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Abstract

Theories of language organization in the brain commonly posit that different regions underlie 

distinct linguistic mechanisms. However, such theories have been criticized on the grounds that 

many neuroimaging studies of language processing find similar effects across regions. Moreover, 

condition by region interaction effects, which provide the strongest evidence of functional 

differentiation between regions, have rarely been offered in support of these theories. Here we 

address this by using lesion-symptom mapping in three large, partially-overlapping groups of 

aphasia patients with left hemisphere brain damage due to stroke (N = 121, N = 92, N = 218). 

We identified multiple measure by region interaction effects, associating damage to the posterior 

middle temporal gyrus with syntactic comprehension deficits, damage to posterior inferior frontal 

gyrus with expressive agrammatism, and damage to inferior angular gyrus with semantic category 

word fluency deficits. Our results are inconsistent with recent hypotheses that regions of the 

language network are undifferentiated with respect to high-level linguistic processing.
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1. Introduction

Language is a multifaceted system consisting of interacting components. Beyond the 

phonetic and phonological levels, it consists of a set of lexical items (roughly words and 

morphemes), with associated conceptual representations, hierarchical syntactic structures, 

and complex semantic interpretation of these elements. Many authors have sought to 

associate these distinct aspects of language with different perisylvian brain regions thought 

to underlie language, often (but not always) supported primarily by neuroimaging data 

(Bornkessel-Schlesewsky and Schlesewsky, 2013; Friederici, 2017; Hagoort, 2014; Tyler 

and Marslen-Wilson, 2008; cf. Matchin and Hickok, 2020). However, the fact that a given 

neuroimaging study may find significant activations in some regions and not in others does 

not prove a functional distinction among them. In any given study, statistical power may 

be stronger in some regions rather than others. Therefore, region by condition interaction 

effects are necessary in order to conclusively demonstrate a functional distinction among 

regions (Nieuwenhuis et al., 2011). Such interactions have rarely been shown, limiting the 

ability to claim strong differences in function among regions (for discussion, see Blank 

et al., 2016; Blank and Fedorenko, 2020; Fedorenko et al., 2020; cf. Matchin and Wood, 

2020). Moreover, many neuroimaging experiments have actually shown similar activations 

in language-related cortex for different aspects of linguistic processing, particularly for 

syntax and semantics (Diachek et al., 2020; Fedorenko et al., 2012; Fedorenko et al., 2020; 

Humphries et al., 2006; C. 2007; Matchin et al., 2017, 2019).

In response to this lack of conclusive evidence, some researchers have questioned whether 

there is in fact functional segregation across regions of the language network involved in 

lexical access, syntactic processing, and semantic interpretation, instead advocating for a 

shared processing mechanism (I. Blank et al., 2016; I. A. Blank and Fedorenko, 2020; 

Fedorenko et al., 2020; Mahowald and Fedorenko, 2016). This idea takes inspiration from 

linguistic theory, which posits a close interconnection among these systems. However, 

the fact that regions of the language network often show a somewhat similar activation 

profile in neuroimaging experiments does not distinguish between a neural architecture 

with the same functional mechanism across regions and a neural architecture with tightly 

interconnected yet distinct mechanisms across regions. This is because lexical, syntactic, and 

semantic components of language are systematically connected. For example, inverting the 

order of words in a sentence like dog bites man results in a far more surprising semantic 

interpretation than the original. Thus, any experimental manipulation of one component is 

likely to affect another component, resulting in similar neuroimaging effects across regions, 

despite the possibility that these regions in fact underlie distinct mechanisms.

This tight connection between components of language poses an obstacle to identifying 

the potentially distinct brain bases of higher-level linguistic functions through the use 

of neuroimaging. Lesion-symptom mapping (LSM), the study of associations between 

brain damage and behavioral deficits, can help resolve this conundrum. Lesion-symptom 

mapping allows a researcher to identify brain regions necessarily involved in a particular 

linguistic function, rather than functional neuroimaging in healthy individuals, which only 

provides correlative information (Bates et al.,2003; Rorden and Karnath, 2004; Wilson, 

2017). Previous lesion-symptom mapping studies have associated different language-related 
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brain regions with different linguistic processes (J. Ding et al.,2020; Dronkers et al., 2004; 

Gleichgerrcht et al., 2016; Kristinsson et al., 2020; Magnusdottir et al., 2013; Matchin et 

al., 2020; Mesulam et al., 2015; Pillay et al., 2017; Riccardi et al., 2020; Rogalsky et 

al., 2018; Schwartz et al., 2011; Thothathiri et al., 2012; Wilson et al., 2010a, 2010b). 

However, it could be the case that anatomical or other forms of variability could result in a 

significant lesion-deficit association in one area and a subthreshold association in another, 

but this does not mean that the first region is significantly more implicated in such deficits 

than the second. As with functional neuroimaging, region by condition interaction effects 

are necessary to show that some region is more strongly implicated in a given task than 

another region, but none of these previous studies report task by region interaction effects. 

Therefore, while it is plausible that different regions process different aspects of language, it 

has not yet been conclusively shown using region by condition interaction analyses, which 

directly compare the strength of effects between regions.

In order to address this issue, we performed a LSM study assessing measures tapping 

into distinct linguistic processes within the broader categories of syntactic and conceptual-

semantic processing. We focused on syntax and semantics because functional neuroimaging 

studies aiming to identify distinct neurobiological bases for these domains in sentence 

comprehension have frequently found very tight overlap of syntactic and semantic effects 

among all frontal-temporal-parietal regions implicated in language (Fedorenko et al., 2012; 

Fedorenko et al., 2020; Matchin et al., 2017). We do not believe there has yet been offered 

a perfect decomposition of the set of all syntactic and conceptual-semantic mechanisms 

involved in language. However, we were guided in our analyses by the theoretical model 

that two of us recently published that ascribes distinct syntactic and conceptual-semantic 

functions to different regions of the language network (Matchin and Hickok, 2020). This 

model posits that conceptual-semantic processing, equally for both comprehension and 

production, is primarily supported by two regions: the anterior superior temporal sulcus 

(aSTS) and inferior angular gyrus (iAG). The model posits that syntactic processing 

is primarily supported by two different regions, differentially for comprehension and 

production: the posterior middle temporal gyrus (pMTG) supports hierarchical syntactic 

structure building necessary for comprehension and production, and the posterior inferior 

frontal gyrus (pIFG) supports morphosyntactic processes necessary for production but not 

for comprehension.

