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Abstract

We recently reported that mitochondrial dysfunction, characterized by

increased mitochondrial permeability transition (MPT), was present in a

translational swine model of heart failure with preserved ejection fraction

(HFpEF). Cyclophilin D is a key component of the MPT pore, therefore, the

purpose of this study was to test the efficacy of a novel cyclosporine (CsA)

dosing scheme as a therapeutic alternative for HFpEF. Computed tomography

(CT), two-dimensional speckle tracking two-dimensional speckle tracking

(2DST), and invasive hemodynamics were used to evaluate cardiac function.

CT imaging showed 14 weeks of CsA treatment caused eccentric myocardial

remodeling (contrasting concentric remodeling in untreated HF animals) and

elevated systemic pressures. 2DST detected left ventricular (LV) mechanics

associated with systolic and diastolic dysfunction prior to the onset of signifi-

cantly increased LV end diastolic pressure including: (1) decreased systolic

apical rotation rate, longitudinal displacement, and longitudinal/radial/circum-

ferential strain; (2) decreased early diastolic untwisting and longitudinal strain

rate; and (3) increased late diastolic radial/circumferential mitral strain rate.

LV mechanics associated with systolic and diastolic impairment was enhanced

to a greater extent than seen in untreated HF animals following CsA treat-

ment. In conclusion, CsA treatment accelerated the development of heart

failure, including dilatory LV remodeling and impaired systolic and diastolic

mechanics. Although our findings do not support CsA as a viable therapy for

HFpEF, 2DST was effective in differentiating between progressive gradations

of developing HF and detecting diastolic impairment prior to the develop-

ment of overt diastolic dysfunction.
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Introduction

Although heart failure with preserved ejection fraction

(HFpEF) has been clinically recognized for over three

decades, it remains somewhat of an enigma. It is known

HFpEF patients are a heterogeneous group displaying

multiple pathological mechanisms and comorbidities

such as hypertension, obesity, diabetes, chronic kidney

disease, and aging (Maeder and Kaye 2009; Borlaug and

Paulus 2011). Patients with HFpEF are largely unrespon-

sive to current therapies proven effective in heart failure

patients with reduced systolic function (HFrEF), suggest-

ing these heart failure subtypes are distinct from one

another with divergent pathophysiology (Maeder and

Kaye 2009; Paulus and van Ballegoij 2010; Borlaug and

Paulus 2011; Borlaug and Redfield 2011; Burkhoff 2012;

Zile et al. 2013). Furthermore, HFpEF is difficult to diag-

nose given the compensated state of resting cardiac func-

tion, often requiring an additional physiological stressor

such as exercise testing in order to reveal myocardial

dysfunction (Borlaug et al. 2006, 2010a,b; Ennezat et al.

2008; Tan et al. 2009; Maeder et al. 2010; Haykowsky

et al. 2011). As a result, there is a critical need for

research examining novel treatment options for HFpEF

patients and identification of effective noninvasive mech-

anisms of monitoring cardiac function (Heidenreich

et al. 2013).

The link between impaired myocardial energetics,

mitochondrial dysfunction, and cell death is well estab-

lished in heart failure (Zhang 2002; Ventura-Clapier

et al. 2004; Foo et al. 2005; Dorn 2009). Previous work

from our laboratory demonstrated the presence of mito-

chondrial dysfunction, specifically increased susceptibility

to mitochondrial permeability transition (MPT), in a

translational swine model of HFpEF (Emter and Baines

2010). This energetic impairment may be linked to our

recent report of increased isovolumic relaxation (Tau),

an energy-dependent phase of relaxation, in the same

model (Marshall et al. 2013). This study was designed to

examine the physiological impact of inhibiting cyclophi-

lin D, a primary molecular component of the MPT

pore, on cardiac function using cyclosporine (CsA).

Immunosuppressive doses of CsA were thoroughly

examined as inhibitors of calcineurin and cardiac

remodeling in heart failure (Frey and Olson 2003), and

an early clinical trial for ischemia-reperfusion/myocardial

infarction treatment, which has now moved into phase

III (The CIRCUS trial), showed CsA limits reperfusion

injury following acute myocardial infarction (Piot et al.

