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In medical datasets classification, support vector machine (SVM) is considered to be one of the most successful methods. However,
most of the real-world medical datasets usually contain some outliers/noise and data often have class imbalance problems. In
this paper, a fuzzy support machine (FSVM) for the class imbalance problem (called FSVM-CIP) is presented, which can be
seen as a modified class of FSVM by extending manifold regularization and assigning two misclassification costs for two classes.
The proposed FSVM-CIP can be used to handle the class imbalance problem in the presence of outliers/noise, and enhance the
locality maximum margin. Five real-world medical datasets, breast, heart, hepatitis, BUPA liver, and pima diabetes, from the UCI
medical database are employed to illustrate the method presented in this paper. Experimental results on these datasets show the
outperformed or comparable effectiveness of FSVM-CIP.

1. Introduction

Computer techniques such as machine learning and pattern
recognition have been widely adopted by modern medicine.
One reason is that an enormous amount of data has to be
gathered and analyzed which is very hard or even impossible
without making use of computer techniques. The other
reason is that computer techniques have led toward digital
analysis of pathological diagnosis, automatic classification
differentiating, and detecting diseases. In some cases, an early
symptom of some diseases is lighter and gives no obvious
pointer to a possible diagnosis; moreover, many symptoms
look very similar to each other, though they are caused by
different diseases. So it may be difficult even for experienced
doctors to make correct diagnosis. Therefore, an automatic
classification system can help doctor diagnose accurately,
assess disorders remotely and evaluate the treatment process
[1].

In recent years, researchers have proposed a lot of
approaches for medicine classification, such as neural net-
work, Bayesian network, and support vectormachine (SVM).
Among them SVM is considered to be one of the most
successful ones [2]. For example, to improve time and
accuracy in differentiating diffuse interstitial lung disease for

computer-aided quantification, a hierarchical SVM is intro-
duced which shows promise for various real-time and online
image-based classification applications in clinical fields [3].
SVM as a classifier is used for liver disorders and its correct
classification rate is highly successful compared to the other
results attained [4]. A two-stage approach is proposed for
medical datasets classification, in which the artificial bee
colony algorithm is used for feature selection and SVM is
used for classification [5].

The support vector machine (SVM) proposed by Vapnik
[6, 7] is a novel approach for solving pattern recogni-
tion problems. SVM maps the sample points into a high-
dimensional feature space to seek for an optimal separating
hyperplane through maximizing the margin between two
classes. In addition, SVM is a quadratic programming (QP)
problem that assures that its solution is obtained once it is the
global unique solution, and the sparsity of solution assures
better generalization. However, most of the real-world medi-
cal datasets usually contain some outliers and noisy examples.
The classical SVM is very sensitive to outliers/noise. To solve
this problem, fuzzy support vector machine (FSVM) [8] is
proposed, in which each sample is given a fuzzy membership
that denotes the attitude of the corresponding point toward
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one class. The membership represents how important the
sample is to the decision surface.

Nevertheless, many medical datasets are composed of
“normal” samples with only a small percentage of “abnormal”
ones, which leads to the so-called class imbalance problems.
FSM does not take into consideration the class distribution
and can be sensitive to the class imbalance problem. As
a result, the hyperplane of FSVM can be skewed towards
the minority class, and this skewness can degrade the per-
formance of FSVM with respect to the minority class. To
tackle this problem, Veropoulos et al. [9] have proposed a
method called different error costs (DEC), where the SVM
objective function has been modified to assign two different
misclassification cost values. It is noticed that One-Class
Classification [10, 11] is sometimes used in novelty detection,
and it only uses the normal training data. However, in many
realmedical datasets, abnormal examples exist, although they
are very few. Furthermore, in classification tasks, the scatter
matrix can play an important role when incorporated with
local intrinsic geometry structures of samples [12]. Some
methods have been recently proposed to incorporate the
structure of the data distribution into SVM.A linearmanifold
learning method named locality preserving projection (LPP)
is proposed in [13, 14], which aims at preserving the local
manifold structure of the samples space. Although LPP
considers enhancing the local data compactness with each
manifold, it does not separate manifolds with different class
labels.

In this paper, we propose a new FSVM method for
the class imbalance problem (FSVM-CIP) which can be
used to address both the problem of class imbalance and
outliers/noise. FSVM-CIP not only considers the fuzziness of
each training sample but also extendsmanifold regularization
and maximizes the localized relative margin. It takes the
positive samples and negative samples into consideration
with differentmisclassification costs according to their unbal-
anced distributions. We systematically evaluated the FSVM-
CIP on five real-world medical datasets and compared its
performance with four different SVM methods for classifi-
cation. The results showed that the proposed method can
improve the classification accuracy and handle the classifi-
cation problems with outliers/noise and imbalanced datasets
more effectively.

The rest of this paper is organized as follows. Section 2
briefly reviews the related works. Section 3 presents the
details of FSVM-CIP in the linear case. Section 4 presents
FSVM-CIP in the nonlinear case in detail. The experimental
results on five medical datasets are reported in Section 5, and
some concluding remarks are given in Section 6.

2. Related Works

2.1. Fuzzy Support Vector Machines (FSVMs). In traditional
SVM, all the data points are considered with equal impor-
tance and assigned the same penal parameter in its objective
function. However, in many real-world classification appli-
cations, some sample points, such as the outliers or noises,
may not be exactly assigned to one of these two classes, and
each sample point does not have the same meaning to the

decision surface. To solve this problem, the theory of fuzzy
support vectormachine was originally proposed in [8]. Fuzzy
membership to each sample point is introduced such that
different sample points can make different contributions to
the construction of decision surface.

Suppose the training samples are

𝑆 = {(x
𝑖
, 𝑦
𝑖
, 𝑠
𝑖
) , 𝑖 = 1, . . . , 𝑁} , (1)

where x
𝑖
∈ R𝑛 is the 𝑛-dimension sample point, 𝑦

𝑖
∈ {−1, +1}

represents its class label, and 𝑠
𝑖
(𝑖 = 1, . . . , 𝑁) is a fuzzy

membership which satisfies 𝜎 ≤ 𝑠
𝑖
≤ 1 with a sufficiently

small constant 𝜎 > 0. The quadratic optimization problem
for classification is considered as follows:

min
w,𝑠,𝜉

1

2
w𝑇w + 𝐶

𝑙

∑

𝑖−1

𝑠
𝑖
𝜉
𝑖

s.t. 𝑦
𝑖
(w𝑇x
𝑖
+ 𝑏) ≥ 1 − 𝜉

𝑖
, 𝜉
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑙,

(2)

where w is a normal vector of the separating hyperplane, 𝑏 is
a bias term, and 𝐶 is a parameter which has to be determined
beforehand to control the tradeoff between the classification
margin and the cost of misclassification error. Since 𝑠

𝑖
is the

attitude of the corresponding point x
𝑖
towards one class and

the slack variables 𝜉
𝑖
are a measure of error, then the term 𝑠

𝑖
𝜉
𝑖

can be considered a measure of error with different weights.
It is noted that the bigger the 𝑠

𝑖
is, the more importantly

the corresponding point is treated; the smaller the 𝑠
𝑖
is, the

less importantly the corresponding point is treated; thus,
different input points can make different contributions to the
learning of decision surface.Therefore, FSVMcanfind amore
robust hyperplane by maximizing the margin by letting some
misclassification of less important points.

