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Rationale for combination of
paclitaxel and CDK4/6 inhibitor
in ovarian cancer therapy —
non-mitotic mechanisms
of paclitaxel
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Matthew P. Schlumbrecht1,2, Sophia H.L. George1,2

and Xiang-Xi Xu1,3*

1Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine,
Miami, FL, United States, 2Department of Obstetrics, Gynecology and Reproductive Science,
University of Miami Miller School of Medicine, Miami, FL, United States, 3Department of Radiation
Oncology, University of Miami Miller School of Medicine, Miami, FL, United States
Taxanes and CDK4/6 inhibitors (CDK4/6i) are two families of successful anti-

mitotic drugs used in the treatment of solid tumors. Paclitaxel, representing

taxane compounds, has been used either alone or in combination with other

agents (commonly carboplatin/cisplatin) in the treatment of many solid tumors

including ovarian, breast, lung, prostate cancers, and Kaposi’s sarcoma.

Paclitaxel has been routinely prescribed in cancer treatment since the 1990s,

and its prominent role is unlikely to be replaced in the foreseeable future.

Paclitaxel and other taxanes work by binding to and stabilizing microtubules,

causing mitotic arrest, aberrant mitosis, and cell death. CDK4/6i (palbociclib,

ribociclib, abemaciclib) are relatively new cell cycle inhibitors that have been

found to be effective in breast cancer treatment, and are currently being

developed in other solid tumors. CDK4/6i blocks cell cycle progression at

the G1 phase, resulting in cell death by mechanisms not yet fully elucidated. At

first glance, paclitaxel and CDK4/6i are unlikely synergistic agents as both are

cell cycle inhibitors that work at different phases of the cell cycle, and few

clinical trials have yet considered adding CDK4/6i to existing paclitaxel

chemotherapy. However, recent findings suggest the importance of a non-

mitotic mechanism of paclitaxel in cancer cell death and pre-clinical data

support rationale for a strategic paclitaxel and CDK4/6i combination. In mouse

tumor model studies, drug sequencing resulted in differential efficacy,

indicating complex biological interactions of the two drugs. This article

reviews the rationales of combining paclitaxel with CDK4/6i as a potential

therapeutic option in recurrent ovarian cancer.
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Introduction

Taxane compounds are effective anti-mitotic cancer drugs

which have successfully been used for more than 30 years, and

are often cornerstones in the management of ovarian cancer

today. These drugs work as microtubule stabilizing agents,

interfering with mitosis of proliferating cancer cells. Another

family of newly developed anti-cancer drugs, the CDK4/6

inhibitors (CDK4/6i), are effective in breast cancer treatment,

and these inhibitors are actively being tested and expanded in

other malignancies. CDK4/6i block cancer cell growth at the G1
Frontiers in Oncology 02
phase of the cell cycle, while paclitaxel (and additional taxanes)

targets cancer cells at the M phase (Figure 1). Additional mitotic

inhibitors can act by blocking DNA replication (Figure 1), but

there are no such agents with tolerable toxicity and sufficient

efficacy available to be commonly used in clinics.

Although agents in either families are effective anti-cancer

drugs, issues on efficacy, response rate, and development of drug

resistance are limiting factors for both. An obvious interest is to

combine these two useful classes of common anti-cancer drugs

for more effective cancer treatment. New biological

understanding of these agents may provide a rationale and
FIGURE 1

Paclitaxel and CDK4/6 inhibitors target different sites of the cell cycle. Illustration of sites of cell cycle targeted by paclitaxel and CDK4/6i.
Mitogenic signaling by estrogen receptor (ER) or Ras/MAPK pathways induces cyclin D expression, which activates cyclin kinase 4 and 6 (CDK4/
6) to initiate cell cycle through G1 phase. CDK4/6 inhibitors (CDK4/6i) block cycle kinase activities and arrest cells at early G1 phase. Paclitaxel
(PTX) targets the function of spindle microtubules in cells at mitotic (M) phase, leading to aberrant mitosis and mitotic catastrophe. Additionally,
mitotic inhibitors targeting DNA relication arrest cells at S phase.
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strategy to develop an enhanced cancer treatment regimen using