2008). In contrast to past studies, we used a reduced

nonimmunosuppressive dose, which would prevent MPT

via inhibition of cyclophilin D without subsequent inter-

ference of calcineurin signaling or associated cardiac

remodeling (Okumi et al. 2008; Piot et al. 2008; Rigol

et al. 2008; Marechal et al. 2011). We hypothesized CsA-

dependent inhibition of MPT would attenuate the dia-

stolic dysfunction previously observed and ultimately,

the development of HFpEF via improved myocardial

energetics. To test this hypothesis, we used 2D speckle

tracking echocardiography, a sensitive noninvasive tech-

nique of evaluating myocardial mechanics that has

recently gained attention as an effective means of diag-

nosing HFpEF (Kosmala et al. 2008; Norman et al. 2011;

Yip et al. 2011; Morris et al. 2012a). The purpose of this

study was to test the efficacy of a novel CsA dosing

scheme as a viable therapeutic alternative for HFpEF.

For this study, we used a translational and clinically rel-

evant mini-swine model of HFpEF that exhibits key

myocardial pathophysiological characteristics of the dis-

ease, including diastolic dysfunction, depressed contrac-

tile reserve, fibrosis, hypertrophy, and increased

natriuretic peptide expression (Marshall et al. 2013) pro-

viding an ideal setting for the study of novel therapeutic

approaches in this population.

Methods

Aortic banding and cyclosporine treatment

Before aortic banding, intact male Yucatan miniature

swine (27–30 kg; 8 months old) were matched for body

mass and cardiac function then assigned into three

groups: nonsham sedentary control (CON; n = 5),

banded HF sedentary (HF; n = 5), and banded HF CsA

treated (HF-CsA; n = 5). Heart failure was induced by

aortic banding for a period of 20 weeks using methods

previously published by our laboratory (Marshall et al.

2013). A systolic transstenotic gradient of ~70 mmHg

(73 � 2, 74 � 1, for HF and HF-CsA, respectively,

P = NS) was achieved while maintaining a distal periph-

eral vascular mean arterial pressure (MAP) of ~90 mm

Hg (93 � 1, 90 � 1, for HF and HF-CsA, respectively,

P = NS) under anesthesia using phenylephrine (I.V.

1–3 lg kg�1 min�1) at a heart rate of 100 beats/min

(100 � 5, 107 � 2, for HF and HF-CsA, respectively,

P = NS). Following the development of left ventricular

(LV) hypertrophy, treatment with CsA (2.0 mg kg�1

day�1, oral) or placebo began 6 weeks post aortic banding

and continued daily for 14 weeks. Animals were fed a

standard diet averaging 15–20 g/kg once daily, and water

was provided ad libitum. Dissection of vital tissues

occurred at the time of death. All animal protocols were

in accordance with the “Principles for the Utilization and

Care of Vertebrate Animals Used in Testing Research and

Training” and approved by the University of Missouri

Animal Care and Use Committee.
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In vivo cardiovascular function

Central and peripheral hemodynamic measures were

collected 20 weeks post aortic banding as described

previously (Marshall et al. 2013). Animals were ini-

tially anesthetized with a telazol (5 mg/kg)/xylazine

(2.25 mg/kg) mix and maintained on propofol (6–
10 mg kg�1 min�1 with bolus as needed). Heparin was

given with an initial loading dose of 300 U/kg i. v., fol-

lowed by maintenance of 100 U/kg each hour. A median

sternotomy was performed and the pericardium opened

at the apex for insertion of catheters. Great care was taken

to leave the pericardium as intact as possible. A custom

fluid-filled angiocatheter was inserted into the apex of the

heart for measurement of LV pressure, advanced into the

aorta for measurement of peripheral systemic MAP in the

aorta (distal to the aortic band in HF groups), and data

were recorded using LabChart (ADInstruments, Inc.,

Colorado Springs, CO). Animals were allowed to stabilize

for 10 min after LV catheter placement until a stable

pressure and heart rate pattern were observed. This state

of homeostasis was labeled “Resting”. Catheter placement

was visualized and confirmed using angiography (Infimed

software, Palo Alto, CA).

Computed tomography imaging

CT image collection, reconstruction, and analysis were

performed as previously described (Bluemke et al.