In order to solve the FSM optimal problem, (2) is
transformed into the following dual problem by introducing
Lagrangian multipliers 𝛼

𝑖
:

max
𝛼

𝑁

∑

𝑖=1

𝛼
𝑖
−
1

2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
x
𝑖
x
𝑗

s.t.
𝑁

∑

𝑖=1

𝑦
𝑖
𝛼
𝑖
= 0, 0 ≤ 𝛼

𝑖
≤ 𝑠
𝑖
𝐶, 𝑖 = 1, . . . , 𝑁.

(3)

Compared with the standard SVM, the above statement
only has a little difference, which is the upper bound of the
values of 𝛼

𝑖
. By solving this dual problem in (3) for optimal 𝛼

𝑖
,

w and 𝑏 can be recovered in the same way as in the standard
SVM.

2.2. Locality Preserving Projections (LPP). Locality preserv-
ing projection (LPP) [13, 14] is a linear dimensionality
reduction algorithm by feature extraction or projection.
It builds an adjacency graph incorporating neighborhood
information of the data set using the Laplacian graph and
then computes a transformation matrix which maps the data
points into a subspace. This linear transformation optimally
preserves local neighborhood information in a certain sense.
The representation map generated by this method can be
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viewed as a linear discrete approximation to a continuous
map that naturally arises from the geometry of the manifold.

For a set𝑋 = {x
𝑖
} (𝑖 ∈ [1,𝑁]), let𝑁

𝑘
(x
𝑖
) denote 𝑘 nearest

neighbors of node 𝑖, and let 𝐺 denote the adjacency graph of
dataset𝑋. Here, the 𝑖th node corresponds to the data point 𝑥

𝑖

and nodes 𝑖 and 𝑗 are connected by an edge if node 𝑖 is among
the 𝑘 nearest neighbors of node 𝑗 or if node 𝑗 is among the 𝑘
nearest neighbors of node 𝑖; that is, x

𝑖
∈ 𝑁
𝑘
(x
𝑗
) or x
𝑗
∈ 𝑁
𝑘
(x
𝑖
).

The adjacency graph 𝐺 can be weighed as follows:

𝑊
𝑖𝑗
=

{{{{{

{{{{{

{

exp(
−

x
𝑖
− x
𝑗



2

𝑡
) if x

𝑖
∈ 𝑁
𝑘
(x
𝑗
)

or x
𝑗
∈ 𝑁
𝑘
(x
𝑖
)

0 otherwise,

(4)

where exp(−‖x
𝑖
− x
𝑗
‖
2
/𝑡) is called the heart kernel function

and 𝑡 is a constant. ‖x
𝑖
− x
𝑗
‖ is the Euclidean distance

in R𝑛 between point 𝑖 and point 𝑗. LPP tries to find the
transformation vector w ∈ R𝑛 by minimizing the following
objective function:

min
w ̸= 0

w𝑇XLX𝑇w

s.t. w𝑇XDX𝑇w = 1,
(5)

where D is a diagonal matrix whose entries are column
sum of W and 𝐷

𝑖𝑖
= ∑
𝑗
𝑊
𝑖𝑗
normalizes each weight. L =

D − W is the Laplacian matrix. The transformation vector
w in the objective function in (5) is given by the minimum
eigenvalue solution to the generalized eigenvalue problem.
LPP preserves the intrinsic geometry and local structure of
the data by minimizing the objective function.

3. FSVM for the Class Imbalance Problem in
the Linear Case

In this section, we first define the local within-class pre-
serving scatter matrix in the linear case. Secondly, the
optimization problem formulation of FSVM-CIP in the linear
case is given. Moreover, the fuzzy membership functions for
linear FSVM-CIP are defined. Finally, the algorithm of linear
FSVM-CIP is summarized.

3.1. The Local within-Class Preserving Scatter Matrix in the
Linear Case. Following the idea of [15], we build the nearest
within-class neighbor graph to model intrinsic geometry
and local structure of the data. The graph preserves local
neighborhood information in a certain sense and it can be
viewed as a linear discrete approximation to a continuous
map that naturally arises from the geometry of the manifold.

Considering the fact that we have a binary classification
problem, one class denoted as 𝐶

1
contains sample points x

𝑖

with 𝑦
𝑖
= 1 and the other class denoted as𝐶

2
contains sample

points x
𝑖
with 𝑦

𝑖
= −1. Set |𝐶

1
| = 𝑚
1
and |𝐶

2
| = 𝑁 −𝑚

1
, and

the total number of sample points is𝑁.

Definition 1. For each data x
𝑖
, suppose its 𝑘 nearest within-

class neighbors set𝑁
𝑘
(x
𝑖
) and an edge is put between x

𝑗
and

its neighbors. The corresponding weight matrix𝑊
𝑖𝑗
is

𝑊
𝑖𝑗
=

{{{{{

{{{{{

{

1

𝐷
𝑖𝑖

exp(
−

x
𝑖
− x
𝑗



2

𝑡
) if x

𝑖
∈ 𝑁
𝑘
(x
𝑗
)

or x
𝑗
∈ 𝑁
𝑘
(x
𝑖
) , 𝑦
𝑖
= 𝑦
𝑗

0 otherwise,
(6)

where𝐷
𝑖𝑖
= ∑
𝑗
𝑊
𝑖𝑗
normalizes each weight.

Definition 2. The local within-class preserving scatter matrix

S
𝑙𝑤

=

2

∑

𝑘=1

∑

x𝑖∈𝐶𝑘
(
x
𝑖
− ∑

x𝑖∈𝑁(x𝑗) or x𝑗∈𝑁(x𝑖)

𝑊
𝑖𝑗
x
𝑗
)

× (
x
𝑖
− ∑

x𝑖∈𝑁(x𝑗) or x𝑗∈𝑁(x𝑖)

𝑊
𝑖𝑗
x
𝑗
)

𝑇

=

2

∑

𝑘=1

X(𝑘)(I(𝑘) −W(𝑘))
𝑇

(I(𝑘) −W(𝑘))X(𝑘)𝑇,

(7)

where I(𝑘) is an 𝑁
𝑘
× 𝑁
𝑘
diagonal matrix. In this case,

the obtained nearest within-class neighbor graph attempts
to preserve the local structure of the data set and (I(𝑘) −
W(𝑘))𝑇(I(𝑘) − W(𝑘)) preserves locality of nearby points with
same class label in the embedding space during the unfolding
process of nonlinear structures [15]. In fact, a heavy penalty
is applied to the objective function through the weight𝑊

𝑖𝑗
if

the neighboring data x
𝑖
and x
𝑗
are mapped far apart. Hence,

the minimization criterion is an attempt to ensure points 𝑦
𝑖

and 𝑦
𝑗
close to each other as well as x

𝑖
and x
𝑗
being close.

It is worthwhile to note that the local within-class scatter
matrix S

𝑙𝑤
is symmetric and positive semidefinite. S

𝑙𝑤
looks

similar to the within-class scatter matrix S
𝑤

[16, 17] and
the Laplacian matrix L in LPP. However, S

𝑙𝑤
reflects the

intrinsic geometry and local structure of the data, and S
𝑤

only considers the mean value of samples in different classes.
S
𝑙𝑤

carries the class label information and discriminating
information but L only considers the information of nearest
neighbors for each data point in the input space, without
considering the class labels.