We performed our analyses based on a large extant database of subjects and tasks that were 

not designed to perfectly isolate the syntactic and semantic mechanisms identified in the 

Matchin & Hickok model. However, we predicted that our selected measures would allow 

us to identify significant measure by region interaction effects. Given the predictions of the 

model, we posited that we would find that:

• damage to pMTG would be more significantly associated with syntactic 

comprehension deficits than pIFG;

• damage to pIFG would be more significantly associated with deficits in morpho-

syntactic production, that is expressive agrammatism, than aSTS or pMTG;
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• damage to iAG would be more significantly associated with deficits in 

conceptual-semantic retrieval than pIFG, regardless of whether this is assessed in 

production or comprehension.

Finding such interaction effects would support the Matchin & Hickok model as well as 

theories of language organization in the brain that posit distinct syntactic and conceptual-

semantic functions in different regions of the language network more generally, and would 

cast doubt on recent hypotheses that syntax and semantics are processed jointly in a unified 

function across all frontal-temporal-parietal regions of the language network.

2. Materials & methods

2.1. Subjects & measures

In three partially overlapping groups of subjects, we assessed four different measures: Group 

1, N = 121, Syntactic comprehension; Group 2, N = 92, Expressive agrammatism and 

semantic category word fluency; and Group 3, N = 218, word comprehension. Subjects 

were assessed on a number of language batteries, which were part of multiple studies on 

aphasia recovery. Group 1 subjects were the same as reported in Den Ouden et al. (2019) 

and Kristinsson et al (2020). 47 subjects were included solely in Den Ouden et al. (2019), 

48 subjects were included solely in Kristinsson et al. (2020), and 26 subjects were included 

in both studies. Group 2 subjects were the same as reported in Den Ouden et al. (2019) 

and Matchin et al. (2020). 39 subjects were included solely in Den Ouden et al. (2019), 

32 were included solely in Matchin et al. (2020), and 21 subjects were included in both 

studies (for the 21 subjects that were included in both studies, we used the ratings in 

Matchin et al., 2020). All of the lesion maps and behavioral data for subjects enrolled 

in this study are available for download at https://www.dropbox.com/sh/3w4aeizgypfs7sd/

AAB-W8Yn5qDUFeBj90WKsBqAa?dl=0.

All subjects were recruited through local advertisement. They provided informed consent 

to participate in this study, which was approved by the Institutional Review Boards at the 

University of South Carolina and the Medical University of South Carolina. All subjects had 

at least one ischemic stroke to the left hemisphere at least six months prior to study inclusion 

and were also pre-morbidly right-handed (self- disclosed). Demographic information for the 

three groups of subjects is shown in Table 1.

The syntactic comprehension measure was designed to assess the syntactic processes that are 

necessary for assigning a hierarchical syntactic structure to an incoming sentence in order to 

correctly interpret its meaning. We derived this measure from two different sentence-picture 

matching tasks reported in more detail elsewhere (Den Ouden et al., 2019;Kristinsson et 

al.,2020), with lesion data for subjects included here partially reported in Den Ouden et 

al.(2019) and Fridriksson et al.(2018). The tasks involved a range of constructions, but our 

focus here is on complex, semantically reversible sentences with non-canonical word order. 

These included object-extracted clefts (Kristinsson et al., 2020; e.g., it is the boy that the 
girl chases), object-extracted relative clauses (Den Ouden et al., 2019; e.g., the boy that the 
girl chased is happy), and object-extracted Wh-questions (both studies; e.g., which boy did 
the girl chase?). Sentences of this sort have a long history in research on syntactic ability 
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in comprehension because (i) lacking canonical English subject-verb-object word order and 

(ii) lacking semantic plausibility constraints (c.f., which apple did the boy eat?), they require 

syntactic analysis for determining who is doing what to whom (Caramazza and Zurif, 1976). 

Performance on such sentences is standardly compared to sentences with canonical word 

order containing the same verbs and nous (i.e., the noun verbed the noun) as a control 

for speech perception, lexical processing, basic ability to infer an event structured based 

on a sequence of words, processing of semantic relations, and working memory or decision-

making resources involved in performing a sentence-picture matching task (Caramazza and 

Zurif, 1976; Cho-Reyes and Thompson, 2012; Love and Oster, 2002; Rogalsky et al., 2018; 

Thompson et al., 2013; Thothathiri et al., 2012). Accordingly, we created our syntactic 

comprehension measure as the average performance on complex, noncanonical sentences 

with performance on simple, semantically reversible active sentences covaried out using 

linear regression. Importantly, the same verbs and agent and patient nouns (and thus the 

same thematic relations) were included in both the active and non-canonical sentence types 

to control for lexical and relational semantics. For subjects who performed both studies (N 
= 26), in order to provide the most reliable estimate, scores were averaged across the two 

studies, which contained the same number of trials (5 trials per sentence type).

The expressive agrammatism measure was designed to assess the morphosyntactic processes 

that are necessary for overtly expressing a message, which two of us have recently argued 

to be separable from the hierarchical syntactic processing that is necessary for sentence 

comprehension (Matchin and Hickok, 2020). We derived this measure from samples of 

connected speech production elicited either by (i) describing the Cookie Theft picture 

(Goodglass and Kaplan, 1983, as reported in Den Ouden et al., 2019) or (ii) retelling the 

story of Cinderella in their own words (MacWhinney et al., 2011, as reported in Matchin et 

al., 2020). The presence of expressive agrammatism was determined as described in Matchin 

et al. (2020). Briefly, production samples were rated independently by speech and language 

experts for the systematic simplification of sentence structure and omission of function 

words and morphemes. This resulted in a categorical assessment for each subject, either 

agrammatic or not. Given that categorical, binary ratings of agrammatism were used in Den 

Ouden et al. (2019) and Matchin et al.(2020), we did not average scores across these two 

studies. Given that agrammatic patients tend to have slower, more effortful speech (Damasio, 

1992; Goodglass and Kaplan, 1983), we included speech rate as a covariate using logistic 

regression (words per minute during the task) in order to focus on residual morphosyntactic 

production abilities rather than general articulatory fluency.

The semantic category word fluency measure was designed to assess the retrieval of 

conceptual-semantic content associated with words, which is separable from the syntactic 

processes described above which are associated with the form, rather than the meaning, 

of sentences. This measure came from the Word Fluency subtest of the Western Aphasia 

Battery Revised (WAB-R) (Kertesz, 2007), as administered by a licensed speech language 

pathologist. Because subjects were given a highly variable number of WAB-R assessments, 

we selected the first available WAB-R for each subject. The Word Fluency subtest involves 

asking the subject to name as many animals as possible within one minute (maximum score 

is 20). Word fluency tasks for semantic categories are generally designed to assess two broad 

categories of abilities: access to conceptual-semantic representations and executive function 
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(Chertkow and Bub, 1990; Troyer et al.,1997;Unsworth et al., 2011). However, Whiteside et 

al. (2016) performed a factor analysis of a highly similar semantic category word fluency 

task and found that deficits on this task were associated with language measures but not 

executive function measures. Furthermore, lesion-symptom mapping (Baldo et al.,2006) 

and functional neuroimaging (Birn et al.,2010) studies of semantic category word fluency 

implicate the inferior angular gyrus, a region strongly associated with conceptual-semantic 

processing, broadly construed (Binder et al., 2009; Hodgson et al., 2021; Humphreys et 

al., 2021; Lau et al.,2008), among other regions also associated with semantic processing. 