2008; Chen et al. 2013). Animals were scanned with

electrocardiographic (ECG) monitoring using a

second-generation 320 detector row CT unit (Aquilion

ONE ViSION; Toshiba Medical Systems, Otawara,

Japan). A 60 mL bolus of iodixanol (Visipaque 320 mg

iodine/mL, GE Healthcare, Oslo, Norway) was injected

intravenously at rate of 5 mL/sec, opacifying the LV

chamber during first pass (Bluemke et al. 2008). During

CT acquisition, respiration was suspended and imaging

performed using a retrospectively gated protocol with

the following parameters: three R-R intervals,

gantry rotation time 275 msec, detector collimation

0.5 mm 9 320, tube voltage 120 kV, and tube current

700 mA (Chen et al. 2013). From every 5% of the R-R

interval, raw data were reconstructed to form an isotro-

pic 512 9 512 matrix with contiguous 0.5 mm slice

thickness. Multiple segment iterative reconstruction algo-

rithms (AIDR3D standard; Toshiba Medical Systems),

and a standard soft tissue kernel (FC03) were used.

Temporal resolution based on gantry rotation of multi-

detector CT acquisitions was 45.8 msec. Cardiac EF%

and size (LV and atrial systolic/diastolic volumes) were

measured using Vitrea workstation (Vitrea fx 6.3; Vital

Images, Minnetonka, MN).

Two-dimensional speckle tracking
echocardiography

Transthoracic echocardiography was performed under

inhaled isoflurane anesthesia (0.5%) in the supine/right

lateral position 2 and 14 weeks after beginning treatment

with CsA using a GE Vivid I Ultrasound system as

previously described by our lab (Emter and Baines 2010;

Marshall et al. 2013). Analysis was performed offline

using GE EchoPac Software. LV end diastolic dimension

and wall thickness were measured using M-mode record-

ings (Emter and Baines 2010; Marshall et al. 2013). Six

segments of the LV and septum were generated from api-

cal four-chamber and short-axis two-dimensional views

(acquired at the mitral-valve and apex levels) and aver-

aged to determine global strain, strain rate, and displace-

ment in the longitudinal, transverse, radial, and

circumferential dimensions over three cardiac cycles

(Mondillo et al. 2011; Marshall et al. 2013). Torsion was

calculated as the difference between mitral and apical end

systolic rotation (degrees) and normalized to both LV

hypertrophy (wall thickness) and end diastolic chamber

length as previously described (Russel et al. 2009;

Marshall et al. 2013).

Statistical analysis

All data analysis was performed using SPSS version 19.0

(IBM Corporation, Armonk, NY) or SigmaStat version

3.5. Group comparisons were made using either one-way

or repeated measures analysis of variance (ANOVA).

Group differences revealed by ANOVA were found using

Student Newman-Keuls post hoc analysis. Within group

comparisons were made using paired samples t-test. All

data are means � SE, and significance is reported at

P < 0.10 and P < 0.05 levels (Williams et al. 1997;

Curran-Everett and Benos 2004; Emter et al. 2005, 2011;

Emter and Baines 2010; Marshall et al. 2013).

Results

LV Remodeling

Myocardial hypertrophy occurred in all aortic-banded

groups regardless of drug intervention. After 1 month,

aortic banding significantly increased LV diastolic

wall thickness by 18% in HF (P < 0.05, 5.5 � 0.3 and

6.7 � 0.4 mm for baseline preaortic banding and

1 month post banding, respectively; paired-samples t-test)

but not CON animals (P = NS, 5.2 � 0.3 and 5.9 �
0.3 mm for baseline preaortic banding and 1 month post

banding, respectively; paired-samples t-test) and was sig-

nificantly different between groups 2 months post aortic
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banding (P < 0.05; 5.6 � 0.5 and 7.5 � 0.3 mm for

CON and HF, respectively) similar to previous findings

from our lab (Marshall et al. 2013). LV end diastolic

dimension was not altered 1 month post aortic banding

(P = NS; 44.1 � 1.1 and 42.2 � 0.8 mm for CON and

HF, respectively). In total, these results indicate concen-

tric LV hypertrophy (an observation commonly associated

with LV pressure overload) was present prior to the onset

of CsA treatment. No differences in echocardiographic

measures of morphology existed between HF and HF-CsA

groups at this time, therefore, data from both aortic-

banded groups were combined prior to the start of CsA

treatment. CT assessment of LV morphology (Table 1)

indicated LV mass was increased in the HF-CsA group

compared to CON and HF. LV end systolic and diastolic

volumes (LV EDV and LV ESV, respectively) were signifi-

cantly increased in the HF-CsA group compared to CON

and HF animals, as were left atrial (LA) volumes. When

normalized to LV EDV, LV mass was increased only in

the HF group. These findings indicate that although LV

remodeling occurred in both HF groups, the hypertrophy

was concentric in HF animals as opposed to eccentric

(i.e., dilated) in the HF-CsA group.

