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ABSTRACT
Utilizing genomic data to predict cancer prognosis was insufficient. Proteomics can improve our 
understanding of the etiology and progression of cancer and improve the assessment of cancer 
prognosis. And the Clinical Proteomic Tumor Analysis Consortium (CPTAC) has generated exten-
sive proteomics data of the vast majority of tumors. Based on CPTAC, we can perform a proteomic 
pan-carcinoma analysis. We collected the proteomics data and clinical features of cancer patients 
from CPTAC. Then, we screened 69 differentially expressed proteins (DEPs) with R software in five 
cancers: hepatocellular carcinoma (HCC), children’s brain tumor tissue consortium (CBTTC), clear 
cell renal cell carcinoma (CCRC), lung adenocarcinoma (LUAD) and uterine corpus endometrial 
carcinoma (UCEC). GO and KEGG analysis were performed to clarify the function of these proteins. 
We also identified their interactions. The DEPs-based prognostic model for predicting over survival 
was identified by least absolute shrinkage and selection operator (LASSO)-Cox regression model in 
training cohort. Then, we used the time-dependent receiver operating characteristics analysis to 
evaluate the ability of the prognostic model to predict overall survival and validated it in 
validation cohort. The results showed that the DEPs-based prognostic model could accurately 
and effectively predict the survival rate of most cancers.
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Introduction

As the most prevalent fatal disease, cancer 
ranked second in all mortality worldwide in 2017 
[1]. And the death rate of cancer was 
increasing year by year, cancer deaths increased 
from 7.62 million in 2007 to 9.56 million in 
2017. In 2018, 18.1 million people worldwide 
have been diagnosed with various types of cancer 
[2]. Despite the significant progress in treatment, 
timely diagnosis and high cost of treatment make 
it impossible to obtain effective treatment, which 
was still the reason for the low 5-year survival rate 
of most cancers [3]. In order to develop optimal 
anti-cancer treatment protocols and elucidate the 
mechanism of tumorigenesis, it is essential to esti-
mate the prognosis of tumor patients [4]. 
Although many studies used RNA sequence data 
from the Cancer Genome Atlas (TCGA) and 
Genotype-Tissue Expression (GTEx) to evidence 
many tumor prognostic biomarkers and construct 
many prognostic models [5,6], utilizing genomic 

data to predict cancer prognosis was insufficient 
and imprecise, because molecular drivers of cancer 
were derived not just from DNA alterations alone, 
but from protein expression, modification, and 
activity at the metabolic level [7].

It is widely acknowledged that tumor cells were 
characterized by rapid generation and 16abnormal 
proliferation. Hence, tumor tissues would regulate 
the expression of proteins and promote the pro-
duction of proteins associated with cancer pro-
gression [8]. Moreover, proteins were the 
functional effectors of cellular processes as well as 
the targets for a vast majority of therapeutics [9]. 
Therefore, the study of proteomics can improve 
our understanding of cancer etiology and progres-
sion as well as heighten the assessment of cancer 
prognosis [10]. Although most previous studies 
have focused on the effects of individual-specific 
protein on cancer prognosis [11–13], cancer is 
a heterogeneity disease that does not only involve 
individual protein but also interactions among 
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proteins of different function. The Clinical 
Proteomic Tumor Analysis Consortium (CPTAC) 
project had generated a great deal of proteomics 
data of the vast majority of tumors by mass spec-
trometry [14]. Based on the proteomics data from 
CPTAC, we expect to combine multiple proteins 
to construct a pan-cancer prognostic model.

In current study, we screened out differentially 
expressed proteins (DEPs) in five cancers: hepato-
cellular carcinoma (HCC), uterine corpus endome-
trial carcinoma (UCEC), children’s brain tumor 
tissue consortium (CBTTC), lung adenocarcinoma 
(LUAD) and clear cell renal cell carcinoma (CCRC). 
Next, we explored the role of the differentially 
expressed proteins in cancer and the relationships 
among them. Furthermore, the DEPs-based survi-
val-predictor model was also developed for predict-
ing survival rates for the vast majority of cancers.

Methods

Patient datasets

The proteomic data of HCC, CBTTC, CCRC, 
LUAD and UCEC were extracted from the 
CPTAC [14] (https://proteomics.cancer.gov/pro 
grams/cptac) in November 2019.

Identification of DEPs between tumor tissues and 
adjacent nontumorous tissues

For the proteomic data from CPTAC, background 
correction, quantile normalization, and batch nor-
malization were performed using R software (ver-
sion 3.6.1). The protein expression values of these 
five cancers were normalized by the ‘sva’ package. 
The bioconductor (http://www.bioconductor.org) 
package ‘limma’ was employed for DEP screening. 
A |log2Fold Change|>1 and an adjusted P value 
<0.05 were set as cutoff criteria.

Functional enrichment analyses

We performed KEGG (Kyoto Encyclopedia of 
Genes and Genomes) analysis and Gene ontology 
(GO) analysis using R package ‘enrichplot,’ 
‘enrichplot,’ ‘GOplot.’