3.2. FSVM-CIP in the Linear Case. To tackle the imbalance
classification problem with noise and outliers, we integrate
FSVM, the ideas of imbalance classification problem, and the
local within-class preserving scatter. On one hand, as shown
in Figure 1, the linear classifier presented by the hyperplane is
(w𝑇x + 𝑏 = 0) and defines a field for majority-class examples
(w𝑇x+𝑏 > 1−𝜉) and another field forminority-class examples
(w𝑇x + 𝑏 > −(1 + 𝜌 − 𝜉)) which is used to weaken the
skewness towards the minority class and enhance the locality
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w
T
x + b = −1 − 𝜌 wTx + b = 0

w
T
x + b = 1

𝜌

1

1

Figure 1: The hyperplanes of linear FSVM-CIP.

maximum margin. On the other hand, by assigning a higher
misclassification cost for theminority class examples than the
majority class examples, the effect of class imbalance could
be reduced. In addition, to minimize the amount of misclas-
sifications, the local within-class scatter matrix S

𝑙𝑤
is used to

preserve intrinsic geometry and local structure of the data.
Due to this, we define the primal problem of FSVM-CIP

as follows:

min
𝑤,𝑏,𝜌,𝜉

1

2
w𝑇w − V𝜌

+
1

V
1
𝑚
1

𝑚1

∑

𝑖=1

𝜇
𝑖
𝜉
𝑖
+

1

V
2
𝑚
2

𝑁

∑

𝑗=𝑚1+1

𝜇
𝑗
𝜉
𝑗
+
𝜂

2
w𝑇S
𝑙𝑤
w

s.t. w𝑇x
𝑖
+ 𝑏 ≥ 1 − 𝜉

𝑖
, 𝑖 = 1, . . . , 𝑚

1

− (w𝑇x
𝑗
+ 𝑏) ≥ 1 + 𝜌 − 𝜉

𝑗
, 𝑗 = 𝑚

1
+ 1, . . . , 𝑁

𝜉
𝑘
≥ 0, 𝑘 = 1, . . . , 𝑁, 𝜌 ≥ 0,

(8)

where 𝑚
1
, 𝑚
2
denote the number of positive (normal class

or majority class) and negative (abnormal class or minority
class) training points, and 𝑚

2
= 𝑁 − 𝑚

1
. 𝜌 is a nonnegative

number, and 𝜌 + 1 is the margin between the hyperplane and
the minority class examples. 𝜂 is a nonnegative regulation
constant which is the tradeoff between the local within-class
scatter and the margin. Variables V

1
, V
2
are positive penalty

parameters, which tune penalty cost of the training error for
positive and negative training data, respectively. 𝜉

𝑖
, 𝜉
𝑗
≥ 0 are

the slack variables, and 𝜇
𝑖
, 𝜇
𝑗
are fuzzy memberships for two-

class examples.
Obviously, w𝑇S

𝑙𝑤
w provides prior geometrical informa-

tion into the penalty terms based onmanifold regularization.
Minimizing w𝑇S

𝑙𝑤
w means that close data originally in the

same class in the input space are likely to be close in the
output place. Therefore, w𝑇S

𝑙𝑤
w aims to preserve the local

information of the manifold structure.

It is noted that, in FSVM-CIP, we assign different fuzzy
membership values for training examples to reflect their dif-
ferent classes of importance. We also showed that it is similar
to assign different misclassification costs 𝜇

𝑖
/V
1
𝑚
1
(𝜇
𝑗
/V
2
𝑚
2
)

for different training examples. In order to reduce the effect
of class imbalance, we can assign higher membership values
𝜇
𝑗
or lower parameter V

2
for the minority class examples,

while we assign lower membership values 𝜇
𝑖
or higher

V
1
for the majority class. That is, our proposed method

would not tend to skew the separating hyperplane towards
the minority class examples as the minority class examples
are now assigned with a higher misclassification cost. By
means of setting 𝜇

𝑖
/V
1
𝑚
1
(𝜇
𝑗
/V
2
𝑚
2
) and extending manifold

regularization, the learned optimal separating hyperplane
enhances the relative maximum margin and FSVM-CIP will
be less sensitive to imbalanced class problems.

Then, we transform this problem into its corresponding
dual problem as follows.

The primal Lagrangian is

𝐿 (w, 𝑏, 𝜌, 𝜉,𝛼, 𝛾, 𝑠)

=
1

2
w𝑇w − ]𝜌 + 1

V
1
𝑚
1

𝑚1

∑

𝑖=1

𝜇
𝑖
𝜉
𝑖
+

1

V
2
𝑚
2

𝑁

∑

𝑗=𝑚1+1

𝜇
𝑗
𝜉
𝑗

+
𝜂

2
w𝑇S
𝑙𝑤
w −
𝑚1

∑

𝑖=1

𝛼
𝑖
(w𝑇x
𝑖
+ 𝑏 − 1 + 𝜉

𝑖
)

+

𝑁

∑

𝑗=𝑚1+1

𝛼
𝑗
(w𝑇x
𝑗
+ 𝑏 + 1 + 𝜌 − 𝜉

𝑗
) −

𝑁

∑

𝑖=1

𝛾
𝑖
𝜉
𝑖
− 𝑠𝜌,

(9)

with Lagrangian multipliers 𝛼
𝑖
≥ 0, 𝛾

𝑖
≥ 0, and 𝑠 ≥ 0. The

derivatives of 𝐿(w, 𝑏, 𝜌, 𝜉,𝛼, 𝛾, 𝑠) with respect to the primal
variables using the Karush-Kuhn-Tucker (KKT) conditions
should vanish. Consider

𝜕𝐿

𝜕𝑏
=

𝑁

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0, (10)

𝜕𝐿

𝜕w
= Iw + 𝜂S

𝑙𝑤
w −
𝑁

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
x
𝑖
= 0, (11)

𝜕𝐿

𝜕𝜌
= −] +

𝑁

∑

𝑗=𝑚1+1

𝛼
𝑗
− 𝑠 = 0, (12)

𝜕𝐿

𝜕𝜉
𝑖

=
𝜇
𝑖

V
1
𝑚
1

− 𝛼
𝑖
− 𝛾
𝑖
= 0, 𝑖 = 1, . . . , 𝑚

1
, (13)

𝜕𝐿

𝜕𝜉
𝑗

=
𝜇
𝑗

V
2
𝑚
2

− 𝛼
𝑗
− 𝛾
𝑗
= 0, 𝑗 = 𝑚

1
+ 1, . . . , 𝑁, (14)

where I is an 𝑁-dimensional vector of ones, and I =

[1, . . . , 1]
𝑇. We have w = (I + 𝜂S

𝑙𝑤
)
−1
∑
𝑁

𝑖=1
𝛼
𝑖
𝑦
𝑖
x
𝑖
.
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Substituting (10)–(14) into (9), we obtain the dual form of
the optimization problem:

min
𝛼

1

2
𝛼
𝑇H𝛼

s.t.
𝑚1

∑

𝑖=+1

𝛼
𝑖
= V

𝑁

∑

𝑗=𝑚1+1

𝛼
𝑗
= V

0 ≤ 𝛼
𝑖
≤
𝜇
𝑖

V
1
𝑚
1

, 𝑖 = 1, . . . , 𝑚
1

0 ≤ 𝛼
𝑗
≤
𝜇
𝑗

V
2
𝑚
2

, 𝑗 = 𝑚
1
+ 1, . . . , 𝑁,

(15)

where H is a matrix with entry 𝐻
𝑖𝑗
= 𝑦
𝑖
𝑦
𝑗
x𝑇
𝑖
(I + 𝜂S

𝑙𝑤
)
−1x
𝑗
,

and vectors 𝛼 = [𝛼
1
, . . . , 𝛼

𝑁
]
𝑇.