The lesion-symptom mapping study of Baldo et al. found that only a letter fluency task 

was associated with frontal lesions, not semantic category word fluency. These results 

suggest that semantic word fluency tasks, at least for tasks with broad semantic categories 

like animals, load highly on semantic processing and less highly on executive function, 

consistent with the fact that patients with semantic dementia perform worse on semantic 

category fluency measures than letter fluency relative to patients with Alzheimer’s disease 

(Marczinski and Kertesz, 2006). To control for articulatory fluency, we incorporated the 

same speech rate covariate we used for the expressive agrammatism analysis.

The word comprehension measure was designed to provide an alternative window 

into conceptual-semantic retrieval processes. Most models of language in the brain, 

including the Matchin & Hickok model, postulates that regions involved in conceptual-

semantic processing support both comprehension and production equally. Because the 

semantic category word fluency measure involves speech production, we chose the word 
comprehension measure to assess conceptual-semantic retrieval in speech comprehension. 

The measure came from the auditory word comprehension subtest of the Western Aphasia 

Battery Revised (WAB-R) (Kertesz, 2007), as administered by a licensed speech language 

pathologist. The Auditory Word Recognition subtest involves verbally requesting the subject 

to point to printed images or real-world objects. The experimenter prompts subjects with a 

sentence, e.g., “point to the _” or “show me the _”. The test involves multiple types of tested 

words, including real household objects (cup, matches, pencil, flower, comb, screwdriver), 

pictured objects (the same as real objects), pictured shapes (square, triangle, circle, arrow, 

cross, cylinder), pictured letters (J, F, B, K, M, D), pictured numbers (5, 61, 500, 1867, 32, 

5000), pictured colors (blue, brown, red, green, yellow, black), real world furniture (window, 

chair, desk or bed, light, door, ceiling), real world body parts (ear, nose, eye, chest, neck, 

chin), real world fingers (thumb, ring finger, index finger, little finger, middle finger), and 

real world body parts on the correct side (right ear, right shoulder, left knee, left ankle, right 

wrist, left elbow, right cheek). For each item the subject receives 1 point, for a total of 60 

points.

2.2. Brain imaging & lesion mapping

We acquired anatomical MRIs and performed lesion mapping using the same parameters and 

procedures as described in Fridriksson et al. (2018). Neuroimaging data were collected at the 

University of South Carolina and the Medical University of South Carolina. Lesions were 

demarcated onto each subject’s T2 image by an expert technician or an expert neurologist 

blind to the behavioral data.
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Lesion overlap maps for both groups are shown in Fig. 1. Overall, there was good coverage 

in perisylvian cortex, covering all selected regions of interest (described below).

2.3. Region of interest (ROI) definition

Rather than using structurally-defined ROIs, which may not line up precisely with 

linguistically-relevant regions of the brain of interest in the present study, we used the 

statistical maps associated with a previous fMRI study on sentence processing (Matchin et 

al., 2017) to define ROIs for analysis. This study compared multiple conditions, including 

full natural sentences (e.g., the poet might recite a verse) and jabberwocky sentences, 

which involve the substitution of pseudowords for content words (e.g., the tevill will sawl 
a pand). The contrast of natural sentences > jabberwocky sentences highlighted a number 

of language-related brain regions in association cortex that are frequently identified in 

brain imaging studies of syntax and semantics. Importantly, this contrast ensured adequate 

coverage of all regions of interest, whereas similar contrasts of structure (e.g., sentences 

compared to word lists) produced very little extent of activation in iAG and relatively 

smaller extent of activation the posterior temporal lobe. We therefore used the natural 

sentences > jabberwocky sentences contrast with a reduced voxel-wise threshold of p < 0.01 

to ensure adequate ROI size and coverage for brain regions that have been implicated in 

both syntactic and semantic processing (Fig. 2, LEFT). We selected clusters corresponding 

to four left hemisphere regions that have been previously implicated in these processes (Fig. 

2, RIGHT): the inferior angular gyrus (iAG), the posterior middle temporal gyrus (pMTG), 

the anterior superior temporal sulcus (aSTS), and the posterior inferior frontal gyrus (pIFG). 

Several of the clusters revealed by the analysis were contiguous at local minima, and so we 

manually separated them at these junctures to form four separate ROIs.

2.4. Lesion analyses

In order to assess the overall relationship between our behavioral measures and damage to 

language-relevant regions, we performed ROI-based univariate and multivariate regression 

analyses in NiiStat (https://www.nitrc.org/projects/niistat/) using the set of four ROIs we 

derived from Matchin et al. (2017). Some authors have pointed out the spatial distortion 

in univariate lesion-symptom mapping analyses that occurs based on the non-random 

distribution of lesions in the brain and the potential superiority of multivariate methods 

in reducing this distortions (Mah et al., 2014). However, Ivanova et al. (2021) pointed 

out that these comparisons involved outdated procedures for univariate analyses. They 

performed a systematic comparison of univariate and multivariate approaches to lesion-

symptom mapping, incorporating crucial features that were absent from Mah et al. (2014): 

permutation testing for multiple comparisons, lesion volume as a covariate, and minimum 5–

10% lesion load threshold. Ivanova et al. (2021) found that, with these updated procedures, 

univariate methods actually outperformed multivariate methods on most dimensions related 

to spatial distortion. They recommend reporting both univariate and multivariate analyses 

incorporating these crucial procedures. We accordingly corrected for multiple comparisons 

using permutation tests (10,000 permutations), with a minimum lesion load of 10% of 

sample, and all analyses incorporated lesion volume as a covariate, as also recommended by 

DeMarco & Turkeltaub (2018). We supplement these results with unthresholded univariate 

voxel-wise lesion maps associated with each measure in order to illustrate that our ROI 
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analyses did not obscure the lesion distribution associated with each measure, in a similar 

fashion as is recommended for fMRI analyses (Poldrack et al., 2008).

We also performed four hypothesis-driven interaction analyses, one for each measure. With 

respect to Syntactic Comprehension, we tested the interaction between the pMTG and pIFG. 