them in combination to capitalize on their potential synergistic

mechanisms of action.
Taxanes as important common anti-
cancer agents

Among many potential targets investigated for cancer

therapy, stabilizing microtubules is one of the most effective

strategies for cell kill viamitotic inhibition in many solid tumors

(1–4). Paclitaxel is the first example of a microtubule stabilizing

agent developed into a successful anti-cancer drug (4–7).

Taxanes and non-taxane microtubule targeting agents remain

common anti-cancer drugs, given their significant efficacy in

multiple cancer types (4, 8–10). Taxol/paclitaxel, the first

taxanes, was isolated from plant (Taxus brevifolia) as a

cytotoxic anti-tumor agent (11–13). Currently, several taxane

compounds, including paclitaxel, docetaxel, and cabazitaxel, are

used as standard of care chemotherapeutic agents (14).

Additional formulations of taxanes have been developed to

improve delivery, including bound to albumin, and with

additional nanoparticle carriers (15–18). Non-taxane

microtubule stabilizing drugs, such as ixabepilone, are also

tested and used in certain cancer types (9, 19, 20).

Paclitaxel is commonly used as a key component in front

line therapy for epithelial ovarian cancer, and is given in

combination with a platinum agent (cisplatin or carboplatin)

(21–25). It also is utilized as a single agent in a dose dense

(weekly) schedule to treat recurrent and drug (platinum agent)-

resistant ovarian cancer (26–28). However, recurrent ovarian

cancer progressively becomes refractory to continuous paclitaxel

treatment, and the severity of side effects, such as peripheral

neuropathy, correlates with accumulative drug dosage and often

necessitates dose-reductions (29–33). Thus, strategies to

enhance paclitaxel efficacy and to counter drug resistance are

highly desirable and are actively sought (33–35). One strategy is

to find potential synergistic combination with additional new

agents, such as CDK4/6i.
Paclitaxel in microtubule
stabilization, mitotic mechanisms,
and mitotic catastrophe

Paclitaxel, and all other taxane and non-taxane microtubule

stabilizing drugs, act by binding to alpha-tubulin subunits within

microtubules, resulting in stabilization of the filaments (36–39).

The discovery of this unique cytotoxic mechanism occurred in

the 1970s-80s (4, 7, 40, 41), when paclitaxel was first extracted

from the bark of the Pacific Yew tree (4, 6, 11–13). By interfering
Frontiers in Oncology 03
with microtubules in mitosis, paclitaxel causes cell growth arrest

at M-phase by cytoskeleton paralysis (Horwitz, 1994; 42), and

subsequent cell death by apoptosis (43, 44). However, the

molecular details on the initiation of apoptosis by paclitaxel

have been elusive. Some studies suggest that paclitaxel-mediated

cancer cell death is independent of caspase activation and does

not follow a classic mechanism of apoptosis (45, 46). In

laboratory study and comparision of a panel of tumor lines

treated with paclitaxel in xenograft tumor models, neither degree

of mitotic arrest nor apoptosis appeared to correlate with the

anti-tumor effect of paclitaxel (47). Furthermore, paclitaxel anti-

tumor activity is also independent of p53 mutational status of

the tumors (47).

Paclitaxel-treated cancer cells arrested at M-phase often then

undergo aberrant mitosis (known as mitotic slippage), resulting

in the formation of multiple micronuclei and consequential

death (mitotic catastrophe) (41, 48–51). Moreover, both

laboratory and clinical observations led to the thinking that in

addition to acting as a mitotic inhibitor, paclitaxel has cytotoxic

activity against cancer cells with non-mitotic mechanisms (29,

52–57). Proposed non-mitotic paclitaxel mechanisms include

paclitaxel-induced phosphorylation of apoptotic protein bcl-2

(58), disruption of microtubule-mediated cellular transport (52),

physical breaking of nuclear envelope by rigid microtubule

bundles (59), stimulating of inflammatory activity by

paclitaxel-induced nuclear fragmentation (60), and anti-

angiogenic activity by damaging endothelial cells (61–64).