PPI network construction

The PPI network of DEPs was performed by STRING 
[15] (https://string-db.org/) and a combined score 
>0.9 (high confidence) was set as the cutoff criterion. 
Using cytoscape online software (http://www.cytos 
cape.org/) to visualize the results from STRING.

Construction of DEPs-based classifiers

Based on univariate Cox regression models, we 
identify single DEP as independent prognostic 
DEPs for OS with p-value<0.05. The least absolute 
shrinkage and selection operator (LASSO)-Cox 
regression model [16] was used to identify the 
most accurate predictive DEPs for OS. The corre-
lation of each prognostic DEPs was performed by 
R package ‘ggcorrplot,’ ‘statn.’

Predictive performance of the DEPs-based 
classifiers

The patient’s risk score is obtained by multiplying the 
expression of DEPs in LASSO by their respective 
coefficients. And the patients were stratified into two 
risk-groups by median. The survival was analyzed by 
the Kaplan–Meier log-rank analysis. The time- 
dependent receiver operating characteristics 
(tdROC) analysis was used to assess performance of 
single DEP and classifiers through the ‘timeROC’ 
package of R software. The area under the curve 
(AUC) of tdROC reflected predictive accuracy. 
P-values <0.05 were considered statistically 
significant.

Data analysis

The Student’s t-test, Wilcoxon test, and other data 
processing were completed by SPSS 19.0. Kaplan- 
Meier analysis is calculated by the ‘survminer’ pack-
age of R software. When all the hypotheses are 
P < 0.05, the difference is statistically significant.

Results

Differentially expressed proteins in five cancers

Firstly, we acquired five types of cancer of proteo-
mic data sets from the CPTAC data portal, which 
contained HCC, CBTTC, CCRC, LUAD and 
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UCEC. According to the criteria of log2 | 
FoldChange |> 1 and FDR <0.05, we identified 69 
differentially expressed proteins (DEPs) between 
tumor tissues and adjacent nontumorous tissues 
using ‘limma,’ and then plotted volcano and heat 
maps (Figure 1a,b). Among the 69 proteins, 26 
proteins expression were upregulated in cancerous 
tissues such as Cyclin-dependent kina (CDK1) and 
Proliferation marker protein Ki-67 (MKI67), while 
43 proteins were down-regulated in cancerous tis-
sues such as Beta-enolase (ENO3) and Glycerol- 
3-phosphate dehydrogenase [NAD(+)] (GPD1) 
(Figure 1b).

GO analysis and KEGG analysis

In order to explore the role of the 69 DEPs in 
tumors, we conducted GO analysis and KEGG 
analysis. And the 69 DEPs were mainly associated 
with the following biological processes: carboxylic 
acid biosynthetic process, organic acid biosyn-
thetic process, G1/S transition of mitotic cell 
cycle, cell cycle G1/S phase transition, monocar-
boxylic acid biosynthetic process, glucose meta-
bolic process, hexose metabolic process, and 
DNA replication (Figure 2a). The results also indi-
cated that the DEPs were mainly associated with 
the following cellular contents: nuclear chromo-
some part, extracellular matrix, telomeric region 
and MCM complex (Figure 2a). Besides, the DEPs 

were related to molecular functions, such as extra-
cellular matrix structural constituent, carbohydrate 
binding, helicase activity and monosaccharide 
binding (Figure 2a). Similar to GO analysis, 
KEGG analysis showed the DEPs primarily con-
tributed to the following pathways: Cell cycle, 
Glycolysis/Gluconeogenesis, DNA replication, 
Carbon metabolism, Pentose phosphate pathway 
and Fructose and mannose metabolism (Figure 
2b). Furthermore, combining GO cluster diagram 
and GO chord diagram, we found that the parts of 
DEPs involved in DNA replication, Cell cycle and 
Arginine and proline metabolism were mainly 
high-expressed, and others associated with these 
GO terms such as Carbon metabolism and 
Fructose and mannose metabolism were both 
highly and poorly expressed (Figure 2c,d).

DEPs interaction clusters common across five 
cancers

The 69 DEPs were used for the network analysis and 
almost half the DEPs formed an interaction network 
after eliminating proteins that acted independently 
(Figure 3a). And these interacting proteins were 
roughly separated into four groups with CDK1, 
ENO3, Argininosuccinate synthase (ASS1) and 
Versican core protein (VCAN) as the cores (Figure 
3a,b). CDK1 was observed to be the key hub protein 
that interacted with DNA replication licensing factor 