Both the pIFG and pMTG are commonly activated in neuroimaging studies of syntactic 

comprehension. While most theoretical models of syntax posit a key role for the pIFG 

in receptive syntax (Friederici, 2017; Hagoort, 2014; Tyler and Marslen-Wilson, 2008), 

previous lesion-symptom mapping studies have indicated that damage to posterior temporal 

areas (but not frontal areas) is critically implicated in syntactic comprehension deficits 

(Kristinsson et al., 2020; Pillay et al.,2017; Rogalsky et al., 2018). In this light, the models 

proposed by Matchin & Hickok (2020) and Bornkessel-Schlesewsky & Schlesewsky (2013) 

posit that the pIFG is not critically involved in syntactic comprehension. Therefore, we 

hypothesized that damage to the pMTG would be significantly more implicated in syntactic 

comprehension deficits than damage to the pIFG.

Most theoretical models of syntax in the brain attribute a key role in syntactic production 

to the pIFG but not the aSTS (Friederici, 2017; Hagoort, 2014; Matchin and Hickok, 2020; 

Tyler and Marslen-Wilson, 2008). Consistent with this, agrammatism is primarily associated 

with damage to inferior frontal cortex, and to a lesser extent posterior temporal-parietal 

cortex, but not anterior temporal cortex (Sapolsky et al., 2010; Wilson et al., 2010b; 

Den Ouden et al., 2019; Matchin et al., 2020). Matchin & Hickok (2020) also posit 

that damage to pIFG causes expressive agrammatism, whereas damage to pMTG causes 

a qualitatively distinct grammatical production deficit, paragrammatism. Therefore, with 

respect to our expressive agrammatism measure, we tested the interactions between pIFG 

and two temporal lobe regions, the aSTS and pMTG. We expected that our measure would 

be significantly more associated with damage to pIFG than either aSTS or pMTG.

Finally, with respect to semantic category word fluency, we tested the interaction between 

iAG and pIFG. Although damage to both of these regions has been claimed to be implicated 

in lexical-semantic deficits (Fedorenko et al.,2020), damage to iAG and surrounding 

temporal cortex, but not frontal cortex, was previously shown to be associated with deficits 

on a similar word fluency measure (Baldo et al., 2006). Consistent with this, most theories 

attribute a (morpho-)syntactic function to the pIFG (Friederici, 2017; Hagoort, 2014; 

Matchin and Hickok, 2020; Tyler and Marslen-Wilson, 2008), or a top-down selection 

mechanism (Novick et al., 2005; Thompson-Schill and Cutler, 2005), but not a basic lexical 

or conceptual-semantic function. Therefore, we expected that damage to iAG would be 

significantly more associated with impairments on this measure than damage to pIFG.

To bolster our test of the interaction between iAG and pIFG with respect to conceptual-

semantic processing, we tested the same interaction using the word comprehension measure. 

Unlike semantic category word fluency, which involves speech production and likely 

includes some degree of an executive function component, our word comprehension 

measure does not require speech output, and minimizes executive function demands. 

However, like semantic category word fluency, it involves accessing an item in the 

lexicon and its associated conceptual-semantic information. Previous studies on word 
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comprehension, without including a covariate for non-linguistic conceptual knowledge, have 

found an association between impaired performance and damage primarily to temporal and 

inferior parietal lobe regions (Fridriksson et al., 2018; Hart and Gordon, 1990; Hillis et 

al., 2001; Selnes et al., 1983). Therefore, we expected that deficits on this task would be 

associated with damage to iAG like for semantic category word fluency (in addition to 

pMTG and possible aSTS). We similarly expected an association between word recognition 
deficits and damage to iAG relative to pIFG as we expected for semantic category word 
fluency.

To test these interactions, we first calculated proportion damage to each ROI and adjusted 

the data using a rationalized arcsine transform (Studebaker, 1985), and then computed 

residual damage values by co-varying out the effect of lesion volume. We then assessed 

the region by measure interaction effect (adding lesion volume as a covariate to each 

behavioral measure) in linear regression for each of the three measures of interest in SPSS. 

We corrected for multiple comparisons using a Bonferroni correction with an adjusted alpha 

threshold of p < 0.01 for each of the five comparisons, controlling the total error at p < 0.05.

3. Results

The univariate ROI analyses, corrected for multiple comparisons (FWE p < 0.05), revealed 

the following effects:

• Syntactic comprehension: two ROIs showed a significant negative association 

between percent damage and behavioral scores, pMTG (Z = −3.13) and aSTS (Z 
= −2.46).

• Expressive agrammatism: one ROI showed a significant positive association 

between percent damage and behavioral scores, pIFG (Z = 3.10). I.e., subjects 

who had stronger expressive agrammatism scores were more likely to have 

damage to pIFG.

• Word comprehension: three ROIs showed a significant negative association 

between percent damage and behavioral scores, iAG (Z = −3.50), pMTG (Z 
= −3.39), and aSTS (−2.18).

• Semantic category word fluency: one ROI showed a significant negative 

association between percent damage and behavioral scores, iAG (Z = −3.91).

The multivariate ROI analyses, corrected for multiple comparisons (FWE p < 0.05), revealed 

the following effects:

• Syntactic comprehension: two ROIs showed a significant negative association 

between percent damage and behavioral scores, pMTG (Z = −2.07) and aSTS (Z 
= −1.95).

• Expressive agrammatism: no ROI showed a significant positive association 

between percent damage and behavioral scores.
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• Word comprehension: two ROIs showed a significant negative association 

between percent damage and behavioral scores, iAG (Z = −2.46) and pMTG 

(Z = −2.35).

• Semantic category word fluency: one ROI showed a significant negative 

association between percent damage and behavioral scores, iAG (Z = −2.20).

Unthresholded univariate voxel-wise maps support the localization of the effects revealed by 

the ROI analyses, (Fig. 3), although the strongest effect of expressive agrammatism was in 

the posterior inferior frontal sulcus/middle frontal gyrus rather than the IFG itself.

Scatterplots illustrating the region by measure interactions we tested are shown in Fig. 4. 

Cohen (1988) recommends interpreting effect sizes (η2) with the following benchmarks: 

0.01 = small; 0.06 = medium; 0.14 = large.

• Syntactic comprehension: the association between deficits on this measure with 

damage to the pMTG was significantly stronger than with damage to the pIFG, 

F(1119) = 9.013, p = 0.003, η2 = 0.076.

• Expressive agrammatism: the association between positive assessment on this 

measure with damage to the pIFG was nearly significantly stronger than with 

damage to the pMTG, F(1,90) = 3.253, p = 0.075, η2 = 0.036, and was not 

significantly different than with damage to the aSTS, F(1,90) = 0.861, p = 0.356, 

η2 = 0.010.

• Auditory word comprehension: the association between deficits on this measure 

with damage to the iAG was significantly stronger than with damage to the pIFG, 

F(1216) = 12.721, p < 0.001, η2 = 0.059.

