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Abstract

Corals of the family Acroporidae are key structural components of reefs that support the most diverse marine ecosystems. Due to increas-
ing anthropogenic stresses, coral reefs are in decline. Along the coast of Okinawa, Japan, three different color morphs of Acropora tenuis
have been recognized for decades. These include brown (N morph), yellow green (G), and purple (P) forms. The tips of axial polyps of each
morph exhibit specific fluorescence spectra. This attribute is inherited asexually, and color morphs do not change seasonally. In Okinawa
Prefecture, during the summer of 2017, N and P morphs experienced bleaching, in which many N morphs died. Dinoflagellates
(Symbiodiniaceae) are essential partners of scleractinian corals, and photosynthetic activity of symbionts was reduced in N and P morphs.
In contrast, G morphs successfully withstood the stress. Examination of the clade and type of Symbiodiniaceae indicated that the three
color-morphs host similar sets of Clade-C symbionts, suggesting that beaching of N and P morphs is unlikely attributable to differences in
the clade of Symbiodiniaceae the color morphs hosted. Fluorescent proteins play pivotal roles in physiological regulation of corals. Since
the A. tenuis genome has been decoded, we identified five genes for green fluorescent proteins (GFPs), two for cyan fluorescent proteins
(CFPs), three for red fluorescent proteins (RFPs), and seven genes for chromoprotein (ChrP). A summer survey of gene expression profiles
under outdoor aquarium conditions demonstrated that (a) expression of CFP and REP was quite low during the summer in all three morphs,
(b) P morphs expressed higher levels of ChrP than N and G morphs, (c) both N and G morphs expressed GFP more highly than P morphs,
and (d) GFP expression in N morphs was reduced during summer whereas G morphs maintained high levels of GFP expression throughout
the summer. Although further studies are required to understand the biological significance of these color morphs of A. tenuis, our results
suggest that thermal stress resistance is modified by genetic mechanisms that coincidentally lead to diversification of color morphs of this
coral.
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Introduction
One of the most critical issues facing the human race is warm-
ing of our planet. Anthropogenic activities have harmed the en-
vironment in various ways, and coral reefs have been especially
impacted (Hoegh-Guldberg et al. 2007; Hughes et al. 2017). In
spite of the fact that coral reefs occupy only 0.2% of the ocean
area, they are estimated to harbor about one-third of all de-
scribed marine species (Knowlton et al. 2010; Fisher et al. 2015),
suggesting that coral reefs are the most diverse marine ecosys-
tems on Earth (Wilkinson 2008). Scleractinian corals, a keystone

component of calcium-carbonate based reefs, form obligate
endosymbioses with photosynthetic dinoflagellates of the fam-
ily Symbiodiniaceae, which supply the vast majority of their
photosynthetic products to the host corals (Yellowlees et al.
2008). However, corals now face a variety of environmental
stresses, including increasing surface seawater temperatures,
decimation by outbreaks of crown-of-thorns starfish, and acidi-
fication and pollution ofoceans (Hoegh-Guldberg et al. 2007;
Uthicke et al. 2009; Burke et al. 2011; Uthicke et al. 2015;
Hughes et al. 2017).
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Vivid coloration of corals has been attributed to the emission
of a family of fluorescent proteins (FPs), green fluorescent pro-
teins (GFPs), red fluorescent proteins (RFPs), cyan fluorescent pro-
teins (CFPs), and nonfluorescent blue/purple chromoprotein
(ChrP) (Dove et al. 2001; Kelmanson and Matz 2003; Salih et al.
2000; Smith et al. 2013). Corals exhibit FP-mediated color poly-
morphism. FPs and ChrP are thought to contribute to their accli-
matization potential for the following reasons (Kelmanson and
Matz 2003; Dove 2004; Paley 2014; Gittins et al. 2015; Jarett et al.
2017; Takahashi-Kariyazono et al. 2018). First, expression of FP
genes is modified in relation to environmental changes. For ex-
ample, FP gene expression in adult Acropora individuals is influ-
enced by external stimuli, such as light, heat, and injury
(Takahashi-Kariyazono et al. 2018). Expression levels of CFP, GFP,
RFP, and ChrP increase according to light intensity (D’Angelo et al.
2008; Roth et al. 2010). CFP expression is down-regulated in dark
stress (DeSalvo et al. 2012) as well as heat stress (Roth and
Deheyn 2013), although it is up-regulated in response to injury
(D’Angelo et al. 2012). Second, roles of FPs in acclimatization have
been suggested. For example, FPs protect corals and their sym-
bionts by absorbing high-energy ultraviolet radiation and re-
emitting it as lower energy visible light (Bollati et al. 2020). FPs
also reduce oxidative stress to corals as well as to their dinofla-
gellate symbionts (Salih et al. 2000). To survive corals must some-
how adapt to increasingly stressful environments (Skelly et al.
2007).