Figure 1. Identification of DEPs in five cancers. DEPs were defined with P-value < 0.05 and |log2(Fold Change)|>1. (a) Volcano plots 
of proteins with normalized expression alteration in all five cancers; (b) Heatmap of the DEPs (n = 69) in all five cancers. DEPs, 
differentially expressed proteins.
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MCM2 (MCM2), DNA replication licensing factor 
MCM3 (MCM3), DNA replication licensing factor 
MCM4 (MCM4), DNA replication licensing factor 
MCM5 (MCM5), DNA replication licensing factor 
MCM6 (MCM6), DNA replication licensing factor 
MCM7 (MCM7), MKI67, Ribonucleoside- 
diphosphate reductase subunit M2 (RRM2), TRIP13, 
14-3-3 protein sigma (SFN), Histone H1.5 
(HIST1H1B), cAMP-dependent protein kinase type 
II-beta (PRKAR2B). ENO3 interacted with 
Hexokinase-2 (HK2), Fructose-1,6-bisphosphatase 
isozyme 1 (FBP1), Fructose-1,6-bisphosphatase iso-
zyme 2 (FBP2), Fructose-bisphosphate aldolase 
B (ALDOB), and Phosphoglucomutase-like protein 

5 (PGM5). VCAN interacted with Aspartoacylase 
(ASPA), Decorin (DCN), Thrombospondin-2 
(THBS2), Tenascin-X (TNXB), Lymphatic vessel 
endothelial hyaluronic acid receptor 1 (LYVE1) and 
Mimecan (OGN). ASS1 interacted with PGM5, 
ASPA, Alpha-aminoadipate aminotransferase 
(AADAT), pyrroline-5-carboxylate reductase 1 
(PYCR1), and Alpha-aminoadipic semialdehyde 
synthase (AASS).

The effect of individual DEPs on survival

To explore the effect of these proteins on cancer 
prognosis, Kaplan-Meier survival analyses were 

Figure 2. GO analysis and KEGG analysis of DEPs. (a) The functions of the 69 DEPs identified cover three main categories: BP, CC, MF; 
(b) based on KEGG pathway, 11 enriched pathways with lowest P-value were displayed; (c) (d) GO cluster diagram and GO chord 
diagram of the 69 DEPs. DEPs, differentially expressed proteins; BP, biological processes; CC, cellular contents; MF, molecular 
functions; GO, gene ontology.
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performed using individual protein. Based on the 
median value of each DEP expression, we divided 
the cancer patients into two clusters: high protein 
level and low protein level. Then, we defined four 
types of cancer as the training cohort: HCC, 
CCRC, LUAD, and UCEC; and defined CBTTC 
as validation cohort. We counted the OS of 
patients from the training cohort. As shown in 
Figure S1, only 10 proteins out of 69 DEPs were 
statistically significant in the survival analysis 
(P < 0.05). Patients whose cancerous tissue 
expressed higher levels of one of RRM2, 
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 
(PLOD2), MKI67, MCM5, and CKD1 had lower 
survival rates (Figure S1A-E). And Patients whose 
cancerous tissue expressed higher levels of one of 
FBP1, FBP2, ENO3, GPD1, and ASS1 had higher 
survival rates (Figure S1F-J). Yet regrettably, recei-
ver operating characteristic (ROC) analysis of 
them were unsatisfactory: RRM2 (1 year 
AUC = 0.622), PLOD2 (1 year AUC = 0.635), 
MKI67 (1 year AUC = 0.617), MCM5 (1 year 
AUC = 0.595), CKD1 (1 year AUC = 0.610), 
FBP1 (1 year AUC = 0.323), FBP2 (1 year 
AUC = 0.320), ENO3 (1 year AUC = 0.383), 
GPD1 (1 year AUC = 0.362), ASS1 (1 year 
AUC = 0.437) (Figure S2). Although 3 years 
AUC of PLOD2 reached 0.722, 1 year and 
2 years AUC were unsatisfactory. In summary, 

although the 10 proteins can be used as biomar-
kers of cancer prognosis, none of them could 
accurately predict OS.

DEPs-based survival-predictor model 
constructing

For acquiring a more excellent model, multiple DEPs 
were combined to predict survival rates for 
cancer patients. We first conducted univariate Cox 
analyses in training cohort and found that 33 DEPs 
related to survival were identified (Figure 4a). Then, 
we used 69 DEPs to perform the LASSO Cox regres-
sion model in training cohort. Based on the results of 
the LASSO Cox regression model, 24 prognostic DEPs 
with non-zero regression coefficients were finally cho-
sen as the potential prognostic biomarkers for the OS 
of cancer patients (Figure 4b,c). The detailed informa-
tion of DEPs for constructing the prognostic signature 
was summarized in Table 1. The formula of 
the twenty-four-DEPs survival-predictor model was 
as follows: twenty-four-DEPs predictor model 
score = (0.303235530256179*MKI67)+(0.259559228 
152558*LOXL2)+(0.216349150569518*PLIN4)+(0.16 
3857099694478*IL33)+(0.153385186100743*MDK)+ 
(0.144674735753098*P4HA2)+(0.13190528953757* 
AKR7A3)+(0.121054348420759*PLCXD3)+(0.12055 
0067398402*CDK1)+(0.077423785033028*SRPX)+ 
(0.0692670634423047*PRPH) 

