpis had less preference 
for plants belonging to the families Anacardiacea, Meliaceae, Rutacea or Annonacea.

Upon further verification of L. longipalpis plant feeding preferences, it will be necessary to determine whether 
sand fly abundance varies with the presence or absence of plants from certain families. If so, the combined find-
ings may have implications for controlling urban epidemics of vector borne disease. In particular, removal of pre-
ferred sugar sources for sand flies could reduce their prevalence and thus reduce density-dependent transmission 
of the pathogens they harbor.

It is also recommended that new studies relating the feeding interaction between sand flies and plants focus 
not only in the identification of plant species or plant families serving as a carbohydrate source, but also in the 
identification of the chemical components that lead to the insect preference for certain food source. Additionally, 
it is necessary to understand the role of each abiotic factor in this feeding process, and this way, sand fly popula-
tion control measures may be applied.

Materials and Methods
Field collection of phlebotomine sand flies.  Insect and plant collection were conducted in a region of 
the city of Teresina (05°07′700″S/42°46′426″W), capital of Piauí State, in Brazil’s Northeast. The sand flies were 
captured using a CDC light trap, deployed in an animal shelter outside of a household. The trap remained at the 
site for five consecutive nights working 12 hours per night (6 P.M. to 6 A.M.) in January, 2015. The captured sand 
flies were taken to the laboratory for identification and processing. Only L. longipalpis sand flies were separated 
randomly from the sample of sand flies collected every trapping night. In order to avoid the contamination of 
the samples during the DNA extraction process, every plant fragment was removed from the sand fly bodies. 
Previously collected insects were submerged in a solution of 0.5% hypochlorite with 0.01 ml/ml Triton X-100 
detergent, agitated gently for 1 min with forceps, and then rinsed in double distilled water (ddH20) for 1 min as 
proposed by Matheson et al.15. After this procedure, the insects were stored at −80 °C for further DNA extraction. 
All the techniques used for plant identification had been previously tested using DNA directly from plants (Lima 
et al., submitted). For every capture day, values of temperature, relative humidity and wind speed were obtained 
in collaboration with the National Meteorology Institute (INMET).

Field collection of plants.  The botanical material (leaves and flowers) was collected under the criteria that 
plants should be, at the most, 100 meters apart from the sand fly trap, which is within the interval of dispersal of 
the sand fly Lu. longipalpis50. In total, 22 plant species were collected and subsequently identified at the Graziela 
Barroso Herbarium at the Federal University of Piauí. For genetic analysis, species were labeled and stored at 
−80 °C until DNA extraction. Information on species included in the present study is provided in Supplementary 
Table S1.

Distances of each plant specimen from the CDC traps were recorded using a Garmin Dakota 10 GPS device 
(Garmin, USA) and the average expansion of the crown was measured according to methods proposed by 
Blozan51.

DNA extraction, PCR and sequencing.  During the DNA extraction process, sand flies were put in 
1.5 mL test tubes and 300 μl of CTAB lysis buffer (50 mL 2x CTAB + 50 mL ddH20 + 200 mL mercaptoethanol 
(0.2%)) was added. The samples were macerated with an Argos Pellet Mixer (Argos, USA), and 10 μl K protein-
ase (Invitrogen, USA) was added to each tube (concentration 10 mg/mL). Immediately after, the samples were 
incubated for two hours in a 60 °C hot bath. Extraction was then conducted using the PureLink Genomic DNA 
Mini Kit (Invitrogen, USA) according to the manufacturer’s instructions. The plant genomic DNA extraction was 
carried out using the kit BIOPUR Extração Mini Spin Planta (Biometrix, Brazil). The DNA was extracted and 
analyzed in 1% agarose gel under UV light and subsequently was quantified by spectrophotometer NanoDrop™ 
2000 (ThermoScientific, USA) and the fluorometer Qubit® 2.0 (Invitrogen, USA).

For each separated DNA sample, a segment of chloroplast gene rbcL was amplified by PCR using the PCR 
Master Mix (Promega, USA) according to the manufacturer’s instructions for a 50 μL final volume, containing 
1 μL of each primer (rbcLaF and rbcLaR52), and 5 μL DNA template. The reactions took place in a T100 (Bio-Rad, 
USA) thermal cycler. The thermal cycle conditions have been described by Bafeel et al.52. PCR products were 
visualized in 1% agarose gel under UV light and purified using ExoSap-IT (Affymetrix, USA) for the sand fly 
samples and PureLink PCR Purification Kit (Invitrogen, USA) for the plants. Further, this material was quantified 
by using fluorometer Qubit® 2.0 (Invitrogen, USA) and purity verified in spectrophotometer NanoDrop™ 2000 
(ThermoScientific, USA). Sequencing was carried out in an ABI 3500 automatic sequencer (Applied Biosystems, 
USA).
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Only sequences with a PHRED score above 30 were used in the analysis. Contig assembly was carried out 
using CodonCode Aligner (CodonCode Corporation). Local alignments were done using BLAST53.

Assembly of DNA barcode library.  DNA sequences obtained from each primer were deposited in Genbank 
database, linked to the National Center for Biotechnology Information (NCBI) (Supplementary Table S1).  
The deposited sequences were set up for starting a reference library of plant species from the city of Teresina, and 
from other tropical cities.

Identification of the plant DNA in sand flies.  Each sequence of plant DNA found in the insects was 
compared to a local plant library using the BLASTN. Only matches with highest score and, at least, 90% identity 
were considered for the sand flies’ plant feeding preference54.

Statistical Methods.  Descriptive statistics were summarized for individual plant characteristics and abiotic 
factors (i.e., temperature, relative humidity and wind speed) across the five trap days. Correlations between the 
average distance of the plant family from the trap, the average crown expansion of plants from a given family, the 
proportion of plants in the area from a given family, and the proportion of sand flies testing positive for DNA 
from a given plant family were investigated for the entire sample of sand flies.

All statistical analyses were performed using R version 3.2.1 (R Foundation for Statistical Computing, Vienna, 
Austria).
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