Equation (15) is a typical convex quadratic programming
problem which is easy to be numerically solved. Suppose
𝛼∗ = [𝛼∗

1
, . . . , 𝛼

∗

𝑁
] can be used to solve the above optimization

problem, and then the optimal weight vector is

w∗ = (I + 𝜂S
𝑙𝑤
)
−1

𝑁

∑

𝑖=1

𝛼
∗

𝑖
𝑦
𝑖
x
𝑖
. (16)

Denote a training sample x
𝑖
(1 ≤ 𝑖 ≤ 𝑁) called a support

vector (SV) if the corresponding Lagrange multiplier 𝛼
𝑖
> 0.

Denote the SV sets as SV
1
= {x
𝑖
| 0 < 𝛼

𝑖
≤ 𝜇
𝑖
/V
1
𝑚
1
, 1 ≤

𝑖 ≤ 𝑚
1
} and SV

2
= {x
𝑗
| 0 < 𝛼

𝑗
≤ 𝜇
𝑗
/V
2
𝑚
2
, 1 + 𝑚

1
≤

𝑗 ≤ 𝑁} while 𝑠+ and 𝑠− denote the number of SVs in SV
1
and

SV
2
, respectively. According to KKT condition, (15) becomes

equations for the input data in SV
1
and SV

2
, respectively, with

slack variables 𝜉
𝑖
and 𝜉
𝑗
being 0.Thus, the optimal thresholds

𝑏
∗ and 𝜌∗ can be calculated. However, from the numerical
perspective, it is better to take the mean value of 𝑏∗ and 𝜌∗
resulting fromall such data.Therefore, the optimal thresholds
𝑏
∗ and 𝜌∗ are computed by the following formula:

𝑏
∗
= 1 −

1

𝑠+
∑

xi∈SV1
(w∗)𝑇x

𝑖
, (17)

𝜌
∗
= −

1

𝑠+
∑

x𝑖∈SV1
(w∗)𝑇x

𝑖
+
1

𝑠−
∑

x𝑗∈SV2
(w∗)𝑇x

𝑗
. (18)

As a result, the corresponding decision function of the
linear FSVM-CIP will be

𝑓 (x) = sgn (w𝑇x + 𝑏∗)

= sgn(
𝑁

∑

𝑖=1

𝛼
∗

𝑖
𝑦
𝑖
(x𝑇
𝑖
(I + 𝜂S

𝑙𝑤
)
−1x) + 𝑏∗) .

(19)

Note that, to deal with the small sample size problem, (I+
𝜂S
𝑙𝑤
) is regularized by adding a scalemultiple 𝜂 of the identity

matrix S
𝑙𝑤
with I before any inversion takes place. Hence, (I+

𝜂S
𝑙𝑤
) is always nonsingular, and the inverse of (I+𝜂S

𝑙𝑤
) exists.

Following the terminology in [18], a training sample x
𝑖

(1 ≤ 𝑖 ≤ 𝑁) is called amargin error (ME) if the corresponding
slack variable 𝜉

𝑖
> 0. We give the following theorem for

parameter selection later.

Theorem 3. Let𝑚+ and𝑚− denote the number of MEs in the
positive and negative classes; 𝑠+ and 𝑠− denote the number of
SVs in the positive and negative classes, respectively. Then one
has

𝜇+
𝑚
𝑚
+
≤ VV
1
𝑚
1
≤ 𝜇+
𝑠
𝑠
+
, (20)

𝜇−
𝑚
𝑚
−
≤ VV
2
𝑚
2
≤ 𝜇−
𝑠
𝑠
−
, (21)

where 𝜇+
𝑚
and 𝜇−

𝑚
denote the mean fuzzy membership of MEs

in the positive and negative classes; 𝜇+
𝑠
and 𝜇−
𝑠
denote the mean

fuzzy membership of SVs in the positive and negative classes,
respectively.

A proof of the above theorem can be found in Appendix.

3.3. Fuzzy Membership Functions in the Linear Case. In
FSVM, the fuzzy membership is used to reduce the effects of
outliers or noises and different fuzzy membership functions
have different influences on the fuzzy algorithm. Basically,
the rule to assign proper membership values to data points
can depend on the relative importance of date points to their
own classes. In this paper, we consider two fuzzymembership
functions given in [19].

Given the sequence of training points, denote the mean
of positive class and negative class as 𝑥

+
and 𝑥

−
.

Definition 4. The 𝜇lin is called the linear fuzzy membership
and 𝜇lin can be defined as

𝜇lin =

{{{{{

{{{{{

{

1 −
x𝑖 − x+



(max
𝑗
(

x
𝑗
− x
+


) + 𝛿)

if 𝑦
𝑖
= 1

1 −
x𝑖 − x−



(max
𝑗
(

x
𝑗
− x
−


) + 𝛿)

if 𝑦
𝑖
= −1,

(22)

where 𝛿 is a small positive value, which is used to avoid 𝜇lin
becoming zero. ‖ ⋅ ‖ is the Euclidean distance.

Definition 5. The 𝜇exp is called the exponential fuzzy mem-
bership and 𝜇exp can be defined as

𝜇exp =

{{{

{{{

{

2

1 + exp (𝜆 x𝑖 − x+
)

if 𝑦
𝑖
= 1

2

1 + exp (𝜆 x𝑖 − x−
)

if 𝑦
𝑖
= −1,

(23)

where parameter 𝜆 ∈ [0, 1] determines the steepness of the
decay.

3.4. Solution. Based on the above, we can state the approach
of proposed FSVM-CIP in the linear case as Algorithm 1.
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Input:
Training samples {(x

𝑖
, 𝑦
𝑖
) , 𝑖 = 1, . . . , 𝑁}

Testing samples {x
𝑗
, 𝑗 = 1, . . . , 𝑈}

Output:
The predicted labels 𝑦

𝑗
of data {x

𝑗
, 𝑗 = 1, . . . , 𝑈}

Procedure:
(1) Compute fuzzy membership 𝜇

𝑖
using (22) or (23) for the data {(x

𝑖
, 𝑦
𝑖
), 𝑖 = 1, . . . , 𝑁}

(2) Construct data adjacency graph 𝐺 using 𝑘 nearest neighbors and compute the edge weights matrix𝑊
𝑖𝑗
with𝑁 examples

(3) Construct local within-class preserving scatter matrix Slw using (8)
(4) Choose parameters 𝑡 (6); 𝜂, ], ]

1
and ]

2
(8)

(5) Compute 𝛼∗ using (15) and 𝑏∗ using (17) with a QP Solver
(6) Using decision function (19) with samples x

𝑗
, and output the final class labels

Algorithm 1: FSVM-CIP in the linear case.

4. FSVM for the Class Imbalance Problem in
the Nonlinear Case

In this section, we extend the local within-class preserving
scatter matrix and FSVM-CIP into feature space. Moreover,
the fuzzy membership functions in feature space are defined.
Finally, the algorithm of kernel FSVM-CIP is summarized.