Figure 3. PPI network. (a) Interactions among 69 DEPs were detected after removing isolated proteins; (b) the number of 
interactions between each protein and other proteins. PPI, protein-protein interaction; DEPs, differentially expressed proteins.
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+(0.0633036451678804*PRKAR2B)+(0.04680669074 
73914*P4HA1)+(0.0467283261834873*CALML3)+ 
(0.0342288464237997*SFN)+(0.00251963795312595 
*DES)-(0.021873780076824*PHYHD1)-(0.04171795 
5104614*GPD1)-(0.0516581125556701*AADAT)-(0. 
0740355402044938*PGM5)-(0.165116242778278*A 
DH1C)-(0.245540744438086*FBP2)-(0.26539136978 
0318*ENO3)-(0.388025693935519*EHD3). The cor-
relationship of each protein in the 24-DEPs model 
was shown in Figure 4d,e. Among these proteins, the 
values of correlation between CDK1 and MKI67, 
P4HA2 and P4HA1, PGM5 and IL33, PGM5 and 
DES were all more than 0.5.

Evaluation of the survival-predictor model

Based on the survival-predictor model, we evenly 
divided cancer patients into two groups by the 
median risk score cutoff point, which value is 
0.250379: High risk and Low risk (Figure 5a). 
The patient information was shown in Tables 2 
and 3. Furthermore, the expression heatmap of the 

24 DEPs in high risk or low-risk group was shown 
in Figure 5a. We then estimated the accuracy of 
the 24-DEPs model on predicting survival. The 
Kaplan-Meier survival curves showed that survival 
rates were significantly lower in the High risk 
(P < 0.001) (Figure 5b). The ROC analysis showed 
the one, two, and three years AUC of the 24-DEPs 
survival-predictor model were 0.764, 0.754, and 
0.742, respectively (Figure 5c). Remarkably, the 
AUC of the 24-DEPs survival-predictor model 
was more than the AUC of the 10 proteins 
described above (Figure S2). So, compared with 
a single protein as a predictor, the 24-DEPs survi-
val prediction model had accurate and powerful 
prediction capability.

In order to further validate the availability of 
this model, we used the same 24-DEPs survival- 
predictor model and cutoff point to cluster 
patients in validation cohort (CBTTC) (Figure 
5d). And the survival analysis also indicated that 
high risk had a worse OS(P < 0.001) (Figure 5e). 
The result of the ROC analysis was also 

Figure 4. The survival-predictor model based on twenty-four-DEPs. (a) Univariate Cox analyses showed that 33 DEPs contributed to 
the OS in the training cohort; (b)(c) the LASSO regression model identified the 24 most accurate predictive DEPs in the training 
cohort; (d) (e) the expression relationship of the 24 DEPs was displayed. DEPs, differentially expressed proteins; OS, overall survival.
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satisfactory: 1-year AUC = 0.724, 2-years 
AUC = 0.689, 3-years AUC = 0.671 (figure 5f). 
In conclusion, the 24 DEPs-based classifiers could 
accurately predict the survival not only in the 
training cohort, but also in the validation cohort.

Discussion

As a complex disease, cancer involves not only in 
DNA alterations, but also in protein expression and 
modification [7].With technological improvements, 
CPTAC generates comprehensive mass spectrome-
try-based proteomic data for most cancers [14], 
which providing a unique opportunity for pan- 
cancerous proteomics research with sufficient data.

In current study, we firstly screened 69 differ-
entially expressed proteins in five types of cancer 
tissue. More importantly, the expression trend of 
the DEPs was consistent in all five cancers, which 
indicated these proteins were not specific to any 
certain type of cancer. Among the DEPs, CDK1 
played an important role in progression into mito-
tic phase, which could drive the cell cycle in all cell 
types [17]. Previous studies also showed that 

CDK1 expression was upregulated in a majority 
of tumor tissues, which correlated with the prog-
nosis of cancer patients [18–20]. And MCM2, 
MCM3, MCM4, MCM5, MCM6, MCM7 formed 
the MiniChromosome Maintenance 2–7 complex, 
which was exported by the CDKs to trigger DNA 
replication [21]. In brief, CDK1 interacted with 
MCM2-7 complex to participate in the cell cycle, 
which was the same as the GO analysis and KEGG 
analysis. Furthermore, we found CDK1, as a key 
hub protein, interacted with other DEPs to form 
an interaction cluster. In addition to MCM2-7 
complex, other proteins in the cluster also influ-
enced the growth and division of tumor cells by 
participating in the cell cycle such as RRM2, 
PRKAR2B, and MKI67 [22–24]. Most DEPs 
related to the cell cycle were up-regulated, which 
was consistent with the vigorous growth and divi-
sion of tumor cells. The 69 DEPs were involved 
not only in the cell cycle, but also in cell metabo-
lism (Figure 2a,b). Since metabolic reprogramming 
was a well-established hallmark of cancer, altera-
tions in metabolism-related proteins expression 
were common in tumors [25]. According to the 
Figure 3, metabolically related DEPs were roughly 
divided into two groups: carbohydrate metabo-
lism-related proteins and amino acid metabolism- 
related proteins. ENO3, FBP1, FBP2, GPD1, and 
ALDOB were all glycolytic pathway-related pro-
teins with inhibitory effects on tumor [26–29]. For 
instance, A LDOB disrupted redox homeostasis by 
reducing the levels of fructose 1,6-bisphosphate in 
tumor cells, which could inhibit tumor cell prolif-
eration [27]. Previous research also showed that 
although gluconeogenesis was frequently sup-
pressed in tumors, re-expression of gluconeogen-
esis enzymes such as FBP1 could inhibit tumor 
growth [29]. As an enzyme responsible for the 
biosynthesis of arginine in most body tissues, 
ASS1 was downregulated in multiple diverse can-
cers to reprogram arginine metabolism to make 
tumor cells more aggressive [30]. What’s more, 
according to our results, these metabolism-related 
proteins that inhibit cancer were also down- 
regulated. But also as a protein related to amino 
acid metabolism, PYCR1 was highly expressed to 
maintain the redox balance of tumor cells and 
prevent apoptosis by synthesizing proline [31]. 
Despite the DEPs associated with metabolism 