Postmortem assessment of LV morphology supports

our CT imaging data. Body weight was significantly

increased in the HF-CsA group (Fig. 1, Table 2), there-

fore, heart morphology measures are reported both abso-

lute and relative to body weight. Absolute whole heart

weight was significantly increased in both HF and HF-

CsA groups compared to CON. However, when normal-

ized to body weight significant hypertrophic remodeling

occurred only in HF animals illustrating the coherence of

our gross and imaging data.

LV function and hemodynamics

Resting hemodynamic and LV functional data 20 weeks

post aortic banding are presented in Table 1. In general,

systolic function was depressed in HF-CsA animals com-

pared to CON and HF groups. In HF-CsA animals LV EF

was reduced (47 � 3%) compared to CON and HF

groups (54 � 2 and 56 � 4, respectively; P = 0.108;

Table 1). Additionally, we observed a concurrent reduc-

tion in LA EF% and increase in LV ESV in HF-CsA

animals. LV end systolic/diastolic pressures (LV ESP and

LV EDP, respectively) and peripheral MAP (distal to the

aortic band) was significantly increased in HF-CsA com-

pared to HF and CON groups. The elevation of central

and peripheral pressures in HF-CsA animals suggests CsA

treatment may have caused a hypertensive reaction. Heart

rate was reduced in both HF and HF-CsA groups, despite

Table 1. CT and Hemodynamic analysis of resting systolic and

diastolic function 20 weeks post aortic banding.

CON HF HF-CsA

Systolic function

HR (beats/min) 126 � 5 106 � 4* 114 � 4§

MAP (mmHg) 53 � 11 59 � 4 86 � 8*,†

LV ESV (mL) 32 � 3 24 � 2 43 � 3†

LV ESP (mmHg) 65 � 7 81 � 6 109 � 9*

LV EF (%) 54 � 2 56 � 4 47 � 3

LA ESV (mL) 25 � 2 28 � 1 44 � 3*,†

LA EF (%) 47 � 1 40 � 5 33 � 2*

Diastolic function

LV EDV (mL) 70 � 8 57 � 6 80 � 4†

LV EDP (mmHg) 11 � 1 11 � 1 15 � 1*,†

LA EDV (mL) 47 � 2 46 � 1 65 � 3*,†

Morphology

LV Mass (g) 85 � 4 87 � 3 103 � 3*,†

LV Mass:Vol (g/mL) 1.2 � 0.1 1.7 � 0.1*,‡ 1.3 � 0.1

Values are means � SE. HR, heart rate; MAP, mean arterial pres-

sure; LV ESV, left ventricular end systolic volume; LV ESP, left ven-

tricular end systolic pressure; LV EF, left ventricular ejection

fraction; LA ESV, left atrial end systolic volume; LA EF, left atrial

ejection fraction; LV EDV,, left ventricular end diastolic volume; LV

EDP,, left ventricular end diastolic pressure; LA EDV, left atrial end

diastolic volume; LV mass:Vol, LV free wall mass:LV EDV ratio. Sig-

nificance is indicated at *P < 0.05 versus CON; †P < 0.05 versus

HF; ‡P < 0.05 versus HF-CsA; §P = 0.08 versus CON.

Table 2. Group weight and postmortem assessment of whole

heart morphology.

CON HF HF-CsA

Body weight (kg) 35 � 1 36 � 1 46 � 1*,†

Heart weight (g) 174 � 6 206 � 11* 245 � 4*,†

HW:BW (g/kg) 5.0 � 0.2 5.7 � 0.3‡ 5.4 � 0.1

Values are means � SE. HW:BW, heart weight:body weight ratio.

Significance is indicated at *P < 0.05 versus CON; †P < 0.05

versus HF; ‡P < 0.10 versus CON.
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pressure being significantly elevated in HF-CsA animals

only.

Diastolic mechanics

Late diastole

The strain rate data presented in Figure 2 indicate CsA

treatment acutely altered LV mechanics associated with

atrial systole. Global longitudinal (Fig. 2A) and radial (at

the level of the mitral valve; Fig 2B) late diastolic strain

rates were reduced in HF-CsA compared to CON and HF

groups 2 weeks post–treatment. This effect was abrogated

with chronic CsA treatment (14 weeks), as late diastolic

strain rates were increased beyond that seen in the HF

group. The measured values and increase in global mitral

valve radial late diastolic strain rate observed in HF animals

at 14 weeks are similar to previously published work by

our laboratory (Marshall et al. 2013), supporting earlier

observations of enhanced atrial systole in this HFpEF

model.