The concept of a non-mitotic mechanism for paclitaxel

action is re-enforced by the lack of efficacy of mitotic

inhibitory drugs developed more specifically to target mitotic

machineries (65, 66). A better understanding of the non-mitotic

mechanism and the complex processes underlying cancer cell

kill is crucial to design drug combinations with taxanes to

optimize rates of response and overcome taxane drug resistance.
Non-mitotic mechanisms of
paclitaxel in inducing
micronucleation and cell death by
nuclear membrane rupture

Laboratory studies are fairly convincing that highly

proliferative cells are sensitive targets for paclitaxel, as the

drug preferentially kills proliferative cancer cells, which are

more likely to be in M-phase (4, 7, 29, 41). Taxanes, however,

also affect continuously growing non-cancer cell populations

such as hair follicle matrix keratinocytes (67) and hemopoietic

cells (32). Thus, the major side effects of paclitaxel include

alopecia and neutropenia.

In contrast to cell culture models, only a small fraction of

tumor cells in vivo are proliferative; despite this, most of the
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cancer cells in patient tumors are sensitive to paclitaxel (53, 54).

Moreover, cell killing efficacy does not correlate with mitotic

index (47, 54). Experimenal and clinical observations suggest

that paclitaxel also kills cancer cells at non-mitotic phases, and

interfering with the function of microtubules in G1 or S phases

of the cell cycle also contributes to cancer cell killing (53–57). A

new study suggests that in paclitaxel-treated cancer cells, the

stabilized and rigid microtubule bundles around the cancer cell

nucleus pull the nuclear envelope membrane by physical force

into multiple micronuclei (59, 68) (Figure 2). This finding

provides a new addition to the well-accepted notion that

paclitaxel acts as a mitotic inhibitor. Thus, in addition to

proliferation, a malleable nuclear envelope caused by a

defective nuclear envelope structural proteins (69a) provides

another specificity of cancer cells for killing by paclitaxel, as non-

neoplastic cells have a sturdier nuclear envelope and are more

resistant to paclitaxel-induced breaking (59, 68).

The formation of numerous micronuclei following paclitaxel

treatment (45, 70), referred to as “micronucleation” (60), may be

the consequence of both aberrant mitosis (41, 49–51, 71) and

nuclear breaking in non-mitotic cells with a weakened nuclear

envelope (59, 68). In the presence of several types of

pharmaceutical compounds (including CDK4/6i) to inhibit

mitosis, paclitaxel was observed to induce micronucleation,

suggesting a non-mitotic mechanism to break up the cancer

nucleus (59, 68). These small micronuclei are observed to be

unstable and often undergo sudden and irreversible rupture (72,

73). A likely reason is that the nuclear membrane is stretched in

micronucleation, as the combined surface of multiple smaller

spheres is much larger than a single sphere with the same

volume. Either by mitotic or non-mitotic mechanisms, the

formation of multiple micronuclei is likely important for the

efficacy of paclitaxel in killing cancer cells (60, 68). One possible

mechanism is that the genomic DNA released will trigger the
Frontiers in Oncology 04
cGAS-Sting cytoplasmic DNA sensing pathway to activate the

inflammatory pathway (60, 74). Nevertheless, the rupture of the

nuclear membrane, essentially compromising a key cellular

organelle, may be sufficient to assume the demise of the

paclitaxel-treated cancer cells (46, 59) (Figure 2).
Clinical efficacy of CDK4/6 inhibition

Small molecule compounds specifically targeting cell cycle

kinases, including the CDK4/6 inhibitors, are new agents found

to have activity in cancer treatment (75), and are commonly

used in metastatic breast cancer. Additional indications in other

solid tumors are currently under investigation (76–80).