Table 1. The detailed information of differentially expressed 
proteins for constructing the prognostic signature.

Protein name
Gene 
name β

alpha-aminoadipate aminotransferase AADAT −0.051658113
Alcohol dehydrogenase 1 C ADH1C −0.165116243
Aflatoxin B1 aldehyde reductase member 

3
AKR7A3 0.13190529

Calmodulin-like protein 3 CALML3 0.046728326
Cyclin-dependent kinase 1 CDK1 0.120550067
Desmin DES 0.002519638
EH domain-containing protein 3 EHD3 −0.388025694
Beta-enolase ENO3 −0.26539137
Fructose-1,6-bisphosphatase isozyme 2 FBP2 −0.245540744
Glycerol-3-phosphate dehydrogenase 

[NAD(+)]
GPD1 −0.041717955

Interleukin-33 IL33 0.1638571
Lysyl oxidase homolog 2 LOXL2 0.259559228
Midkine MDK 0.153385186
Proliferation marker protein Ki-67 MKI67 0.30323553
Prolyl 4-hydroxylase subunit alpha-1 P4HA1 0.046806691
Prolyl 4-hydroxylase subunit alpha-2 P4HA2 0.144674736
Phosphoglucomutase-like protein 5 PGM5 −0.07403554
Phytanoyl-CoA dioxygenase domain- 

containing protein 1
PHYHD1 −0.02187378

PI-PLC X domain-containing protein 3 PLCXD3 0.121054348
Perilipin-4 PLIN4 0.216349151
cAMP-dependent protein kinase type II- 

beta regulatory subunit
PRKAR2B 0.063303645

Peripherin PRPH 0.069267063
14-3-3 protein sigma SFN 0.034228846
Sushi repeat-containing protein SRPX SRPX 0.077423785
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and cell proliferation, quite a few DEPs were asso-
ciated with the extracellular matrix. As a large 
extracellular matrix proteoglycan, VCAN regu-
lated proliferation, invasion, and metastasis adhe-
sion in a vast majority of tumor cells, and VCAN 
expression was associated with poor prognosis in 
most cancers [32–34]. THBS2 was also an extra-
cellular matrix protein and promoted cell migra-
tion and angiogenesis [35]. Distinguished with 
VCAN and THBS2, though DCN was associated 
with the extracellular matrix, it could antagonize 
many tyrosine kinase receptors to inhibit tumor 
development and progression [36]. According to 
these results, the four DEPs interaction clusters 
manifested that one cluster was involved in cell 
growth and division, one in carbohydrate metabo-
lism, one in amino acid metabolism, and the rest 
in the extracellular matrix regulation. To 

summarize, the functions of the 69 DEPs fell into 
three main categories: cell proliferation and divi-
sion, cellular metabolism, and extracellular matrix 
regulation.

In the following step, we performed Kaplan- 
Meier survival analyses of 69 DEPs one by one 
and found that only 10 DEPs were significantly 
correlated with survival for multiple cancer. Of the 
10 proteins, the preceding text showed that some 
studies identified RRM2, PLOD2, MKI67, MCM5, 
and CKD1 promoted cancer progression and 
FBP1, FBP2, ENO3, GPD1, and ASS1 inhibited 
cancer progression, which was consistent with 
our results (Figure S1). Nevertheless, this tradi-
tional way of concentrating on molecular biomar-
kers such as single protein has not been successful; 
because the development and progression of can-
cers were primarily accomplished by a set of 

Figure 5. Time-dependent ROC curves and the survival analysis for the DEPs-based classifiers for OS in the training cohort and the 
validation cohort. (a,d) Cancer patients were divided into two groups by the median of risk score in the training cohort: High risk and 
Low risk; (b) Kaplan-Meier Survival analysis results indicated that the two groups had significantly different survival rates (p = 2.309e 
−09); (c) tdROC were applied to assess predictive accuracy for overall survival; (d) according to the same cutoff point cancer patients 
were also divided into two groups in the validation cohort; (e) Kaplan-Meier Survival analysis results indicated that the two groups 
had significantly different survival rates in the validation cohort (p = 1.113e−04); (f) tdROC were applied to assess predictive accuracy 
for overall survival. DEPs, differentially expressed proteins; OS, overall survival; tdROC, Time-dependent ROC.
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Table 2. Univariate and multivariate COX analyses of the DEPs-based classifier for OS.
Univariate analysis Multivariate analysis