Early diastole

Acute and chronic treatment with CsA impaired LV

mechanics associated with early LV diastolic filling

beyond that observed in HF animals. Global LV untwist-

ing rate during early diastole was reduced in HF-CsA ani-

mals at 2 and 14 weeks compared to CON (Fig. 3A). A

reduction in the rate of LV apical untwisting was associ-

ated with significant reductions in LV free wall longitudi-

nal (Fig. 3B) and apical circumferential (Fig. 3C) and

radial (Fig. 3D) strain rates. In HF animals, LV untwist-

ing and longitudinal strain rate were reduced and apical

radial/circumferential strain rates unchanged compared to

CON animals, similar to findings previously reported by

our lab (Marshall et al. 2013).

Systolic mechanics

Treatment with CsA altered LV mechanics in a manner

associated with diminished systolic function. LV torsion

(absolute and normalized to LV wall thickness and end dia-

stolic chamber length) was reduced in HF-CsA animals

after 14 weeks of treatment (Fig. 4A and B). Apical global

peak systolic rotation rate (Fig. 4C) was reduced in HF ani-

mals compared to CON similar to our previously published

findings (Marshall et al. 2013), and this effect was further

exacerbated in the HF-CsA group at both time points. Fig-

ure 5 shows decreased rotational movement in HF-CsA

animals was generally associated with concurrent reduc-

tions in global systolic longitudinal (5A) and longitudinal

transverse (5B) displacement observed from an apical four-

chamber view. Strain measures presented in Figure 6 com-

plement these findings, evident from reduced global longi-

tudinal (6A), radial (6B), longitudinal transverse (6C), and

circumferential (6D) systolic strain at all time points in the

HF-CsA group compared to CON. Reduced displacement

in the longitudinal view was observed only at 14 weeks in

HF animals (Fig. 5A and B). Global longitudinal transverse

systolic strain (Fig. 6A) was not reduced in HF animals,

and longitudinal transverse strain (Fig. 6C) was only

decreased at 14 weeks. Global radial (Fig. 6B) and circum-

ferential (Fig. 6D) systolic strain were decreased at all mea-

sured time points in the HF group compared to CON, but

to a lesser degree than that observed in in HF-CsA animals

following 2 weeks of CsA treatment.

Discussion

In this study, we provide a thorough examination of

myocardial function following a novel drug intervention
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using a comprehensive combination of techniques includ-

ing CT, 2D speckle tracking, and invasive hemodynamics

in a translational large animal model of HFpEF. In the

presence of existing hypertrophy and developing heart

failure, our results indicate: (1) our novel CsA dosing

scheme accelerated the development of early evidence for
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heart failure, including dilatory LV remodeling and

impaired systolic and diastolic mechanics; (2) 2D speckle

tracking was effective in differentiating between progres-

sive gradations of developing heart failure; and (3) 2D

speckle tracking is able to detect impaired diastolic LV

mechanics early in the disease process prior to the devel-

opment of overt diastolic dysfunction.

It is well established that conventional therapies proven

effective in HFrEF have failed to improve the prognosis

of HFpEF patients over the past three decades, leading to

an unacceptably high rate of mortality and illustrating the

need for the development of novel therapeutic strategies

(Maeder and Kaye 2009; Paulus and van Ballegoij 2010;

Borlaug and Paulus 2011; Borlaug and Redfield 2011;

Burkhoff 2012). The CsA dosage administered in this

study was based on the effective dose given to humans in

an early clinical trial for ischemia-reperfusion/myocardial

infarction treatment (Piot et al. 2008), which has now

moved into a phase III clinical trial (The CIRCUS trial).

A low dose of CsA (1 mg kg�1 day�1) was shown to

inhibit the MPT pore and beneficially influence cardiac

remodeling in mice (Marechal et al. 2011), and

2 mg kg�1 day�1 is 5–10 times lower than the dose of

CsA (10-20 mg kg�1 day�1) used for immunosuppression

in the pig (Okumi et al. 2008; Rigol et al. 2008). Thus,

the study was designed to prevent inhibition of calcineu-

rin and/or subsequent immunosuppression focusing solely

on inhibition of cyclophilins and related MPT. We

hypothesized this novel twist on a well-known drug could

improve myocardial energetics independent of its classic

use as an inhibitor of myocardial remodeling, thus

improving diastolic mechanics and function in HFpEF.