The study of the mammalian cell cycle over several decades

and the ultimate successful application of the knowledge to

cancer therapy took a long road (80–82). Based on the

identification and understanding of the cyclin-dependent

kinase 4 (CDK4) and CDK6, the activator such as cyclin D1,

and their multiple cyclin inhibitors, the concept of an inhibitor

for cell cycle kinases to block cell cycle progression and tumor

growth seems obvious (81). The first CDK4/6i to be developed

and tested in clinical trial was palbociclib; however, the lack of

efficacy of monotherapy in early studies limited the enthusiasm

and delayed the clinical development. Fortunately, later trials

showed a clear benefit of adding palbociclib to hormone

antagonism therapy in metastatic breast cancer, leading to

FDA approval of palbociclib in early 2015 (78–81). The details

in the laboratory discoveries and clinical development of the

CDK4/6i have been well reviewed in these (78–81) and many

additional recent articles.

Following the initial success, many pharmaceutical

companies independently developed additional CDK4/6i and

are testing for their utility in combination therapy. Today,
FIGURE 2

Mechanisms of paclitaxel-induced multiple micronucleation and nuclear membrane rupture in cancer killing. Paclitaxel (Taxol) induces mitotic
catastrophe, resulting in micronucleation. In non-mitotic cells, the rigid microtubule filaments induced by paclitaxel can promote massive
formation of micronuclei through nuclear budding of cells during interphase. The paclitaxel-bound rigid microtubule bundles pull and distort
the nuclear envelope structure. As a result, the malleable cancer nuclear envelope breaks into multiple micronuclei (micronucleation). The
proposal of physical force exerted by paclitaxel-induced rigid microtubule filaments in breaking malleable cancer nuclei provides a non-mitotic
mechanism to generate multiple micronuclei. Paclitaxel also induces rigid microtubules and the breaking of nuclei of neoplastic cells and the
formation of multiple micronuclei in both. The micronuclei derived from both mitotic and non-mitotic cells are defective in membrane
structure and have high propensity for rupture and release of chromatin materials, resulting in cell death.
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several CDK4/6 inhibitors, Ibrance (chemical name: palbociclib,

developed by Pfizer.), Kisqali (chemical name: ribociclib,

developed by Novartis) , Verzenio (chemical name:

abemaciclib, developed by Eli Lilly), have been developed and

approved to treat metastatic breast cancer (78–80). Numerous

clinical trials are ongoing to assess CDK4/6i in combination

therapy to treat breast and additional cancer types. However,

little information of CDK4/6i in ovarian cancer treatment has

been reported yet, though substantial interests prompt ongoing

efforts to evaluate a potential role in ovarian cancer treatment

(83, 84).

De novo and acquired resistance to the combined treatments

have been frequently observed, and alterations in both Rb and

cell cycle regulation, and PI3K survival signaling pathway are

potential mechanism of resistance (82, 83, 85). The CDK4/6i are

exciting new drugs for cancer therapy, and ongoing studies and

trials surely will add new mechanistic understanding to and

improvement of clinical outcomes. Yet development of

resistance to CDK4/6 inhibitors is already recognized as a

limitation to this class. The rapidly accumulating information

should allow the contemplation of strategy and design of

rationale combinatorial therapies of CDK4/6i with other anti-

cancer agents to overcome drug resistance and achieve superior

treatment outcomes (80, 83, 86).