Acropora tenuis is one of the major scleractinian corals along
the coast of Okinawa, Japan (Omori et al. 2016). Most A. tenuis

appear brownish (Figure 1, A–D), reflecting the color of
Symbiodiniaceae that they host. Acropora tenuis exhibits faster
growth than other Acropora species, forming colonies approxi-
mately 30 cm in diameter within 3–5 years (Figure 1, A and B;
Iwao et al. 2010). In 1998, along the Okinawa coast, various
Acropora species suffered extensive bleaching and many died ex-
tensive bleaching and many died. After several years, they gradu-
ally recovered (Kimura et al. 2014). While color morphs of A.
tenuis have been described (Nishihira and Veron 1995), divers in
Okinawa noticed the re-appearance of yellowish green (Figure 1,
E and F) and purple A. tenuis morphs (Figure 1G) in addition to
brownish ones. We thought that the color polymorphism of A.
tenuis might be associated with its potential to resist to stress.

As mentioned above, there are many studies on the expression
and function of FP genes in response to environmental changes.
However, few studies have addressed this question comprehen-
sively at the genomic level. This is partly because decoding of
coral genomes has only occurred recently, first in Acropora digiti-
fera in Shinzato et al. (2011), followed by several other species
(e.g., Cunning et al. 2018; Ying et al. 2019). A genome-wide survey
of FP members in corals has been reported only in the A. digitifera
genome (Shinzazo et al. 2012; Takahashi-Kariyazono et al. 2018).

The genome of A. tenuis has just been decoded (Shinzato et al.
2021). Therefore, we attempted to determine the relationships of
color morphs with their potential for environmental stress re-
sponse by characterizing all FP genes present in the A. tenuis ge-
nome. We first examined whether the three-color morphs show
different bleaching response to stresses, including higher
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Figure 1 Color morphs of A. tenuis along the Okinawa coast. (A and B) Colonies with different color morphs are growing in shallow water along the coast
of Okinawa. (A) Healthy condition of corals and (B) bleaching of some colonies during summer season. (C and D) Two “wild-type” morphs, NO (C) and
NB (D). Both appear generally brownish while the tips of axial polyps are orange in NO (C0) and blue in NB (D0). (E and F) Two greenish morphs, GO (E)
and GB (F). Tips of axial polyps are orange in GO (E0) and blue in GB (F0). (G) A purple colony (P) and tips of its axial polyps (G0).
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seawater temperature. Then, we examined whether differences
in the clade of Symbiodiniaceae are associated with differences
in bleaching grade of the three-color morphs. Finally, we sur-
veyed all candidate genes for FPs in the A. tenuis genome, and ex-
amined their expression profiles in the three-color morphs in
response to rising summer surface seawater temperatures.

Materials and methods
Biological materials
Various color morphs of A. tenuis have been observed along the
Okinawa coast (Figure 1). The “wild-type” morph (N) is brownish,
presumably reflecting the color of its symbionts (Figure 1, C and
D). Depending upon the color of axial polyp tips, they are further
subdivided into NO (the morph is brownish overall, but the tips of
axial polyps are orange) (Figure 1, C and C0) and NB (a brownish
morph with bluish axial polyp tips) (Figure 1, D and D0). The color
morph that looks greenish (G) is also subdivided into GO (axial
polyp tips look orange) (Figure 1, E and E0) and GB (axial polyp tips
look bluish) (Figure 1, F and F0). Yet another color morph is purple
(Figure 1, G and G0).