4.1. Kernel Extension. In order to handle nonlinear classi-
fication, the kernelization trick [20] is used to map the 𝑛-
dimensional date points into an arbitrary reproducing kernel
Hilbert space (RKHS) [21] via a mapping function 𝜙 : R𝑛 →
H; that is, xi → 𝜙(xi). Then a linear hyperplane 𝑓(k) =
𝛼𝑇𝜙(k)+𝑏 in feature spaceHwould correspond to a nonlinear
hyperplane in the original space R𝑛 where 𝛼, 𝜙(k) ∈ H, k ∈
R𝑛, and 𝑏 ∈ R.

Let 𝜙(X) denote the date matrices in feature space H,
𝜙(X) = [𝜙(x

1
), 𝜙(x
2
), . . . , 𝜙(x

𝑛
)]; then the kernel function K

is a matrix with entry𝐾
𝑖𝑗
= 𝐾(x

𝑖
, x
𝑗
) = 𝜙(x

𝑖
)
𝑇
𝜙(x
𝑗
).

Here the kernel local within-class scatter matrix S𝜙
𝑙𝑤

in
feature space is

S𝜙
𝑙𝑤

=

2

∑

𝑘=1

𝑁𝑘

∑

𝑖=1

(𝜙 (x
𝑖
) −

𝑁𝑘

∑

𝑗=1

W𝜙𝑘
𝑖𝑗
𝜙 (x
𝑗
))

× (𝜙 (x
𝑖
) −

𝑁𝑘

∑

𝑗=1

W𝜙𝑘
𝑖𝑗
𝜙 (x
𝑗
))

𝑇

= K(1)(I(1) −W𝜙
(1)

)

𝑇

(I(1) −W𝜙
(1)

)K(1)
𝑇

+ K(2)(I(2) −W𝜙
(2)

)

𝑇

(I(2) −W𝜙
(2)

)K(2)
𝑇

,

(24)

where I(1), I(2) are 𝑁
1
-order, 𝑁

2
-order identity matrixes,

respectively. Based on the above notations, K(1), K(2) are𝑁×
𝑚
1
, 𝑁×(𝑁−𝑚

1
)matrixes, respectively; thusK = [K(1),K(2)].

The weight matrixes W𝜙(1) and W𝜙(2) are the nonlinear
version ofW(1) andW(2), respectively.W𝜙(1)andW𝜙(2) could
be built by𝑊𝜙

𝑖𝑗
, and the nonlinear version of𝑊𝜙

𝑖𝑗
is

𝑊
𝜙

𝑖𝑗
=

{{{{{{{

{{{{{{{

{

1

𝐷
𝜙

𝑖𝑖

exp(
− (𝐾
𝑖𝑖
+ 𝐾
𝑗𝑗
− 2𝐾
𝑖𝑗
)

𝑡
) if x

𝑖
∈ 𝑁
𝑘
(x
𝑗
)

or x
𝑗
∈ 𝑁
𝑘
(x
𝑖
) ,

𝑦
𝑖
= 𝑦
𝑗

0 otherwise,
(25)

where𝐷𝜙
𝑖𝑖
= ∑
𝑗
𝑊
𝜙

𝑖𝑗
is a normalizer.

Thus, the kernel FSVM-CIP can be easily achieved by
solving the following quadratic problem:

min
𝑤,𝑏,𝜌,𝜉

1

2
w𝑇w − V𝜌 + 1

V
1
𝑚
1

𝑚1

∑

𝑖=1

𝜇
𝑖
𝜉
𝑖
+

1

V
2
𝑚
2

𝑁

∑

𝑗=𝑚1+1

𝜇
𝑗
𝜉
𝑗

+
𝜂

2
w𝑇S𝜙
𝑙𝑤
w

s.t. w𝑇𝜙 (x
𝑖
) + 𝑏 ≥ 1 − 𝜉

𝑖
, 𝑖 = 1, . . . , 𝑚

1

w𝑇𝜙 (x
𝑗
) + 𝑏 ≥ 1 + 𝜌 − 𝜉

𝑗
, 𝑗 = 𝑚

1
+ 1, . . . , 𝑁

𝜉
𝑘
≥ 0, 𝑘 = 1, . . . , 𝑁, 𝜌 ≥ 0.

(26)

Like its linear counterpart, the solution to this optimiza-
tion problem can be easily found using Lagrange multipliers.
By using the representer theorem, w can be given by w =

∑
𝑁

𝑖=1
𝛽
𝑖
𝜙(x
𝑖
). We obtain the dual form of the optimization

problem:

min
𝛼

1

2
𝛼
𝑇M𝛼

s.t.
𝑚1

∑

𝑖=1

𝛼
𝑖
= V

𝑁

∑

𝑗=𝑚1+1

𝛼
𝑗
= V
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0 ≤ 𝛼
𝑖
≤
𝜇
𝑖

V
1
𝑚
1

, 𝑖 = 1, . . . , 𝑚
1

0 ≤ 𝛼
𝑗
≤
𝜇
𝑗

V
2
𝑚
2

, 𝑗 = 𝑚
1
+ 1, . . . , 𝑁,

(27)

whereM = YK𝑇Q−1KY andQ = K+𝜂K(1)(I(1)−W𝜙(1))𝑇(I(1)−
W𝜙(1))K(1)𝑇 + 𝜂K(2)(I(2) −W𝜙(2))𝑇(I(2) −W𝜙(2))K(2)𝑇. Vectors
𝛼 = [𝛼

1
, . . . , 𝛼

𝑁
]
𝑇, and 𝑌 = diag(𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) is a diagonal

matrix.
Equation (27) is a typical convex quadratic programming

problemwhich is easy to be numerically solved. Suppose𝛼∗ =
[𝛼
∗

1
, . . . , 𝛼

∗

𝑁
]
𝑇 can be used to solve the above optimization

problem; then the optimal weight vector 𝛽∗ = Q−1KY𝛼∗.
Therefore, the optimal thresholds 𝑏∗ and 𝜌∗ are computed by
the following formula:

𝑏
∗
= 1 −

1

𝑠+
∑

x𝑖∈sv1

𝑁

∑

𝑗=1

𝛽
∗

𝑗
𝑦
𝑗
𝐾(x
𝑖
, x
𝑗
) , (28)

𝜌
∗
= −

1

𝑠+
∑

x𝑖∈SV1

𝑁

∑

𝑗=1

𝛽
∗

𝑗
𝑦
𝑗
𝐾(x
𝑖
, x
𝑗
)

+
1

𝑠−
∑

x𝑖∈SV2

𝑁

∑

𝑗=1

𝛽
∗

𝑗
𝑦
𝑗
𝐾(x
𝑖
, x
𝑗
) .

(29)

Finally, a more robust decision function of kernel FSVM-
CIP will be

𝑓 (x) = sgn(
𝑁

∑

𝑖=1

𝛽
∗

𝑖
𝐾(x, x

𝑖
) + 𝑏
∗
) . (30)

Theorem 6. The matrix M in (27) is symmetric and positive
semidefinite.

A proof of the above theorem can be found in Appendix.
Next, we consider fuzzy membership functions in feature

space.

Definition 7. The 𝜇𝜙lin is called the linear fuzzy membership in
feature space and 𝜇𝜙lin can be defined as

𝜇
𝜙

lin =

{{{{{

{{{{{

{

1 −
𝜙 (x𝑖) − 𝜙 (x+)



(max
𝑗
(

𝜙 (x
𝑗
) − 𝜙 (x

+
)

) + 𝛿)

if 𝑦
𝑖
= 1

1 −
𝜙 (x𝑖) − 𝜙 (x−)



(max
𝑗
(

𝜙 (x
𝑗
) − 𝜙 (x

−
)

) + 𝛿)

if 𝑦
𝑖
= −1,

(31)

where 𝛿 is a small positive value. ‖⋅‖ is the Euclidean distance.