• Semantic category word fluency: the association between deficits on this 

measure with damage to the iAG was marginally significantly stronger than with 

damage to the pIFG, F(1,90) = 5.294, p = 0.024, η2 = 0.040.

4. Discussion

In this lesion-symptom mapping (LSM) study in three groups of patients with chronic post-

stroke aphasia (N = 218, N = 121, N = 92), deficits in four distinct measures of linguistic 

processing were each associated with distinct patterns of damage within language network: 

syntactic comprehension was associated primarily with pMTG damage and secondarily 

with aSTS damage, expressive agrammatism was associated with pIFG damage, word 

comprehension was associated with iAG, pMTG, and aSTS damage, and semantic category 

word fluency was associated with iAG damage. None of these effects are unique to our 

study, supporting similar previous findings in the literature, as we discuss below. However, 

critically, we also showed region by measure interaction effects, such that damage to specific 

regions in the language network was more associated with each behavioral measure than 

damage to other regions, significantly or trending toward significance.

Combined, these results narrow down possible functions of these brain regions in higher-

level linguistic processing, and suggest that neuroimaging research needs to incorporate 
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insights from lesion symptom mapping in order to understand the architecture of language 

in the brain. Namely, the region by measure interactions we identified present strong 

challenges to the hypothesis that language-related brain regions underlie a highly similar 

or identical function with respect to linguistic processing, a hypothesis that has been 

advocated most recently in light of neuroimaging data alone (I. Blank et al., 2016; I. 

A. Blank and Fedorenko, 2020; Caplan et al., 1996; Dick et al., 2001; Fedorenko et al., 

2020; Mollica et al., 2020). Our results are instead broadly consistent with neuroanatomical 

models that posit distinct linguistic functions to different regions within the language 

network (Bornkessel-Schlesewsky and Schlesewsky, 2013; Friederici, 2017; Hagoort, 2014; 

Matchin and Hickok, 2020; Tyler and Marslen-Wilson, 2008). However, the model presented 

by Matchin & Hickok (2020) provides explanations for all of the identified effects and 

interactions, whereas the other models fail to provide clear explanations for one or more of 

them. We discuss each of these measures in turn with respect to existing lesion-symptom 

mapping literature and how these findings relate to existing models of language organization 

in the brain.

4.1. Expressive agrammatism

The association between the classical, production-related deficit of agrammatism and 

damage to inferior frontal cortex has a long history stemming back to the origins of 

aphasiology (Kleist, 1914; Kussmaul, 1877; Pick, 1913; Tissot et al., 1973), supported 

by recent LSM studies (Sapolsky et al., 2010; Wilson et al., 2010 b; Den Ouden et al., 

2019; Matchin et al., 2020). Our results, combining data from two previously reported 

studies (Den Ouden et al., 2019; Matchin et al., 2020), reaffirm this association, and provide 

additional insight with respect to the selectivity of this association relative to two temporal 

lobe regions: the pMTG and aSTS.

Our region by measure interaction analysis found that damage to the pIFG was nearly 

more significantly implicated in expressive agrammatism than damage to the pMTG (p = 

0.075). While this effect was not significant, it is consistent with the claims of Matchin & 

Hickok (2020) that expressive agrammatism follows primarily from damage to pIFG, and 

that pMTG damage is more robustly associated with a different grammatical production 

deficit, paragrammatism (see also Matchin et al., 2020).

The anterior temporal lobe (ATL) more broadly has been associated with syntax (i.e., 

comprehension of sentences or phrases vs. word lists) in many neuroimaging studies (Bemis 

and Pylkkanen, 2011; J. Brennan et al., 2012; J. R. Brennan et al., 2016; Humphries et 

al., 2005, 2006; Mazoyer et al., 1993; Rogalsky et al., 2011; Rogalsky and Hickok, 2009). 

However, previous research on patients with ATL damage and/or degeneration shows no 

evidence of agrammatic production deficits (Hodges et al., 1992; Hodges and Patterson, 

2007; Kho et al., 2008; Mesulam et al., 2015; Corianne Rogalsky et al., 2018; see Wilson et 

al., 2014 for data and a review). This suggests that the apparent involvement of the ATL in 

syntax indicated by some neuroimaging studies may in fact be due to semantic processing 

downstream from syntax, rather than syntax per se (Pallier et al., 2011; Wilson et al., 2014). 

Supporting this general picture, our univariate and multivariate analyses at the ROI level 

found no significant effect of agrammatism in aSTS. However, the association of expressive 
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agrammatism with pIFG damage was not significantly stronger than with aSTS damage, 

although this effect was numerically stronger in pIFG, which is underscored by the fact that 

the unthresholded voxel-wise maps did show (weaker) effects of expressive agrammatism in 

the ATL generally. Given that previous research has not strongly associated with ATL with 

agrammatic speech, the spatial proximity of ATL to pIFG may have resulted in a spurious 

association of ATL damage with these relatively weak effects. Future research should further 

investigate this issue.

The fact that neither region by measure interaction effect of expressive agrammatism 

involving the pIFG was significant is likely due to the fact that the posterior middle frontal 

cortex was the most strongly associated with expressive agrammatism, as revealed by our 

unthresholded voxel-wise maps as well as previous studies (den Ouden et al., 2019), rather 

than pIFG. This raises important questions, as the functional neuroimaging literature largely 

implicates the pIFG in syntactic processing and not the posterior middle frontal cortex (see 

e.g. the meta-analysis by Zaccarella et al., 2017). However, we do note that more superior 

regions in or near the posterior middle frontal cortex have emerged in some neuroimaging 

studies of syntactic processing, in both production and comprehension (Fedorenko et al., 

2012; Matchin and Hickok, 2016; Rogalsky et al., 2008). It is possible that both pIFG and 

posterior middle frontal cortex support syntactic processing, perhaps with related but distinct 

functional contributions that are differentially taxed across studies. Future research should 

further investigate the role of middle frontal regions in syntax.

4.2. Syntactic comprehension

We found that damage to the pMTG was significantly more associated with syntactic 

comprehension deficits compared to the pIFG, which was not implicated at all. Previous 

LSM studies have found an association between residual syntactic comprehension scores 

(regressing out single word comprehension or production) with damage to the posterior 

temporal lobe but not the pIFG (Kristinsson et al., 2020; Pillay et al., 2017; Rogalsky et 

al., 2018). Our results reinforce these previous studies by showing that the effect in pMTG 

is statistically stronger than in pIFG (in fact, the pIFG showed an effect numerically in the 

opposite direction). As with expressive agrammatism, this result is incompatible with the 

shared-mechanism view of the language network. Most models of language organization 

in the brain posit that the pIFG is not only critical for processing hierarchical structure 

in production but also comprehension (Friederici, 2017; Hagoort, 2014; Tyler and Marslen-

Wilson, 2008). However, the data are more consistent with the proposals of Matchin & 

Hickok (2020) and Bornkessel-Schlesewsky & Schlesewsky (2013), who argue instead that 

the pIFG’s role in sentence comprehension is restricted to a supporting mechanism, but not 

critical for building hierarchical structure.