Wild colonies of the five morphs were collected in 2005/2006
and have been maintained in the “Umino-Tane Aquarium” (a
nongovernmental organization founded by K. Kinjo) at Yomitan,
Okinawa, Japan. Branches of these wild specimens were broken
off and raised for several years in the Unino-Tane Aquarium. In
2008–2010, nursery-raised corals more than 3 cm in diameter
were then transplanted back into the ocean by attaching them to
rocks along the shallow coast (2–4 m in depth) in the South China
Sea. After several years, they became mature colonies more than
20 cm in diameter (Figure 1, A and B). In 2016 and 2017, at two
field survey sites, 5 � 5 m quadrats each, were selected. An ortho-
image of the sites was constructed with Agisoft Metashape
(Supplementary Figure S1). These sites included 169 colonies, 125
NOs, 35 NBs, 3 GOs, 3 GBs, and 3 Ps. The number of colonies with
five color-morphs differed among sites, with more N and fewer G
and P. These skewed frequencies of the different color morphs
are normal throughout Okinawa Prefecture. These 169 colonies
were monitored for bleaching in 2016 and 2017.

We selected three NOs (NO1, 2, and 3), four NBs (NB1, 2, 3, and
4), three GOs (GO1, 2, and 3), three GBs (GB2, 3, and 4), and two Ps
(P1 and 2) at these sites for examination of photosynthetic activ-
ity (Supplementary Figure S1). However, colonies of two GBs (GB3
and 4) and a P (P1) were too small for examination of photosyn-
thetic activity. Therefore, we added a large GB (GB1 in
Supplementary Figure S1) and a large P (P3 in Supplementary
Figure S1) from other sites to bolster sample sizes.

Branches, approximately 10 cm in length, of two NOs (NO1
and 3), three NBs (NB1, 2, and 3), three GOs (GO1, 2, and 3), two
GBs (GB1 and 2), and two Ps (P2 and 3), were cut in early 2017 and
translocated from the field into outdoor pools at the Sea Seed
Aquarium, where they were cultured under continuous natural
seawater supply. Temperature changes of the outdoor pools were
recorded with a HOBO Pendant Temperature logger (Onset) from
July 27th to September 27th. Seawater temperatures of the pools
were 1–3�C lower than those at the field sites where bleaching
observations were conducted.

Previously, we developed a microsatellite genotyping method
that can identify individual colonies by assessing specific hetero-
geneity, a method widely applicable to Acropora species, including
A. tenuis (Shinzato et al. 2014). This method was employed to de-
termine genetic relationships among the 12 colonies mentioned
above. Each colony had an independent genotype (data not

shown), indicating that they originated from different parents. In
other words, it is unlikely that color polymorphism examined
in this study arose from a single founder or a small group of
founders.

Field observations
Bleaching
Field observations were conducted during the summers of 2016
and 2017. Surface seawater temperatures at approximately 2 m
depth at the sites were automatically recorded with Compact CTs
(JFE Advantech Co., LTD, Nishinomiya, Japan) (Supplementary
Figure S2A). Photosynthetic photon flux density (PPFD) was also
recoded automatically using DEFI2-Ls (JFE Advantech Co., LTD)
(Supplementary Figure S2B). In 2017, changes in temperature
and insolation were observed for 171 days from June 11 to
November 28.

Bleaching status was determined for the 169 colonies by direct
observation by divers. To avoid the effect of differences in the
number of color morphs on the results, the degree of bleaching
was not quantified as the number of bleached colonies per total
number of colonies. Instead, it was quantified as the bleached
projected surface-area relative to the projected total surface-area
of each morph. The projected area was estimated from the ortho-
image. Bleaching outcome (death or recovery) was also recorded
in September and November.

Analyses of photosynthetic activity
Photosynthetic activity of Symbiodiniaceae hosted by 14 colonies
of different color morphs was continuously monitored at the field
sites. Photosynthetic activity was measured in each of colonies.
After 10-min dark adaptation using a custom-made black box,
chlorophyll fluorescence measurements were performed with a
pulse amplitude-modulated fluorometer, Diving-PAM (Heinz
Walz Company, Germany). Photosynthetic activity was measured
by maximum quantum yield of PSII, determined as Fv/Fm. Fv was
obtained as Fm–Fo, where Fo is the minimum fluorescence
obtained under the measuring beam of PAM (weak pulsed light
<1 lmol photons m�2 s�1) in dark-adapted conditions, and Fm is
the maximum fluorescence detected using a short, saturating
pulse. Data were analyzed with ANOVA using R software.
Statistical significance of differences between colonies was tested
between color morphs.