Definition 8. The 𝜇𝜙exp is called the exponential fuzzy mem-
bership in feature space and 𝜇𝜙exp can be defined as

𝜇
𝜙

exp =

{{{

{{{

{

2

1 + exp (𝜆 𝜙 (x𝑖) − 𝜙 (x+)
)

if 𝑦
𝑖
= 1

2

1 + exp (𝜆 𝜙 (x𝑖) − 𝜙 (x−)
)

if 𝑦
𝑖
= −1,

(32)

where parameter 𝜆 ∈ [0, 1] determines the steepness of the
decay. Consider

𝜙 (x
+
) =

1

𝑚
1

∑

𝑥𝑖∈𝑐1

𝜙 (x
𝑖
) ,

𝜙 (x
−
) =

1

𝑁 − 𝑚
1

∑

𝑥𝑖∈𝑐2

𝜙 (x
𝑖
) .

(33)

Thus, the distance ‖𝜙(x
𝑖
) − 𝜙(x

+
)‖ can be given by

𝜙 (x𝑖) − 𝜙 (x+)


= √𝐾 (x𝑖, x𝑖) −
2

𝑚
1

∑

x𝑗∈𝐶1
𝐾(x
𝑖
, x
𝑗
) +

1

𝑚
2

1

∑

x𝑠∈𝐶1
∑

x𝑡∈𝐶1
𝐾(x
𝑠
, x
𝑡
).

(34)

Likewise, the ‖𝜙(x
𝑖
)−𝜙(x

−
)‖ can be given in a similarmanner.

4.2. Solution. Based on the above, we can state the approach
of kernel FSVM-CIP as Algorithm 2.

5. Experiments and Discussions

To evaluate the performance of our proposed FSVM-CIP, in
this section, FSVM-CIP is evaluated compared with other
related representative methods, such as standard FSVM [8],
SVDD [11], FSVM for class imbalance learning (FSVM-CIL)
[22], and FSVM with minimum within-class scatter (WCS-
FSVM) [23]. We implement FSVM-CIP using the linear
fuzzy membership and the exponential fuzzy membership,
respectively, which are represented as FSVM-CIPlin and
FSVM-CIPexp. All the experiments are performed in Matlab
(R2010a) on personal computer, whose configuration is as
follows: CPU 2.99GHz, 4.0G RAM, andMicrosoftWindows
XP.

5.1. Data Preparation. In this section, we use five real-
world medical datasets from the UCI repository of machine
learning database [24], to demonstrate the classification
performance of the method proposed in this paper. These
five medical datasets are breast, heart, hepatitis, BUPA
liver, and pima diabetes. It is highly likely that these real-
world datasets contain some outliers and noisy examples in
different amounts [22]. In each of them, the positive class
consists of the data corresponding to the healthy, normal,
or benign cases, while the negative class contains the data
for diseased, abnormal, or malignant cases. Further details of
these datasets are provided in Table 1. This contains the total
number of positive data #pos, the total number of negative
data #neg, the number of positive training examples 𝑚1, the
number of negative training examples 𝑚2, the positive-to-
negative imbalance ratioRatio, and the data dimensionality𝑑.

5.2. Performance Measure and Experimental Settings. We
used the geometric mean of sensitivity (sensitivity = propor-
tion of the positives correctly recognized), specificity (speci-
ficity = proportion of the negatives correctly recognized),
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Input:
training samples {(x

𝑖
, 𝑦
𝑖
), 𝑖 = 1, . . . , 𝑁}

Testing samples {x
𝑗
, 𝑗 = 1, . . . , 𝑈}

Output:
The predicted labels 𝑦

𝑗
of data {x

𝑗
, 𝑗 = 1, . . . , 𝑈}

Procedure:
(1) Choose a kernel function K. Compute the Gram matrix 𝐾

𝑖𝑗
= 𝐾(x

𝑖
, x
𝑗
).

(2) Compute fuzzy membership 𝜇𝜙
𝑖
using (31) or (32) for the data {(x

𝑖
, 𝑦
𝑖
), 𝑖 = 1, . . . , 𝑁}

(3) Construct data adjacency graph 𝐺 using 𝑘 nearest neighbors and compute the edge weights matrix𝑊𝜙
𝑖𝑗
with𝑁 examples

(4) Construct local within-class preserving scatter matrix S𝜙lw using (24)
(5) Choose parameters 𝑡 (25); 𝜂, ], ]

1
and ]

2
(26)

(6) Compute 𝛼∗ using (27) and 𝑏∗ using (28) with a QP Solver
(7) Using decision function (30) with samples x

𝑗
, and output the final class labels

Algorithm 2: Kernel FSVM-CIP.

Table 1: Characteristics of the selected datasets.

Datasets #pos #neg 𝑚1 𝑚2 Ratio 𝑑

Breast 458 241 240 120 2 : 1 9
Heart 120 150 80 20 4 : 1 13
Hepatitis 123 32 100 10 10 : 1 19
BUPA liver 200 145 150 10 15 : 1 6
Pima diabetes 268 500 180 10 18 : 1 8

and accuracy (accuracy = proportion of correctly classified
instances) for the classifier performance evaluation in exper-
iments, as commonly used in medical datasets classification
research [7].

Like the existing SVM and FSVM algorithms, the
solution is sensitive to the setting of the parameters. In order
to evaluate the performance, a strategy is that a set of the
parameters is given first and then the best cross-validation
mean rate among the set is used to estimate the generalized
accuracy.We adopt this strategy in this paper. For FSVM-CIP,
the parameter ] is searched in {1, 5, 10, 15, . . . , 80}, while V

1

and V
2
are selected from {0.001, 0.005, 0.01, 0.05}. 𝜂 is selected

from log
2
𝜂 ∈ {−5, −4.5, −4, . . . , 5.5, 6}. The heat kernel para-

meter 𝑡 is searched in {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}

and the neighborhood parameter 𝑘 is searched in {3, 5, 7,
9, 11, 13, 15}. In addition, when the linear fuzzy function is
used, we set 𝛿 = 10−6. When the exponential fuzzy function
is used, the optimal value of 𝜆 is chosen from the range
𝜆 = {0.1, 0.2, 0.3, . . . , 1}.

The regularization parameter 𝐶 for FSVM, SVDD,
FSVM-CIL, and WCS-FSVM is selected from the set
{0.001, 0.01, 0.1, 1, 10, 100}. In WCS-FSVM, 𝛽 is selected
from log

2
𝛽 ∈ {−5, −4.5, −4, . . . , 5.5, 6}. For FSVM-CIL, the

fuzzy membership is based on the distance from the actual
hyperplane and uses the exponential fuzzy membership 𝜆. 𝜆
is chosen from the range 𝜆 = {0.1, 0.2, 0.3, . . . , 1}.

For the kernel-based methods, we use a Gaussian
RBF kernel, that is, exp(−(𝑢 − V)𝑇(𝑢 − V)/𝜎), where 𝜎
is the spread of Gaussian kernel, and 𝜎 is searched in
{𝜏
2
/16, 𝜏

2
/8, 𝜏
2
/4, 𝜏
2
/2, 𝜏
2
, 2𝜏
2
, 4𝜏
2
, 8𝜏
2
, 16𝜏
2
}, where 𝜏2 is

the mean norm of the training data.