Our univariate analyses also identified a significant, though weaker, association between 

syntactic comprehension deficits and damage to the aSTS. Some LSM studies have found 

some evidence of an association between syntactic comprehension deficits and ATL damage 

(Dronkers et al., 2004; Magnusdottir et al., 2013). Matchin et al. (2020) speculated that 

these effects might have been due to the lack of lesion volume as a control, predicting that 

including lesion volume might eliminate such an association. However, the analyses reported 
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here all included lesion volume as a covariate, suggesting that syntactic comprehension 

deficits may be associated with anterior temporal as well as posterior temporal damage. 

This is somewhat similar to previous studies of syntactic comprehension deficits, which 

generally found more robust effects in posterior temporal cortex but some association with 

noncanonical sentence comprehension deficits in aSTS (Pillay et al., 2017; Rogalsky et al., 

2018; Kristinsson et al., 2020). This raises the question of whether the aSTS is involved 

in some aspect of combinatorial processing, which may be semantic in nature (Pylkkänen, 

2020). Future studies should seek to investigate possible function segregation between 

pMTG and aSTS along these lines. We hypothesize that semantic combination (controlling 

for syntax) will be more associated with aSTS damage, whereas syntactic combination 

(controlling for semantics) will be more associated with pMTG damage.

4.3. Semantic category word fluency

In our univariate analyses, damage to the iAG and no other region was significantly 

associated with deficits on the semantic category word fluency measure. Furthermore, our 

region by measure interaction analysis revealed that damage to the iAG was more associated 

with deficits than damage to the pIFG, trending towards significance. Our result is similar to 

that of Baldo et al. (2006), who found that deficits on a semantic similar word fluency task 

were associated with posterior temporal and inferior parietal damage but not frontal damage.

Most theories of language organization in the brain posit a role for lexical and/or conceptual-

semantic processing in the iAG (Friederici, 2017; Hagoort, 2014; Tyler and Marslen-Wilson, 

2008; Matchin and Hickok, 2020; cf. Bornkessel-Schlesewsky and Schlesewsky, 2013). 

Many neuroimaging studies have indicated that this region is particularly responsive to 

manipulations of semantics, but not syntax per se independently of conceptual content (see 

Matchin and Hickok, 2020 for a review). For example, Pallier et al. (2011) showed that 

this region responded to increased linguistic structural complexity, but not when meaningful 

content words were replaced with pseudowords, unlike other regions (namely, the pMTG 

and anterior IFG) that responded to structural complexity regardless of meaningfulness. 

This dissociation has been replicated multiple times (Fedorenko et al., 2012; Goucha 

and Friederici, 2015; Matchin et al., 2017). This suggests that rather than processing 

the hierarchical syntactic structure of a sentence itself, this region processes the complex 

semantic representation that results from syntactic combination. Similarly, Price et al. (2015) 

found that processing meaningful word pair combinations (e.g. “plaid jacket ”) results in 

more activity in iAG than less meaningful combinations (e.g. “moss pony ”), including 

controls for co-occurrence frequency. Our results, an association between iAG damage and 

deficits in semantic category word fluency, are strongly consistent with this literature.

According to the view of undifferentiated higher-level linguistic processing, pIFG should 

have also been critically involved in lexical-conceptual retrieval as with iAG. However, our 

results suggest that for a word fluency task involving a relatively broad category (animals), 

the pIFG is not significantly implicated, and less so than the iAG. By contrast, some LSM 

studies of semantic errors in picture naming implicate pIFG damage, among other regions 

(Dell et al., 2013; Schwartz et al., 2009). However, picture naming, unlike the word fluency 

task, involves selecting among competing alternatives (e.g., to name a picture of a cat, 
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the competing alternative dog must be suppressed). Interestingly, a recent LSM study of 

word-level semantic errors in natural, connected speech found that increased errors were 

associated with temporal and inferior parietal damage, but not frontal damage (Stark et 

al., 2019). Connected speech differs from confrontation or picture naming in allowing the 

subject to select alternative words or concepts, which reduces the burden of the task on 

selection abilities. The whole body of evidence is consistent with a role for pIFG in a 

selection or control mechanism that is critically involved when there is competition among 

items, but speaks against a role for basic retrieval of lexical items or associated concepts in 

frontal cortex, supported instead by temporal and inferior parietal cortex (Lambon Ralph, 

2017; Lau et al., 2008; Novick et al., 2005). This selection mechanism could be domain-

general (Novick et al.,2005), but subregions of pIFG that respond selectively to language 

(Fedorenko et al., 2012) could also implement a language-specific control mechanism 

(Matchin, 2018).

An interesting question is why the aSTS, and the ATL more broadly, was not implicated in 

semantic category word fluency deficits. Both the aSTS and the iAG have been implicated in 

semantic processing, broadly construed, in both neuroimaging studies and lesion-symptom 

mapping of semantic word-naming errors (Binder et al., 2009; Fridriksson et al., 2018; 

Schwartz et al., 2011). Most pointedly, the degenerative syndrome known as primary 

progressive aphasia of the semantic subtype (PPA-S, also known as semantic dementia) 

is strongly associated with mostly left, but sometimes bilateral, atrophy of the ATL, with 

increasingly stronger deficits in conceptual knowledge and single word comprehension 

(Hodges et al., 1992; Hodges and Patterson, 2007; Mesulam et al., 2013, 2015). Category 

fluency has also been shown to be reduced in patients of this type (Hodges et al., 1992). 

However, our study, as well as Baldo et al. (2006), failed to identify any hint of an effect in 

the aSTS or the ATL more broadly for semantic category word fluency deficits.