Combination therapy: Rationale for
synergy between paclitaxel and
CDK4/6 inhibitors

The utility of CDK4/6 inhibition as a component in a

combined therapy regimen with additional agent(s) is an area

of active investigation as CDK4/6i by itself lacks sufficient

activity (81, 84, 86). One potential mechanism of synergy is

that both inhibition of the mitogenic signaling pathway that

regulates D-type cyclins, and blocking of CDK4/6 activities, are

necessary for a synergized therapy to prevent tumor cell

proliferation (81). Paclitaxel and CDK4/6i are expected to be

antagonists, since arresting cells by CDK4/6i at the G1 phase of

the cell cycle presumably limits cell kill by paclitaxel, which

targets cells at M-phase. Consistently, in laboratory studies,

CDK4/6 inhibitors were shown to reduce and prevent

apoptosis of hair follicle matrix cells that normally results

from paclitaxel treatment (67), and the inhibitors also rescued

hematopoietic cell death from paclitaxel treatment (87). Thus,

CDK4/6i, when used strategically, may reduce some side effects

of paclitaxel treatment.

Although not yet met with general enthusiasm because of the

theory of antagonism and some preliminary observations,

clinical trials for a paclitaxel/CDK4/6i have been attempted
Frontiers in Oncology 05
and initiated for solid tumors (for example, NCT 04594005).

So far, no outcome has been reported. Pre-clinical studies of a

paclitaxel/CDK4/6i combination have been attempted and

reported, some with positive results (84, 88–90). In breast

cancer cells, although simultaneous exposure to palbociclib

and paclitaxel produced an antagonistic effect, sequential

treatment caused higher cell death than single agent alone

(88). The authors suggested pretreatment with CDK4/6i may

enhance the efficacy of paclitaxel for chemotherapy of triple

negative breast cancer (88). CDK4/6 inhibition was found

synergistic in combination with paclitaxel to suppress growth

and induce apoptosis in K-Ras mutant lung adenocarcinoma

cells (90). In the cases of lung cancer cells, addition of paclitaxel

first followed by CDK4/6i had higher cancer cell killing than the

reversed sequence (89).

Another pre-clinical study found that the sequences for the

administration of the two drugs produced differential efficacy in

mouse pancreatic tumor xenograft models (91, 92). In the study,

treatment first with paclitaxel followed by CDK4/6i produced

better tumor suppressing activity than when CDK4/6i was

administrated first. The authors suggest that CDK4/6i impairs

the ability of cancer cells to recover from chromosomal and

DNA damage caused by prior treatment with paclitaxel (91).

With the realization of the non-mitotic mechanism of

paclitaxel in killing cancer cells (68), a new rationale may

motivate the study of adding CDK4/6i to paclitaxel regimen,

especially to the dose dense treatment of metastatic breast and

recurrent ovarian cancer (Figure 3). Furthermore, ongoing

study will yield additional understanding of the potential

mechanism(s) of CDK4/6 inhibition in damaging cancer

cells, in addition to the cytostatic effects. An initial treatment

of cancer cells with CDK4/6 inhibitors may prevent mitosis-

targeting mechanism of paclitaxel cytotoxicity (Figure 3A). A

possible better strategy may be first to allow full attainment of

the robust cytotoxic activity of paclitaxel alone to the mitotic

cancer cell population before exposing the remaining cells to

CDK4/6 inhibitors when non-mitotic paclitaxel killing

mechanism still can occur (Figure 3B). Additionally,

inhibition of CDK4/6 may impair the recovery of damaged

and micronucleated cancer cells from prior exposure to

paclitaxel, further enhancing the efficacy (91).

Paclitaxel exhibits high activity against mitotic cells, but also

can kill non-mitotic cancer cells (59, 68), such as that are

expected to accumulate in the presence of CDK4/6 inhibition.

Thus, the possibility of a paclitaxel and CDK4/6i combination as

a chemotherapy regimen for ovarian cancer exists. With a well-

considered drug scheduling to avoid antagonism and fostering

the synergy of the two drugs, a treatment with higher efficacy

and overcoming drug resistance to both paclitaxel and CDK4/6i

may be developed.
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Prospective: Clinical trial design —
drug scheduling and sequence

Currently, paclitaxel and additional taxane compounds are the

key drugs in the management of several major solid tumors, as

frontline therapy and salvage option. Eventual development of

resistance and accumulative side effects limit the continuous

application of the drugs. Thus, the possibility of adding the new

anti-cancer drug, CDK4/6i, to the paclitaxel regimen is highly

desirable to increase drug potency and overcome resistance (80,

86).With the findings of a non-mitoticmechanism of paclitaxel (59,

68), and the observation of differential activity of drug

administrative sequences (91), a therapeutic trial may be designed

with these rationales, as an example discussed above (Figure 3).