Examination of fluorescent emissions
NB1, GB1, and P2, maintained in the outdoor pools, were selected
for this examination as representative of the three-color morphs.
Fluorescence spectra of axial polyp tips of A. tenuis color morphs
were examined using a Carl Zeiss LSM780 inverted confocal mi-
croscope with a 5x Fluar lens. Live branches of NB, GB, and P colo-
nies were embedded in a 1% agarose gel in a glass-bottomed dish.
Lasers of four wavelengths (405, 488, 561, and 633 nm) were
employed. Z-stack images, including spectral information from
410 to 694 nm were acquired using 32-channel detectors. Spectra
data were displayed with wavelength color codes. Three-
dimensional images were constructed with ImageJ (http://imagej.
nih.gov/ij/).

Identification of the clade of Symbiodiniaceae in
the five different color morphs
The clade and type of Symbiodiniaceae can be identified by se-
quence difference in the internal-transcribed spacer region (ITS-
2) of rDNA (Franklin et al. 2012). According to the method
employed by Shinzato et al. (2018), we determined the
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Symbiodiniaceae clade hosted by the 12 colonies with different
color morphs that were maintained in outdoor pools. Small
pieces, approximately 2 cm in length, were broken from branches
on June 9, July 26, August 15, and September 14 of 2017. DNA was
extracted using SepaGene kits (Sanko Junyaku, Tokyo, Japan) and
quantified, and then used for qPCR. To amplify �600–700 bp of
Symbiodiniaceae ITS-2, Sym28Sr primer (5

0
-CTTGTRTGACTT

CATGCTA-3
0
) was used. Genomic DNA isolated from clade C cul-

ture strain CCMP2466 (clade C, type C1; purchased from the
Provasoli–Guillard National Center for Culture of Marine Algae
and Microbiota, East Boothbay, Maine, USA) was used as a posi-
tive PCR control (expected amplicon size: 676 bp). PCR cycling
conditions were 35 cycles of 45 s at 94�C, 45 s at 51�C, and 60 s at
72�C. All PCR products were cleaned with a QIAquick PCR
Purification Kit (Qiagen).

Sequencing libraries of cleaned PCR products were prepared
using a KAPA Hyper Prep Kit (NIPPON Genetics Co, Ltd), and 300-
bp paired-end reads were sequenced on a MiSeq (Illumina) with
PhiX control (Illumina). Low-quality bases (Phred quality score
<30) were trimmed using SolexaQA and high-quality sequences
longer than 200 bp were retained for subsequent analyses. These
reads were aligned to the modified version of the
Symbiodiniaceae ITS-2 gene sequence database GeoSymbio
(Franklin et al. 2012) as reported in Shinzato et al. (2018) with an e-
value cutoff of 1e�20. The number of reads that ensured the
BLASTN bit score of the best alignment was counted. Scores were
averaged for each of the five-color morphs, namely averages of
two NOs, three NBs, three GOs, two GBs, and two Ps. The data
were visualized with a heatmap constructed using pheatmap R
package (Kolde 2015).

Identification of genes for FPs in the A. tenuis
genome
A draft genome of A. tenuis was sequenced using Illumina tech-
nology by Shinzato et al. (2021). The approximately 407-Mbp
A. tenuis genome is estimated to contain 23,119 protein-coding
genes with a BUSCO score of 97.4% (92.2% completeness).
Acropora tenuis genes for GFP, CFP, and RFP FPs, and nonfluores-
cent blue/purple chromoprotein (ChrP) were identified by BLAST
searching of the genome using A. digitifera GFP, CFP, RFP, and ChrP
genes (Shinzato et al. 2012) as queries, respectively. Orthologous
relationships of FP genes of Acropora species were confirmed by
molecular phylogenetic analysis, which was carried out using
RAxML 8 (Stamatakis 2014).