We suggest here that the relevant distinction is conceptual-semantic specificity. More 

complex syntactic structures typically result in more complex meanings. More complex 

syntactic structures often include modifiers that enrich the meaning of a phrase; for example, 

the modifier red in a phrase like red boat enriches the meaning of boat to a more specific 

interpretation. This also holds for the kinds of more complex syntactic structures used in 

aphasia assessment; for example, the subject cleft sentence it is the boy that chases the girl 
contains an additional interpretive focus on the boy relative to the simple active sentence 

the boy chases the girl. The involvement of the ATL in semantic processing likely relates to 

specific attributes or features, particularly highlighted in certain word-level production and 

comprehension tasks, rather than more general ones (Rogers et al., 2006). This is supported 

by magnetoencephalography studies which have showed that activation in ATL is contingent 

on concept specificity, e.g. greater activation for higher-specificity words like canoe relative 

to lower-specificity words like boat, and that combinatory effects in this area only emerge 

for lower-specificity words (Westerlund and Pylkkänen, 2014; Zhang and Pylkkänen, 2015; 

2018a; 2018b; Ziegler and Pylkkänen, 2016). Concept specificity may also help to explain 

the purported involvement of the ATL in syntax, as the increased activation in ATL for more 

complex structures may reflect the increasing concept specificity correlated with structural 

complexity.
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Supporting this interpretation, in the study reported by Hodges et al. (1992), the PPA-S 

patients had reduced category fluency for more specific categories, breeds of dog and boats, 

requiring finer differentiation of features than animals, the broader category used here and in 

Baldo et al. (2006). In fact, Hodges et al. (1992) showed that in a picture sorting test, PPA-S 

patients were able to perform broad categorizations such as living vs. man-made quite well, 

in stark contrast to their picture naming and word comprehension abilities. Both picture 

naming and most word comprehension tasks (with picture pointing as the response) require a 

subject to process specific visual features and attributes of an object.

Overall, a picture has emerged by which the ATL is involved in retrieving the features 

of specific entities, whereas the iAG is involved in a broader semantic function, perhaps 

involving event representations (Binder and Desai, 2011; Lewis et al., 2015; Matchin et 

al., 2019; Schwartz et al., 2011). By contrast, the semantic category word fluency task 

in the present study used a very broad category, animals, which allowed for potentially a 

wide array of answers without requiring the subject to discriminate highly similar concepts 

from each other. Thus, performance on this task seemingly critically required iAG but not 

the aSTS. We would expect that future LSM studies of word fluency using more specific 

semantic categories, such as dogs, boats, etc., will reveal effects in the aSTS, and possibly 

the pIFG as well via a selection mechanism.

4.4. Word comprehension

Even though the words > nonwords contrast in fMRI often shows activation throughout 

the language network, including the pIFG (Fedorenko et al., 2016; Fedorenko et al., 

2012; Matchin et al., 2017, 2019), and the pIFG is reliably implicated in meta-analyses 

of semantic processing (Binder et al., 2009; Hodgson et al., 2021), our lesion-symptom 

mapping analyses revealed no significant negative association between damage to the pIFG 

and behavioral scores on the auditory word comprehension subtest of the WAB-R. Rather, 

damage was significantly associated with all three of the other selected ROIs (iAG, pMTG, 

and aSTS, in descending order of significance). Our targeted region by condition interaction 

analysis showed a robust interaction effect, such that damage to the iAG was significantly 

more associated with deficits on the word comprehension measure than damage to the pIFG. 

This converges with the findings from the semantic category word fluency task regarding 

a dissociation of function between iAG and pIFG, whereby the iAG is critically involved 

in basic conceptual-semantic retrieval and the pIFG is not. This is consistent with models 

whereby the iAG plays a role in conceptual-semantic processing that equally supports both 

production and comprehension (Binder and Desai, 2011; Friederici, 2017; Hagoort, 2016; 

Lau et al., 2008; Matchin and Hickok, 2020).

4.5. Pitfalls of the search for functional selectivity in the language network

Recent neuroimaging studies have shown syntactic and lexical effects distributed across 

regions of the language network (I. Blank et al., 2016; Fedorenko et al., 2020). Fedorenko 

et al. (2020) argue that this constitues evidence against the existence of brain areas that 

selectively process syntax, and evidence for a holistic linguistic architecture in which the 

lexicon, syntax, combinatorial semantics, and conceptual representations are all intertwined.
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First, we strongly caution against using findings from neuroimaging techniques that capture 

very limited facets of neural structure and function, to inform linguistic architecture, when 

it is extremely unclear how the postulates of linguistic theory line up with neuroscience 

(Embick and Poeppel, 2015; Poeppel, 2012; Poeppel and Embick, 2005). Even if it were 

true that there is no brain region selectively engaged in syntax, or any evidence of functional 

distinction across regions of the language network, it does not follow that there is no 

independent syntactic mechanism. The coarseness of the methodologies of fMRI and lesion-

symptom mapping do not allow access to many aspects of neuronal function, and a basic 

syntactic or combinatory mechanism could very well be implemented in subtler biological 

properties than dedicated chunks of cortical tissue containing thousands of neurons (N. Ding 

et al., 2016; Gallistel and King, 2010; Matchin and Hickok, 2020; Murphy, 2015).

However, the region by measure interactions we present here, in conjunction with a 

large historical body of research in aphasiology, lesion-symptom mapping, and functional 

neuroimaging, suggest that there must be at least some differentiation of function within 

the language network. The key question is what exactly the relevant distinctions are. For 

example, our results do not imply that the pMTG or pIFG are selectively engaged in 

syntax to the exclusion of the lexicon, or that the iAG is selectively involved in lexical-

conceptual retrieval to the exclusion of combinatory processing of any kind. In fact, the 

quest for evidence of functional selectivity misses what we perceive to be the goals of the 

neurobiology of language: to identify the functional organization of language in the brain, 

regardless of the issue of specificity.

In previous work, two of us (Matchin and Hickok, 2020) have suggested that the pMTG 

and pIFG implement lexical-syntactic functions, with the pMTG processing hierarchical 

relations stored on individual lexical items and the pIFG processing linear morpho-syntactic 

relations. We attributed conceptual-semantic processing to different regions, namely the 

iAG and aSTS. The fact that all of regions in neuroimaging studies respond to lexical 

experimental manipulations does not speak against these hypotheses. Rather, a contrast such 

as words > pseudowords is likely to tax multiple functions. For example, the words > 

pseudowords contrast engages lexical-syntactic processing mechanisms, that is access to the 

stored repository of words with their associated syntactic frames, access to the meanings 

associated with individual lexical items, and combinatory semantics enabled by the presence 

of real words. The fact that all regions of the language network respond to a lexicality 

manipulation is therefore unsurprising, because this experimental contrast likely engages all 

of these functions.

Both functional neuroimaging and LSM provide opportunities to uncover the functional 

architecture of the language network. The evidence we presented here bolsters existing 

studies by revealing region by measure interaction effects that provides strong evidence of 

functional dissociations across regions (Nieuwenhuis et al., 2011). Future studies aiming 

to identify further functional dissociations should develop subtler experimental measures 

beyond relatively course measures such as comprehension of sentences vs. word lists that 

are capable of distinguishing among possible underlying functions and should test region by 

measure interactions if possible.
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4.6. Limitations of the present work

The biggest limitation of the present work is that while two region by measure interaction 

effects, syntactic comprehension (p = 0.003) and word comprehension (p = 0.004), 

were significant, the other two effects, semantic category word fluency and expressive 

agrammatism, only approached significance, not surviving the correction for multiple 

comparisons (p = 0.024, p = 0.038). Therefore, these effects should be confirmed by future 

research. In addition, while LSM is a useful complement to functional neuroimaging, it 

would help greatly to design fMRI studies carefully enough to obtain significant region by 

condition interaction effects that can complement the interaction effects obtained here.