For parameter selection, we conduct fivefold cross-
validation in a stratified manner so that each validation set
has the same positive to negative ratio as in the training set.
Finally, the experiment is repeated 10 times independently of
each dataset.

5.3. Experimental Results. FSVM-CIP method test results
developed for the breast, heart, hepatitis, BUPA liver, and
pima diabetes datasets are given both in the linear case
and nonlinear case. Tables 2, 3, 4, 5, and 6 display the
comparison results with the other methods on these five
databases, respectively.

The main observations from the performance compar-
isons include the following.

(1) We can see that, in many real-world applications, a
linear classifier seems powerless. In terms of accuracy, kernel
method can improve the classification performance for all five
medical datasets.

(2) We can clearly observe that the FSVM-CIP outper-
forms other methods on almost datasets both in the linear
case and nonlinear case, which gives higher accuracy. This
fortifies the fact that the locality maximum margin and the
local structure information presented by local within-class
preserving scatter could improve classification performance;
furthermore, the method of different misclassification costs
based on the number of two classes is a sensitive learning
solution to overcome the imbalance problem in SVMs.

(3) It is noted that, for all the datasets considered, the
classification accuracy given by the FSVM-CIPexp setting
is higher than the FSVM-CIPlin setting. Therefore, we can
state that FSVM-CIPexp setting with the appropriate selection
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Table 2: Comparison of the classification results (%) on breast dataset.

Method Sensitivity Specificity Accuracy

Linear

FSVM 95.87 ± 0.017 95.04 ± 0.043 95.58 ± 0.035

SVDD 97.71 ± 0.065 90.90 ± 0.013 95.28 ± 0.052

FSVM-CIL 95.87 ± 0.024 95.87 ± 0.015 95.81 ± 0.028

WCS-FSVM 96.33 ± 0.067 95.04 ± 0.056 95.87 ± 0.047

FSVM-CIPlin 96.98 ± 0.039 96.49 ± 0.022 96.76 ± 0.040
FSVM-CIPexp 96.68 ± 0.011 96.69 ± 0.042 96.76 ± 0.037

Gaussian kernel

FSVM 96.33 ± 0.023 95.87 ± 0.051 96.17 ± 0.050

SVDD 97.30 ± 0.065 91.25 ± 0.013 95.44 ± 0.052

FSVM-CIL 96.79 ± 0.059 95.87 ± 0.042 96.46 ± 0.055

WCS-FSVM 96.97 ± 0.030 96.69 ± 0.093 96.76 ± 0.067

FSVM-CIPlin 97.25 ± 0.055 96.29 ± 0.032 97.05 ± 0.042

FSVM-CIPexp 97.25 ± 0.055 97.52 ± 0.045 97.34 ± 0.033

Table 3: Comparison of the classification results (%) on heart dataset.

Method Sensitivity Specificity Accuracy

Linear

FSVM 87.50 ± 0.080 80.77 ± 0.069 82.35 ± 0.069

SVDD 87.03 ± 0.021 77.69 ± 0.005 80.00 ± 0.051

FSVM-CIL 85.00 ± 0.046 82.04 ± 0.110 82.35 ± 0.072

WCS-FSVM 87.30 ± 0.071 81.54 ± 0.089 82.94 ± 0.088

FSVM-CIPlin 85.00 ± 0.063 82.31 ± 0.083 82.84 ± 0.054

FSVM-CIPexp 87.50 ± 0.025 82.31 ± 0.083 83.53 ± 0.055

Gaussian kernel

FSVM 86.70 ± 0.099 82.61 ± 0.087 83.35 ± 0.042

SVDD 90.35 ± 0.022 80.77 ± 0.034 82.80 ± 0.070

FSVM-CIL 87.05 ± 0.034 81.54 ± 0.067 82.94 ± 0.044

WCS-FSVM 91.00 ± 0.076 81.73 ± 0.083 84.12 ± 0.085

FSVM-CIPlin 90.00 ± 0.045 82.31 ± 0.086 84.12 ± 0.052

FSVM-CIPexp 86.05 ± 0.023 83.08 ± 0.078 84.71 ± 0.066

Table 4: Comparison of the classification results (%) on hepatitis dataset.

Method Sensitivity Specificity Accuracy

Linear

FSVM 82.60 ± 0.053 22.73 ± 0.087 53.33 ± 0.073

SVDD 73.91 ± 0.071 45.45 ± 0.011 60.00 ± 0.046

FSVM-CIL 77.66 ± 0.026 45.46 ± 0.082 61.02 ± 0.070

WCS-FSVM 79.56 ± 0.107 27.27 ± 0.062 53.33 ± 0.059

FSVM-CIPlin 78.26 ± 0.046 45.46 ± 0.032 62.22 ± 0.023

FSVM-CIPexp 78.26 ± 0.068 50.00 ± 0.086 64.44 ± 0.071

Gaussian kernel

FSVM 73.91 ± 0.038 31.82 ± 0.012 53.33 ± 0.025

SVDD 82.60 ± 0.053 42.86 ± 0.025 63.64 ± 0.030

FSVM-CIL 77.26 ± 0.041 50.00 ± 0.086 63.84 ± 0.064

WCS-FSVM 78.26 ± 0.015 36.36 ± 0.074 57.78 ± 0.056

FSVM-CIPlin 73.51 ± 0.064 54.55 ± 0.037 64.44 ± 0.058

FSVM-CIPexp 73.91 ± 0.050 59.10 ± 0.011 66.67 ± 0.036

of 𝜆 value would be an effective choice applied to any
medical dataset. In other words, when dealing with medical
datasets classification, the performance of the exponential
fuzzy membership is better than linear fuzzy membership in
FSVM-CIP.

(4) For breast and heart datasets, the class imbalance is
not obviously shaped; WCS-FSVM yielded standard FSVM,
SVDD, and FSVM-CIL.We can say that the performance can
indeed be improved when the structure of the data is taken
into consideration. For the other three datasets, the class
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Table 5: Comparison of the classification results (%) on BUPA liver dataset.

Method Sensitivity Specificity Accuracy

Linear

FSVM 88.10 ± 0.008 66.42 ± 0.073 72.19 ± 0.057

SVDD 87.27 ± 0.021 68.05 ± 0.063 72.72 ± 0.042

FSVM-CIL 88.00 ± 0.004 67.44 ± 0.042 73.19 ± 0.015

WCS-FSVM 84.00 ± 0.360 67.15 ± 0.068 71.66 ± 0.051

FSVM-CIPlin 88.00 ± 0.004 67.88 ± 0.063 73.26 ± 0.031

FSVM-CIPexp 86.00 ± 0.048 69.34 ± 0.072 73.80 ± 0.054

Gaussian kernel

FSVM 96.00 ± 0.057 66.67 ± 0.026 74.60 ± 0.038

SVDD 95.43 ± 0.033 71.24 ± 0.050 77.23 ± 0.017

FSVM-CIL 95.00 ± 0.045 72.59 ± 0.052 78.37 ± 0.050

WCS-FSVM 90.08 ± 0.070 67.44 ± 0.083 73.73 ± 0.062

FSVM-CIPlin 94.00 ± 0.049 74.10 ± 0.045 79.46 ± 0.048

FSVM-CIPexp 94.00 ± 0.049 73.33 ± 0.084 79.92 ± 0.074

Table 6: Comparison of the classification results (%) on pima diabetes dataset.