Expression dynamics of genes for GFP, CRP, RFP,
and ChrP
Another two or three small pieces of branches approximately
2 cm in length were cut from the five different color-morphs on
the same days as specimen collection for Symbiodiniaceae clade
identification. Pieces were immediately fixed in RNAlater in
50-mL Falcon tubes and were maintained at �80�C until use.
Total RNA was extracted from all 12 specimens using an RNA
plant mini Kit (Qiagen). cDNA libraries were produced using a
TruSeq Standard mRNA Library Prep Kit for NeoPrep (Illumina)
quantified by Real-Time PCR (StepOnePlus; Applied Biosystems)
and quality controlled using capillary electrophoresis on a
Bioanalyzer. Library sequencing was carried out on a Hi-seq4000
(Illumina) according to the method described by Pertea et al.
(2015). Sequencing adapters and low-quality (<Q30) sequences of
Illumina reads were trimmed with Trimmomatic 0.33 (Bolger
et al. 2014) and PCR duplicate sequences were removed with prin-
seq 0.20.3 (Schmieder and Edwards 2011).

Trimmed sequence data were mapped onto the A. tenuis gene
models with HISAT2 2.1.0 (Pertea et al. 2016) and numbers of
mapped reads were counted with featureCounts 1.6.5 (Liao et al.
2014). Expression degree analysis was performed using edgeR
3.28.1 (McCarthy et al. 2012) and DESeq2 1.26.0 (Love et al. 2014)
by standardization of data by rRNA read counts. That is, the
grade of gene expression was measured by fragments per kilo-
base of exons per million (FPKM) reads mapped to A. tenuis gene
models.

Data availability
Genes for A. tenuis FPs are accessible under DDBJ accession num-
ber, LC519766-LC519782. Raw sequence data for examination of
Symbiodiniaceae clades in different color morphs and those for
RNA-seq analyses of FP gene expression were submitted to DDBJ
DRA under accession number BioProject PRJDB10722 (DRA011026).
Supplemental material is available at figshare: https://doi.org/
10.25387/g3.13557797.

Results
Responses of color morphs to summer
environmental stress
Bleaching
In field observations, we first examined whether the five-color
morphs show different responses to environmental changes, es-
pecially the rise of surface seawater temperatures. We followed
bleaching profiles of the five morphs during the summers of 2016
and 2017. A similar pattern of bleaching was observed in both
years. Since the seawater temperature rise was higher and coral
bleaching was more severe in 2017 than 2016, we describe here
results from 2017. In 2017, surface seawater temperatures rose to
over 30�C in early July, a temperature that continued until early
September (Supplementary Figure S2A). Forty-six of 171 days
exceeded 30�C, with a maximum of 34.2�C on July 27
(Supplementary Figure S2A). PPFD also increased toward mid-
July, and a high level of PPFD continued until late September, al-
though daily variations occurred (Supplementary Figure S2B).
The highest was 4187 mmolm�2 s�1 on August 25. Bleaching sta-
tus was observed by diving on July 26, August 30, September 29,
and November 29.

Bleaching occurred in NO, NB and P, and the degree of bleach-
ing was highest in NO and NB (Figure 2). More than half the total
surface of 125 NO colonies became bleached in July and August
(Figure 2A). Although 20–30% of the bleached surface recovered
their color morphs in September and November, 10–15% of them
died after bleaching (Figure 2A). The percentage of bleached sur-
face of 35 NB colonies in July and August was less than that of
NOs, but many of the bleached NBs did not recover and died
(Figure 2B). Nearly 30% of NBs died by late November (Figure 2B).
In addition, bleaching occurred in 30% of the total surface of
three P morphs in late August (Figure 2E). Most of them recovered
in late September (Figure 2E), though nearly 20% of the P morph
surface area appeared dead (Figure 2E). In contrast, G morphs, es-
pecially the three GB colonies did not bleach at all (Figure 2D), al-
though several percent of total surface areas of GO colonies died
for unknown reasons (Figure 2C). It appears that G morphs of
Okinawa A. tenuis have higher resistance than N morphs to in-
creasing summer surface seawater temperatures.