Prognostic parameter HR 95% CI P value HR 95% CI P value

CCRC
Age (> 65 vs. ≤ 65) 0.724 0.218–2.409 0.599
Gender (male vs. female) 1.099 0.297–4.063 0.887
Grade (G3&4 vs. G1&2) 1.901 0.603–5.993 0.273
Tumor stage 

(III + IV vs. I + II)
2.031 1.224–3.369 0.006

T classification 
(T3 + T4 vs. T1 + T2)

5.479 1.483–20.240 0.011

N classification 
(N1 vs. N0) 
M classification 
(M1 vs. M0)

1.269 
10.190

0.132–12.221 
2.625–39.560

0.837 
0.001

6.593 1.670–26.026 0.007

DEPs-based classifier 
(High vs. Low risk)

4.047 2.081–7.871 <0.001 4.438 1.704–11.561 0.002

HCC
Age (> 65 vs. ≤ 65) 0.589 0.233–1.488 0.263
Gender (male vs. female) 0.843 0.420–1.692 0.630
Number of Tumors 

(Couple VS Single)
1.042 0.467–2.323 0.920

Tumor thrombus 
(present vs. absent)

2.118 1.157–3.879 0.015 0.780 0.399–1.525 0.468

DEPs-based classifier 
(High vs. Low risk)

3.892 2.563–5.909 <0.001 3.114 1.911–5.073 <0.001

LUAD
Age (> 65 vs. ≤ 65) 6.184 0.803–47.630 0.080
Gender (male vs. female) 1.176 0.394–3.509 0.771
Grade (G3&4 vs. G1&2) 0.259 0.026–2.540 0.246
Tumor stage 

(III + IV vs. I + II)
7.518 2.428–23.283 <0.001 2.721 0.347–21.351 0.341

T classification 
(T3 + T4 vs. T1 + T2)

4.499 1.357–14.913 0.014 2.571 0.730–9.057 0.142

N classification 
(N1 vs. N0) 
M classification 
(M1 vs. M0)

5.400 
0.048

1.658–17.585 
0.00–10,988,250

0.005 
0.757

1.973 
6.593

0.257–15.160 
1.670–26.026

0.514 
0.007

Smoking history 
(Present vs. Absent)

2.310 0.754–7.070 0.143

DEPs-based classifier 
(High vs. Low risk)

3.867 1.573–9.502 0.003 2.666 1.123–6.331 0.026

UCEC
Age (> 65 vs. ≤ 65) 131.682 0.007–2,628,475 0.334
Grade (G3&4 vs. G1&2) 3.042 0.190–48.629 0.432
Tumor stage 

(III + IV vs. I + II)
5355.564 0–5.000E+18 0.626

T classification 
(T3 + T4 vs. T1 + T2)

18.422 1.654–205.237 0.018 25,773.5 0–4.44094E+23 0.424

N classification 
(N1 vs. N0) 
M classification 
(M1 vs. M0)

0.039 
35.500

0–1,243,745,686 
2.220–567.557

0.793 
0.012

0.000 0.000–1,102,092.5 0.424

DEPs-based classifier 
(High vs. Low risk)

13.430 1.983–183.437 0.050 216.159 0.003–14,902,987 0.344

CBTTC
Age (> 65 vs. ≤ 65) 0.945 0.895–0.998 0.044 0.971 0.926–1.019 0.228
Gender (male vs. female) 0.708 0.387–1.293 0.261
Surgery 

(Present vs. Absent)
0.102 0.047–0.222 <0.001 0.165 0.070–0.387 <0.001

DEPs-based classifier 
(High vs. Low risk)

13.430 1.983–183.437 0.050 2.173 1.229–3.843 0.008

HR, Hazard ratio; CI, confidence interval; DEPs, differentially expressed proteins; hepatocellular carcinoma, HCC; children’s brain tumor tissue 
consortium, CBTTC; clear cell renal cell carcinoma, CCRC; lung adenocarcinoma, LUAD; uterine corpus endometrial carcinoma, UCEC. 
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Table 3. Correlations between risk score of the DEPs-based classifier with overall survival and clinicopathological characteristics in 
five types of cancers.