Method Sensitivity Specificity Accuracy

Linear

FSVM 91.91 ± 0.022 49.98 ± 0.053 55.36 ± 0.051

SVDD 88.65 ± 0.081 53.43 ± 0.062 58.45 ± 0.029

FSVM-CIL 86.36 ± 0.064 55.10 ± 0.059 59.86 ± 0.060

WCS-FSVM 87.50 ± 0.043 52.65 ± 0.024 57.96 ± 0.030

FSVM-CIPlin 85.23 ± 0.021 57.76 ± 0.064 61.94 ± 0.043
FSVM-CIPexp 84.09 ± 0.009 57.96 ± 0.062 61.94 ± 0.053

Gaussian kernel

FSVM 93.18 ± 0.031 51.02 ± 0.073 57.44 ± 0.053

SVDD 91.76 ± 0.025 56.86 ± 0.052 62.57 ± 0.028

FSVM-CIL 90.91 ± 0.047 58.78 ± 0.084 63.67 ± 0.077

WCS-FSVM 92.05 ± 0.010 54.69 ± 0.066 60.38 ± 0.053

FSVM-CIPlin 88.84 ± 0.040 61.38 ± 0.063 65.57 ± 0.063
FSVM-CIPexp 88.64 ± 0.029 61.43 ± 0.074 65.57 ± 0.070

imbalance strikingly improved, the results given by standard
FSVM and WCS-FSVM for datasets are biased towards the
majority class represented as lower specificity and lower
accuracy.These results justify the fact that these twomethods
are sensitive to the class imbalance problem. Meanwhile,
SVDD and FSVM-CIL yielded standard FSVM and WCS-
FSVM. BY assigning different misclassification costs for the
minority class andmajority class, the effect of class imbalance
could be reduced.

5.4. Parameter Selection for Kernel FSVM-CIPexp. The
parameter 𝜂 > 0 is an essential parameter in our proposed
method which controls the tradeoff between the local
within-class scatter and the margin. Figure 2 shows the
impact of parameter 𝜂 on the classification accuracy of
FSVM-CIPexp in kernel case with each value of 𝜂 selected
from log

2
𝜂 ∈ {−5, −4.5, −4, . . . , 5.5, 6}. It can be seen that the

best accuracy is obtained for all the datasets and therefore 𝜂
is searched in a reasonable range.

Compared with standard FSVM, the additional neighbor
parameter 𝑘 is employed in FSVM-CIP. To evaluate the influ-
ence of this parameter on the performance, the classification
accuracy of kernel FSVM-CIPexp for fivemedical databases is
recorded for each value of 𝑘 in {3, 5, 7, 9, 11, 13, 15}. Figure 3

shows the results. It can be seen that the classification accu-
racy is not high when 𝑘 value is small and, by increasing 𝑘,
the classification accuracy increases; however, if 𝑘 continues
to increase, the classification accuracy begins to drop severely
down. It is because, when 𝑘 is too small, the number of nearest
neighbors is sparse; when 𝑘 is too large, the number of nearest
neighbors is excessive, so to preserve so much local relation
may be inappropriate.

6. Conclusion

Computer tools have improved the medical practice imple-
mentation to a greater extent. Although computer tools can-
not replace the doctors, they can make their work easier and
more effective. In this paper, a new fuzzy support machine
called FSVM-CIP, used for medical datasets classification, is
proposed. The proposed method is based on local within-
class preserving scatter and assigned two misclassification
costs in the SVM objective function, which is for learning
from imbalance datasets in the presence of outliers/noise
and enhancing the locality maximum margin. Experiments
were performed on several UCI medical datasets with a com-
parison of the proposed method with several other related
methods such as standard FSVM, SVDD, FSVM-CIL, and
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Figure 2: The effect of the parameter 𝜂 on kernel FSVM-CIPexp.
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Figure 3: The effect of the parameter 𝑘 on kernel FSVM-CIPexp.

WCS-FSVM. Obtained results show that the performance of
the proposed method is highly successful compared to other
results attained and seems very promising. Finally, we can
recommend that FSVM-CIPexp which uses the exponential
fuzzy membership would be an effective choice for medical
datasets classification applications. In future work, we intend
to perform investigations to large-scale classification prob-
lems.

Appendix

Proof of Theorem 3 in Section 3.2.

Proof. According to the dual form of the optimization prob-
lem (15), we can derive

𝑚1

∑

𝑖=1

𝛼
𝑖
= V. (A.1)

Likewise, according to the KKT conditions, ∑𝑁
𝑖=1
𝛼
𝑖
= V with

𝜌 > 0 satisfy 𝑠 = 0 by (12). According to (11), all samples
with 𝜉

𝑖
> 0 satisfy 𝛾

𝑖
= 0. In view of (13), this implies that

𝛼
𝑖
= 𝜇
𝑖
/V
1
𝑚
1
holds for every positive ME. Summing up 𝛼

𝑖

over the positive MEs using (A.1), we have

𝜇+
𝑚
𝑚
+

V
1
𝑚
1

≤

𝑚1

∑

𝑖=1

𝛼
𝑖
= ]. (A.2)

Furthermore, in view of (15), each SV in the positive class can
control at most 1/V

1
𝑚
1
to the ∑𝑚1

𝑖=1
𝛼
𝑖
; as a result,

𝑚1

∑

𝑖=1

𝛼
𝑖
≤
𝜇+
𝑠
𝑠
+

V
1
𝑚
1

. (A.3)

Combining (A.2) and (A.3), inequality (20) can hold true.
Likewise, inequality (21) can be proven in a similar man-
ner.

Proof of Theorem 6 in Section 4.1.

Proof. We know that M = YK𝑇Q−1KY, and K is a Gram
matrix, so K is symmetric and positive semidefinite. The
transpose of the matrixQ is

Q𝑇 = (K + 𝜂K(1)(I(1) −W𝜙
(1)

)

𝑇

(I(1) −W𝜙
(1)

)K(1)𝑇

+𝜂K(2)(I(2) −W𝜙
(2)

)

𝑇

(I(2) −W𝜙
(2)

)K(2)𝑇)
𝑇

= Q.

(A.4)

SoQ is a symmetricmatrix and thenM is symmetric. SetQ =
K + 𝜂R, where

R = K(1)(I(1) −W𝜙
(1)

)

𝑇

(I(1) −W𝜙
(1)

)K(1)𝑇

+ K(2)(I(2) −W𝜙
(2)

)

𝑇

(I(2) −W𝜙
(2)

)K(2)𝑇.
(A.5)

For any nonzero vector u = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑁
)
𝑇,

u𝑇Ru = u𝑇K(1)(I(1) −W𝜙
(1)

)

𝑇

(I(1) −W𝜙
(1)

)K(1)𝑇u

+ u𝑇K(2)(I(2) −W𝜙
(2)
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𝑇S𝜙
𝑙𝑤
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(A.6)

where 𝜍 = ∑𝑁
𝑖=1
𝑢
𝑖
𝜙(x
𝑖
). The local within-class scatter matrix

S𝜙
𝑙𝑤
is semidefinite, so thematrixR is semidefinite.That is, the

matrixQ is semidefinite, and thenM is semidefinite.
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