Secondarily, while we believe that our measures reflect key aspects of linguistic processing, 

they can be improved upon and additional research should further develop and refine 

assessments of different aspects of linguistic processing in people with aphasia. The 

semantic category word fluency measure was derived from more general test batteries 

that were not designed to focus on conceptual-semantic processing. Although the existing 

literature on this measure indicates a strong language component, and a minimal executive 

function component, it is likely there was at least some executive function contribution 

to this task. Future research should develop newer, better targeted measures of conceptual-

semantic processing that do not involve selection among competing alternatives (as in 

picture naming) or executive function demands (as in the Pyramids and Palm Trees test). 

The expressive agrammatism measure was a perceptual rating by experts. Casilio et al. 

(2019) showed strong concurrent validity between quantitative measures of agrammatism 

and perceptual ratings of grammatical speech deficits. Our own perceptual ratings of 

agrammatism had very high inter-rater reliability (Matchin et al., 2020; Den Ouden et al., 

2019). Thus, we believe our perceptual ratings are justified. However, it would be useful 

to complement these perceptual ratings with objective, quantifiable measures that would 

complement these results. The syntactic comprehension measure, standard in the literature 

on syntactic comprehension, might involve additional processes beyond syntax such as 

combinatorial semantics or working memory. While the region by measure interaction effect 

we showed here indicates a functional dissociation between the function of pMTG and 

pIFG, it does not necessarily provide knock-down evidence for a strictly syntactic function 

of pMTG. Additional measures that seek to isolate syntax from other mechanisms would 

help to clarify the picture.

Finally, one potential objection to our conclusions regards the possibility of post-stroke 

functional reorganization. If language is reorganized in the brains of those suffering a stroke 

to language-relevant regions, as suggested by some authors (Hartwigsen and Saur, 2019; 

Stefaniak et al., 2020; Turkeltaub, 2019), how does this impact our conclusions? First, to 

the extent that there is functional organization in post-stroke aphasia, it is likely facilitatory 

rather than fundamental (e.g. Fridriksson et al., 2012). People with chronic post-stroke 

aphasia retain significant deficits, and a recent meta-analysis and review of functional 

neuroimaging studies in people with post-stroke aphasia suggesting no evidence of large-

scale reorganization (Wilson and Schneck, 2020). Secondly, functional reorganization 

would only weaken our ability to detect distinctions across regions, as the impact of a 

lesion on a given function would be weakened by recovery of function. However, lesion-
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symptom mapping studies readily identify strong correlations between linguistic deficits 

and patterns of brain damage, and these findings correspond to what is known from 

functional neuroimaging (Fridriksson et al., 2018). Crucially, lesion methods are an essential 

complement to functional neuroimaging in that it helps to identify causal mechanisms of 

cognition in the brain, both in human and non-human organisms (Lomber et al., 2010; 

Milner and Goodale, 1995; Rorden and Karnath, 2004). Theoretical models of language 

and the brain were originally developed from the study of aphasia (Wernicke, 1874) and 

have continued to incorporate its insights (Bornkessel-Schlesewsky and Schlesewsky, 2013; 

Friederici, 2002; Hagoort, 2005; Hickok and Poeppel, 2000, 2004; G. 2007; Pinker and 

Ullman, 2002; Rauschecker and Scott, 2009). This impact will only be strengthened with 

improved methods and sample sizes.
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Fig. 1. 
Lesion overlap maps for each of the groups. LEFT–Group 1 (N = 121), assessed for 

syntactic comprehension. The lower boundary of 12 corresponds to voxels where at least 

10% of subjects had damage. MIDDLE–Group 2 (N = 92), assessed for semantic category 
word fluency and expressive Agrammatism. The lower boundary of 9 corresponds to voxels 

where at least 10% of subjects had damage. RIGHT–Group 3 (N = 218), assessed for word 
comprehension. The lower boundary of 22 corresponds to voxels where at least 10% of 

subjects had damage.
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Fig. 2. 
Regions of interest (ROIs) derived from previously published functional neuroimaging data. 

LEFT–Statistical contrast of natural sentences > jabberwocky sentences from Matchin et 

al. (2017) at the uncorrected voxel-wise threshold of p 〈 0.01. RIGHT–Selected ROIs 

using the clusters derived from the contrast of natural sentences 〉 jabberwocky sentences 

from Matchin et al. (2017). Blue–Inferior angular gyrus (iAG); orange–Posterior middle 

temporal gyrus (pMTG); red–Anterior superior temporal sulcus (aSTS); black–Posterior 

inferior frontal gyrus (pIFG).
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Fig. 3. 
Unthresholded voxel-wise univariate analyses (shown in absolute value of Z-scores) for each 

of the four behavioral measures. UPPER LEFT–Syntactic comprehension (noncanonical 

sentence comprehension performance with active sentence comprehension as a covariate), 

UPPER RIGHT–Expressive agrammatism (perceptual ratings of agrammatism with speech 

rate as a covariate), BOTTOM LEFT–Word comprehension (), and semantic category word 
fluency (WAB word fluency with speech rate as a covariate). Each measure is identified at 

top in bold, corresponding to all of the figures underneath.
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Fig. 4. 
Scatter plots illustrating five hypothesis-driven region by measure interaction analyses, 

corrected for multiple comparisons using a Bonferroni correction (individual p < 0.0125), 

for the four ROIs of interest (pIFG, pMTG, iAG, aSTS) and the four behavioral 

measures. TOP LEFT–Syntactic comprehension (noncanonical sentence comprehension 

performance with active sentence comprehension as a covariate), TOP RIGHT–Expressive 
agrammatism (perceptual agrammatism ratings with speech rate as a covariate), BOTTOM 

LEFT–Auditory word comprehension (WAB auditory word comprehension subscore), and 

BOTTOM RIGHT–(Semantic category word fluency (WAB word fluency with speech rate 

as a covariate). Residual damage indicates the residual percent damage values within an 

ROI, with lesion volume as a covariate. Straight lines indicate estimated linear trends. 

pMTG = posterior middle temporal gyrus; pIFG = posterior inferior frontal gyrus; iAG = 

inferior angular gyrus; aSTS = anterior superior temporal sulcus. * significant effect. ~ effect 

approaching significance.
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