Clinicopathological variables Number of patients High Risk Low Risk P value

CCRC 
Age

<65 (n, %) 67 (59.3%) 34 (30.1%) 33 (29.2%)
≥65 (n, %) 46 (40.7%) 19 (16.8%) 27 (23.9%) 0.323

Gender
Male (n, %) 30 (26.5%) 11 (9.7%) 19 (16.8%)
Female (n, %) 83 (73.5%) 42 (37.2%) 41 (36.3%) 0.190

Histologic Grade
G1+ G2 (n, %) 69 (61.1%) 27 (23.9%) 42 (37.2%)
G3+ G4 (n, %) 
NA

44 (38.9%) 
0

26 (23.0%) 18 (15.9%) 0.038

TNM staging system
T1+ T2 (n, %) 72 (63.7%) 29 (25.7%) 43 (38.1%)
T3+ T4 (n, %) 
NA

41 (36.3%) 
0

24 (21.2%) 17 (15.0%) 0.061

N0 (n, %) 14 (77.8%) 9 (50.0%) 5 (27.8%)
N1 (n, %) 
NA

4 (22.2%) 
95

3(16.7%) 1(5.6%) 0.688

HCC
Age

<65 (n, %) 120 (85.1%) 85 (60.3%) 35 (24.8%)
≥65 (n, %) 21 (14.9%) 16 (11.3%) 5 (3.5%) 0.615

Gender
Male (n, %) 26 (18.4%) 19 (13.5%) 7 (5.0%)
Female (n, %) 115 (81.6%) 82 (58.2%) 33 (23.4%) 0.856

Number of Tumors
Single (n, %) 121(85.8%) 87 (61.7%) 34 (24.1%)
Couple (n, %) 
NA

20 (14.2%) 
0

14 (9.9%) 6 (4.3%) 0.861

LUAD
Age

<65 (n, %) 59 (57.8%) 29 (28.4%) 30 (29.4%)
≥65 (n, %) 43 (42.2%) 18 (17.6%) 25 (24.5%) 0.466

Gender
Male (n, %) 32 (31.4%) 12 (11.8%) 20 (19.6%)
Female (n, %) 70 (68.6%) 35 (34.3%) 35 (34.3%) 0.240

Histologic Grade
G1+ G2 (n, %) 62 (63.9%) 26 (26.8%) 36 (37.1%)
G3+ G4 (n, %) 
NA

35 (36.1%) 
5

18 (18.6%) 17 (17.5%) 0.367

TNM staging system
T1+ T2 (n, %) 91 (89.2%) 39 (38.2%) 52 (51.0%)
T3+ T4 (n, %) 
NA

11 (10.8%) 
0

8 (7.8%) 3 (2.9%) 0.060

N0 (n, %) 70 (68.6%) 29 (28.4%) 41 (40.2%)
N1 (n, %) 
NA

32 (31.4%) 
0

18 (17.6%) 14 (13.7%) 0.163

M0 (n, %) 85 (97.7%) 42 (48.3%) 43 (49.4%)
M1 (n, %) 
NA

2 (2.3%) 
25

0 (.0%) 2 (2.3%) 0.167

Pathological stage
I+ II (n, %) 81 (79.4%) 34 (33.3%) 47 (46.1%)
III+IV (n, %) 
NA

21 (20.6%) 
0

13 (12.7%) 8 (7.8%) 0.103

Smoking history
Present (n, %) 56 (56.6%) 26 (26.3%) 30 (30.3%)
Absent (n, %) 
N

43 (43.4%) 
3

20 (20.2%) 23 (23.2%) 0.993

UCEC
Age

<65 (n, %) 56 (56.6%) 16 (16.2%) 40 (40.4%)
≥65 (n, %) 43 (43.4%) 8 (8.1%) 35 (35.4%) 0.251

Histologic Grade

(Continued )
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biomolecules, rather than the dysfunction of an 
individual molecule [37,38]. As shown in Figure 
S2, the accuracy of the 10 DEPs in predicting the 
prognosis of cancers was not high. Therefore, 
according to the LASSO regression method, we 
determined 24 DEPs: MKI67, LOXL2, PLIN4, 
IL33, MDK, P4HA2, AKR7A3, PLCXD3, CDK1, 
SRPX, PRPH, PRKAR2B, P4HA1, CALML3, SFN, 
DES, PHYHD1, GPD1, AADAT, PGM5, ADH1C, 
FBP2, ENO3, EHD3. In accordance with the above 
classification, among the 24 proteins, CDK1, SFN, 
PRKAR2B, MKI67 and MDK were involved in the 
cell cycle [17,24,39]; AKR7A3, GPD1, ENO3, 
FBP2, AADAT, PGM5 and ADH1C were involved 
in cell metabolism [26,28,40]; LOXL2, P4HA1, 
P4HA2, SPRX, DES, PRPH and CALML3 were 
involved in construction and regulation of extra-
cellular matrix [41–43]. And most of these pro-
teins have been identified to contribute to 
prognosis of many cancers [19,26,41–44]. 
Although IL33 and EHD3 did not belong to any 
of the three groups mentioned above, some 
researches showed that they could inhibit the 

proliferation of tumor cells [45,46]. In addition 
to these widely studied proteins, there were still 
several proteins whose roles in cancer were unclear 
such as PLCX3, PHYHD1 and PLIN3, which pro-
vided a new direction for cancer research. 
Although no research had yet explored the specific 
ways in which they interacted, according to corre-
lation analysis, PGM5 was related to IL33 and 
DES. Therefore, we inferred that PGM5 may be 
involved in the regulation of tumor inflammation 
and extracellular matrix by regulating metabolism. 
Tumor immune microenvironment was closely 
related to tumor prognosis, and NK cells and 
T cells are the main anti-tumor cells, which were 
associated with cancer immune evasion [47–49]. 
Among the 24 DEPs, IL33 and EHD3 were asso-
ciated NK cell and played an important role in 
TCR-mediated T cell functions [50,51]. Edwin 
Wang et al proposed a cancer hallmark network 
framework for modeling genome sequencing data 
associated clinical phenotypes [52,53]. And most 
of the 24 DEPs (CDK1, SFN, PRKAR2B, MKI67 
and MDK involved in the cell cycle; LOXL2, 

Table 3. (Continued). 