In contrast to this objective, the most interesting find-

ing of the study was that chronic treatment with low

doses of CsA induced LV dilation and exacerbated systolic

and diastolic dysfunction during developing heart failure,

refuting our initial hypothesis. Although our results indi-

cate the novel CsA dosing scheme administered in this

study does not appear to be an effective therapeutic alter-

native for HFpEF, the accelerated development of heart

failure in treated animals provided a unique opportunity

to evaluate 2D speckle tracking as an effective means of

identifying distinct stages of LV function along a spec-

trum of developing heart failure. CsA-dependent dilatory

remodeling of the LV was associated with altered LV

mechanics associated with reduced systolic emptying,

impaired early diastolic filling, and enhanced atrial systole

that extended beyond that observed in HF animals. These

mechanical measures were associated with impaired

hemodynamics and cardiac function. Specifically, reduc-

tions in cardiac torsion (Fig. 4A and B), apical systolic

rotation rate (Fig. 4C), and systolic strain values (Fig. 6)

were reflected in declining LV systolic function

(EF = 47%) and increased LV ESV and ESP (Table 1).

Reductions in early diastolic untwisting (Fig. 3A) and

strain rates (Fig. 3B–D) reflect diastolic dysfunction evi-

dent as an increase in LV EDP and EDV (Table 1). Previ-

ous clinical studies have demonstrated the gradual decline

of torsion, twisting, and strain measures with the progres-

sive development of heart failure (Takeuchi et al. 2007;

Kosmala et al. 2008; Park et al. 2008), and the depression

of LV mechanical measures associated with systolic and

early diastolic dysfunction measured following 14 weeks

of treatment in the HF-CsA group matches these

observations. In summary, our 2D speckle tracking data

display excellent coherence with our hemodynamic and

LV functional data, suggesting dilation of the LV is

associated with a parallel and comprehensive deterioration

of normal mechanical function.

Augmenting atrial systole is another common compen-

satory mechanism of preserving diastolic filling in heart

failure patients, and evidence of this is present in both

the HF and HF-CsA groups and reflected as an increase

in late diastolic longitudinal (Fig. 2A) and radial

(Fig. 2A) strain rate at 14 weeks. Interestingly, 2 weeks of
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Figure 5. LV systolic longitudinal displacement. (A–B) Cyclosporine
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longitudinal (free wall to septum) displacement during systole at 3

of 4 measured time points in contrast to HF animals, in which

displacement was only reduced 20 weeks post aortic banding

(14 weeks). (*P < 0.05 vs. CON; †P < 0.05 vs. HF)
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CsA treatment acutely reduced both of these measures

suggesting the contributions of atrial systole to LV filling

during late diastole was reduced. This type of mechanical

change in the context of HFpEF, in which diastolic func-

tion and LV filling is typically impaired, would be consid-

ered a positive adaptation. However, over the course of

treatment these values increased to a greater degree in

HF-CsA animals and coincided with a significant increase

in LV EDP. These findings suggest this common compen-

satory mechanism of preserving diastolic filling in HF

patients, observed in this study and previously in our

HFpEF swine model (Marshall et al. 2013), was made

worse by chronic CsA treatment. The differential response

to acute and chronic CsA treatment is difficult to recon-

cile, however, we speculate it could be the result of LV

remodeling. The concentric hypertrophy evident in HF-

CsA animals (as indicated by increased LV diastolic wall

thickness) at 2 weeks of CsA treatment when compared

to the dilatory LV remodeling displayed after completing

our dosing regimen suggests significant changes in wall

stress could exist and thus, have substantial subsequent

impact on LV mechanics. Although our findings suggest

an acute, low dose of CsA may attenuate enhanced late

diastolic mechanics commonly observed in HFpEF, the

clinical relevance of these data is questionable when

compared to our summary findings of globally impaired

LV mechanical function following chronic CsA treatment.

Interestingly, LV mechanics associated with systolic

dysfunction was also observed in the HF group. These

findings appear counterintuitive, as HFpEF patients typi-

cally demonstrate preserved systolic function at rest. Pres-

ervation of resting systolic function is a common feature

of HFpEF, although decreased cardiac functional reserve

is well established in this patient population (Tan et al.