One approach may be the addition of CDK4/6i to dose dense

paclitaxel treatment in patients with recurrent ovarian cancer

and metastatic breast cancer (Figure 4). It may be suitable to use

paclitaxel alone in the first two of a 7-cycle chemotherapy

schedule, to eliminate most active proliferating cancer cells. In

the subsequent 5 treatment cycles. CDK4/6i may be given in the

last two days, based on the hypothesis that inhibition of CDK4/6
Frontiers in Oncology 06
impairs the recovery of the damaged cancer cells following

exposure for the previous 5 days with paclitaxel (91).

Although paclitaxel is rapidly cleared from the circulation (1,

93), the drug is sequestered and persists within cells for several

days (39, 94–96), where the drug stabilizes microtubules and

produces additional cytotoxicity.

The proposed two drug combination and schedule has the

benefit of both mitotic and non-mitotic mechanisms of

paclitaxel action, plus growth inhibition and cytotoxicity

bestowed by CDK4/6 inhibition, and thus are predicted to be a

more effective therapy. It is not clear if there will be significant

change in the side effect profile of either drugs when given in

combination in the schedule designed. Both paclitaxel and

CDK4/6i have tolerable side effects, and are both routinely

used in clinics currently. The major side effects of paclitaxel

are well documented: neutropenia/myelosuppression, alopecia,

and peripheral neuropathy (32). No surprisingly, CDK4/6i

suppresses cell proliferation and causes neutropenia/

myelosuppression and alopecia (97). However, both agents

inhibit cell cycle progression and may not be additive for

cytotoxicity, and may be even antagonistic, as shown by
B

A

FIGURE 3

Proposed mechanism for sequence-dependent of paclitaxel and CDK4/6 inhibitor in killing cancer cells. Neoplastic cells within a tumor
comprise proliferative (illustrated as yellow color cytoplasma) and non-mitotic (illustrated as green color cytoplasma) populations, which may
respond to anti-cancer agents differently. (A) When CDK4/6i is added prior to paclitaxel (Taxol), the cancer cells are arrested at G1 phase,
producing both cytotoxic and cytostatic effects. Subsequently, paclitaxel induces micronucleation and death of the non-mitotic cells. Some of
the micronucleated cells may be able to recover. (B) In the case of paclitaxel addition first followed by CDK4/6i, both proliferative and non-
mitotic cell populations undergo micronucleation, though mitotic cells more readily than non-mitotic cells form multiple micronuclei following
paclitaxel stimulation (illustrated by small and bigger arrows). It is postulated that CDK4/6i treatment impairs the recovery of paclitaxel-induced
damage to the nuclear structure (micronucleation). Thus, paclitaxel — CDK4/6i may have a higher cell killing outcome than CDK4/6i —
paclitaxel sequences.
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preclinical findings for CDK4/6 inhibitors in protecting

paclitaxel-caused hair follicle damage (67), or paclitaxel in

myelosuppress ion (87) . Thus, s ide effects such as

myelosuppression/neutropenia and alopecia may be lessened

or more severe, as results of either protection of paclitaxel

damage by CDK4/6i, or the combined damage to the stem

cells, respectively. This rationale for a potential sequential drug

administration based on the paclitaxel dose dense regimen

(Figure 4), derived from pre-clinical studies and consideration,

will only be verified or disproved by a clinical trial in

cancer patients.
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paclitaxel alone in week 1 and 2 will eliminate the majority of proliferative cancer cells. In subsequent weeks, CDK4/6i given on day 6 will impair
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91. Salvador-Barbero B, Álvarez-Fernández M, Zapatero-Solana E, El Bakkali A,
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