Clinicopathological variables Number of patients High Risk Low Risk P value

G1+ G2 (n, %) 73 (75.3%) 13 (13.4%) 60 (61.9%)
G3+ G4 (n, %) 
NA

24 (24.7%) 
2

11 (11.3%) 13 (13.4%) 0.006

TNM staging system
T1+ T2 (n, %) 88 (88.9%) 20 (20.2%) 68 (68.7%)
T3+ T4 (n, %) 
NA

11 (11.1%) 
0

4 (4.0%) 7 (7.1%) 0.320

N0 (n, %) 47 (85.5%) 9 (16.4%) 38 (69.1%)
N1 (n, %) 
NA

8 (14.5%) 
44

4 (7.3%) 4 (7.3%) 0.058

M0 (n, %) 71 (97.3%) 17 (23.3%) 54 (74.0%)
M1 (n, %) 
NA

2 (2.7%) 
26

1 (1.44%) 1 (1.4%) 0.399

FIGO stage
I+ II (n, %) 82 (82.8%) 18 (18.2%) 64 (64.6%)
III+IV (n, %) 
NA

17 (17.2%) 
0

6 (6.1%) 11 (11.1%) 0.243

CBTTC
Age

<65 (n, %) 195 (99.5%) 100 (51.0%) 95 (48.5%)
≥65 (n, %) 1 (0.5%) 1 (0.5%) 0 (0%) 0.331

Gender
Male (n, %) 86 (43.9%) 44 (22.4%) 42 (21.4%)
Female (n, %) 110 (56.1%) 57 (29.1%) 53 (27.0%) 0.927

Surgery
Present (n, %) 163 (93.1%) 82 (46.7%) 81 (46.3%)
Absent (n, %) 
N

12 (6.9%) 
21

10 (5.7%) 2 (1.1%) 0.061

Hepatocellular carcinoma, HCC; children’s brain tumor tissue consortium, CBTTC; clear cell renal cell carcinoma, CCRC; lung adenocarcinoma, LUAD; 
uterine corpus endometrial carcinoma, UCEC. 
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P4HA1, P4HA2, SPRX, DES, PRPH and CALML3 
involved in construction and regulation of extra-
cellular matrix; IL33 and EHD3 may involve in 
immune) were linked to cancer hallmarks. 
Therefore, these DEPs could add to our under-
standing of tumor evolution and tumorigenesis 
and be helpful for predicting tumors’ evolutionary 
paths and clinical phenotypes. Based on the 24 
DEPs-based classification, we divided the cancer 
patients into two groups in training cohort. The 
Kaplan-Meier survival analysis and the ROC ana-
lysis showed that the 24-DEPs survival-predictor 
model was better predictor than single protein 
(Figure 5b,c). We further verified the correctness 
of this grouping method in validation cohort and 
the two groups also showed significantly different 
survival rates (Figure 5e). Therefore, the DEPs- 
based survival-predictor model showed excellent 
survival prediction effect and is applicable to 
most cancers, which will contribute to therapeutic 
decision-making.

Yet, there are several limitations in this study. 
Firstly, this study mainly explored the effect of the 
differentially expressed proteins on predicting the 
OS of multiple cancers. It will inevitably be inter-
esting to combine proteomics with genomics and 
even metabonomics to predict pan-cancer OS in 
the future. Secondly, the current study was 
a retrospective study utilizing the CPTAC data-
base. Therefore, more prospective studies were 
still needed. Moreover, proteins data of this study 
were based on clinical specimens, which had lim-
itations for clinical application. It would be clini-
cally valuable, if we could discover tumor 
biomarkers in various accessible blood samples.

Conclusion

In summary, our study screened 69 differentially 
expressed proteins in five cancers. Then, we con-
firmed these DEPs were mainly associated with cell 
proliferation and division, cellular metabolism, and 
extracellular matrix. According to the LASSO regres-
sion method, we have determined 24 DEPs. Notably, 
the DEPs-based survival-predictor model could 
accurately predict the OS in multiple cancers. And 
this is the first study to utilize proteomics to con-
struct a pan-cancer prognosis model, and the results 
indicated that the pan-cancer analysis may 

complement single cancer analysis in the identifica-
tion of prognostically differentially expressed 
proteins.

Highlights

(1) 69 differentially expressed proteins (DEPs) 
were identified.

(2) The DEPs formed an interaction network 
across five cancers.

(3) The 24 DEPs could accurately predict the 
OS in multiple cancers.
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