2009; Norman et al. 2011). The coexistence of diagnostic

indices of both normal and reduced systolic function is

common and difficult to reconcile in HFpEF, thus, it

remains controversial whether LV systolic function

remains normal in these patients. Recently published data

from our lab demonstrate that this paradox exists in our

model (Marshall et al. 2013) and indeed, results from this

study show that depressed systolic mechanics was

observed with other markers of preserved systolic func-

tion including maintenance of normal EF% (>50%) and

LV end systolic volumes in the HF group. Our findings

suggest that 2D speckle tracking may be an effective and

sensitive means of uncovering early systolic dysfunction

in HFpEF patients before the deterioration of other more

common markers of systolic function, such as EF%, are

observed. Although the clinical implications of our find-
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ings are yet to be determined, the divergent nature of LV

mechanics observed between the three experimental

groups in this study suggests 2D speckle tracking has

diagnostic and therapeutic significance that could poten-

tially improve our understanding of the development and

treatment of HFpEF.

Recently, 2D speckle tracking echocardiography has

received increasing attention as a clinically relevant diag-

nostic tool for assessing myocardial function in HFpEF

patients (Kosmala et al. 2008; Norman et al. 2011; Yip

et al. 2011; Morris et al. 2012a). Adding to this body of

literature, our results suggest 2D speckle tracking is able

to detect altered LV mechanics associated with impaired

systolic and diastolic function prior to the onset of overt

diastolic dysfunction evident as increased LV end diastolic

pressure. These data parallel recent published results from

our laboratory which demonstrated diastolic dysfunction

and impaired contractile reserve, hallmark features of

HFpEF, were present without a significant increase in LV

end diastolic pressure (≤15 mmHg) in animals exhibiting

EF > 50% (Marshall et al. 2013). This finding carries clin-

ical significance, as recent evidence from (Morris et al.

2012a) suggests alterations to LV mechanics associated

with impaired systolic and diastolic performance in

HFpEF are linked to increases in LV filling pressure. Clin-

ically, LV filling pressure is commonly assessed noninva-

sively using the mitral E/e’ ratio. An E/e’ ratio of >15 is

indicative of elevated LV filling pressures, and this stan-

dard is used as a key component of the diagnostic deter-

minants for the evaluation of HFpEF (Paulus et al. 2007;

Nagueh et al. 2009). Clinical studies examining 2D

speckle tracking and/or LV filling pressures in HFpEF

typically include NYHA class ≥2 patients in which filling

pressures are already elevated (Borlaug et al. 2010a;

Maeder et al. 2010; Norman et al. 2011; Yip et al. 2011;

Morris et al. 2012a), although recent evidence suggests E/

e’ ratios are not always elevated in these patients (Kos-

mala et al. 2008; Phan et al. 2009; Tan et al. 2009; Borl-

aug et al. 2010a; Maeder et al. 2010; Norman et al. 2011).

Indeed, several studies performed in HFpEF patients

report mitral E/e’ ratios of <15, with many reporting val-

ues <10 (Kosmala et al. 2008; Tan et al. 2009; Borlaug

et al. 2010a; Maeder et al. 2010; Norman et al. 2011). In

total, our results suggest that LV diastolic mechanics may

be impaired prior to increases in LV end diastolic pres-

sure and 2D speckle tracking could potentially enhance

earlier detection of diastolic dysfunction in patients at risk

for developing HFpEF.

Finally, we addressed the possibility that data generated

in the current and previous studies by our lab were

unique to the animal model. Systolic longitudinal strain

and strain rate values in CON animals were similar to

recently reported norms reported for healthy adults (Lot-

fi-Tokaldany et al. 2013), and we previously demonstrated

torsion and untwisting rates correlate to traditional indi-

ces such as EF%, LV ESV, and Tau (Marshall et al. 2013)

as previously observed in humans (Dong et al. 2001;

Wang et al. 2007; Notomi et al. 2008). Torsion and longi-

tudinal, circumferential, and radial strain measurements

in all animals from this study were also directly compara-

ble to published human values (Wang et al. 2007;

Kosmala et al. 2008; Park et al. 2008; Phan et al. 2009;

Tan et al. 2009; Yip et al. 2011; Morris et al. 2012a,b).

Furthermore, data in this study showing preserved tor-

sion, diminished apical systolic and early diastolic rota-

tion rates, and enhanced late diastolic radial strain in the

HF group recapitulate previous results from our lab

(Marshall et al. 2013). Although these findings do not

formally establish reproducibility, our confirmation of

similar outcome measures from two different studies, two

different sets of animals, and two different analysts

importantly demonstrates the consistency of the model

and supports its relevance clinically as a model of HFpEF.

Although outside the hemodynamic and imaging focus

of this study, we are currently examining multiple molec-

ular mechanisms regarding the detrimental cardiac out-

comes observed following our CsA dosing regimen.

Regarding systemic hemodynamic mechanisms, it is well

known that CsA can cause hypertension (Hoorn et al.

2012), although the dose used in this study (on the low

end of the dosing spectrum) has only been associated

with increases in mean blood pressure of 5 mmHg on

average (Robert et al. 2010). In this context, it is possible

the increased systolic, diastolic, and MAPs observed in

the HF-CsA group accelerated the progression to LV dila-

tion in the face of our sustained increase in afterload as a

result of chronic aortic-banding, representing a functional

systemic mechanism underlying our findings. Endothelin-

1 (ET-1) is known to contribute to the renal hypertension

observed following treatment with calcineurin inhibitors

such as CsA (Perico et al. 1990; Lanese and Conger 1993;

Textor et al. 1995; Cavarape et al. 1998), and previous

studies in rats have demonstrated ET-1 plays a role in

CsA-induced hypertension (Takeda et al. 1995). However,

it is still unclear if the effects of ET-1 on calcineurin

inhibitor-dependent hypertension are the result of sys-

temic or renal influences. We have previously shown

enhanced coronary vascular sensitivity to ET-1 in our

swine HFpEF model (Emter et al. 2011) and, although

speculative, a parallel adaptation in the peripheral vascu-

lature could be a systemic mechanism fundamental to the

hypertension and related dilatory LV remodeling observed

in this study. Furthermore, calcineurin inhibitor-depen-

dent hypertension has also been linked to sodium reten-

tion (Curtis et al. 1988). Subsequent increases in systemic

fluid volume may have also played a role in both the
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hypertensive response and significant increase in weight

observed in the HF-CsA group.

Limitations

This study used a comprehensive combination of tech-

niques including CT, 2D speckle tracking, and invasive

hemodynamics difficult to duplicate clinically, however,

there are limitations. A recent editorial addressed the

topic of variability in strain measures regarding why 2D

speckle tracking has not become standard for clinical

diagnosis of heart disease (Marwick 2012). A growing

amount of evidence exists regarding the considerable

intra- and intervariability observed in strain measures

(Oxborough et al. 2012; Risum et al. 2012). Strain vari-

ability has been shown to be directionally dependent,

with radial and transverse strain showing the highest vari-

ability and coefficients of variation ranging from 6 to

33% (Marwick 2012; Risum et al. 2012). Furthermore,

variability in strain rate is greater compared to strain,

and substantial variability exists when moving from apical

to basal segments (Leung and Ng 2010; Oxborough et al.

2012). In this study, a great deal of variation is observed

in CON animal strain rates at our 2 and 14 week time

points. We believe this to be in part both methodological

and as a result of normal physiological growth. Strain

measures can be impacted by the complexity of myocar-

dial fiber orientations, resulting in the capture of different

fiber layers at multiple levels and variable results (Bauer

et al. 2011; Risum et al. 2012). In this regard, CON ani-

mals in this study showed normal physiological growth

evident as an increase in mean weight from 27 to 35 kg.

We have previously published this growth is reflected in

both animal weight and an increase in cardiac size

(Emter and Baines 2010). Changes in overall body size

and physiological heart growth can lead to alterations in

beam direction and potentially the capture of different

myocardial layers or fiber orientation, ultimately leading

to changes in the number and/or size of speckle kernels

for analysis (Risum et al. 2012). The studies outlined

above provide insight regarding the variability in CON

animal strain rates observed herein, and demonstrate the

need for continuing research regarding the routine imple-

mentation of 2D speckle tracking for clinical diagnosis of

heart disease.

In conclusion, our results indicate chronic low-dose

CsA treatment accelerates the development of heart fail-

ure. Although our findings do not support the use of

low-dose CsA as a viable therapeutic alternative for

HFpEF, our results demonstrate 2D speckle tracking is

effective in differentiating between progressive gradations

of developing heart failure. Furthermore, we were able to

detect impaired diastolic LV mechanics prior to the devel-

opment of overt diastolic dysfunction. Our findings add

to the growing body of evidence suggesting 2D speckle

tracking holds significant potential as a clinically relevant

diagnostic tool for assessing myocardial function in heart

failure patients.
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