Photosynthetic activity of symbiotic dinoflagellates
It was expected that photosynthetic activity of Symbiodiniaceae,
which can be measured by chlorophyll fluorescence (Fv/Fm),
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might change in response to summer increases in seawater tem-

perature. Thus, in relation to different modes of bleaching in the

five-color morphs, we examined whether the color-morphs show

different Fv/Fm profiles using three NOs, four NBs, three GOs, two

GBs, and two Ps (Figure 3). Photosynthetic activity was measured in

four different branches of each colony (data are shown in

Supplementary Figure S3). The observed Fv/Fm value was nearly

the same in all five-color morphs in June, August, September, and

November (Figure 3A), but in July, it was reduced in N and P

morphs, and lowest in NB and P (Figure 3A). On the other hand, GB

and GO maintained photosynthetic activity even in July at a level

similar to June (Figure 3A). The decrease in Fv/Fm of NB and P in

July was statistically significant, when compared between NB and

GO, NB and GB, and BG and P (P< 0.05) (Figure 3B). While the activ-

ity in July was reduced in P and NB, both recovered their photosyn-

thetic rates in August to the same level as in GB and GO (Figure 3A).
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Figure 2 Bleaching and subsequent death of A. tenuis color morphs in the summer of 2017 along the Yomitan, Okinawa coast. The projected surface
area of color morphs that exhibit bleaching appears white, with that of healthy areas is green. Dead areas after bleaching are red. Colonies that
disappeared due to wave action or unknown causes are shown in gray. Note that because the numbers of each color morph examined differ, areas have
very different values on the y-axis (m2). It is evident that GO (C) and GB (D)were little affected by environmental stresses, compared to NO (A) and NB
(B). (E) Purple.
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Characterization of fluorescence spectrum of
color morphs
We characterized the color morphs by fluorescence spectral im-
aging, measured by laser irradiation of the tips of axial polyps of
NB, GB, and P morphs. Polyps of the three-color morphs fluo-
resced green on the outer rim of axial corallites when excited at
488 nm (Figure 4, G–I). In addition, the response to 405-nm excita-
tion differed among color morphs. The lateral walls of axial coral-
lites of NB and P morphs fluoresced blue (Figure 4, D and F).
In contrast, the lateral walls of axial corallites of GB morphs
fluoresced green (Figure 4E). This indicates different modes of
fluorescence emission in the three-color morphs. On the other
hand, fewer differences in red and deep red fluorescent emissions
were detected among the three-color morphs when excited at
561 and 633 nm (Figure 4, J–O).

Clade distribution of symbiotic dinoflagellates
among color morphs
PCR analyses of the internal transcribed spacer 2 (ITS2) sequence
showed that all color morphs hosted only clade C (Cladocopium)
Symbiodiniaceae (Figure 5). No other clades were detected.
Among them, group C1 was most abundant, and C50 was next,
with smaller numbers of various other Clade-C subgroups
(Figure 5). NB and GB morphs hosted more C3k, whereas P
morphs hosted more C1i compared with other color morphs, al-
though these differences were not discrete. These symbiont pro-
files did not change during the study period from late June to
early September 2017. Acropora tenuis appeared to incorporate
higher numbers of C1 and C50 Symbiodiniaceae in August and
September than in June and July, and this tendency was pro-
nounced in GO color morphs. Nonetheless, it is unlikely that
shifts in symbiont clades are the main cause of color differences
and/or thermal-resistance of the color morphs.

Genes for FPs
Using amino-acid sequences of A. digitifera GFP, RFP, and CFP FPs,
and nonfluorescent blue/purple chromoprotein (ChrP) as queries

(Shinzato et al. 2012), using BLAST, we searched the approxi-
mately 407-Mbp genome of A. tenuis and identified five genes for
GFP (Gene ID: s0077.g62, s0297.g27, s0297.g28, s0297.g29, and
s0366.g7) (Figure 6A), two genes for CFP (s0010.g7 and s0025.g63)
(Figure 6B), three genes for RFP (s0024.g131, s0024g134, and
s0217.g35) (Figure 6C), and seven genes for ChrP (s0096.g1,
s0096.g3, s0096.g4, s0152.g9, s0152.g11, s0152.g15, and s0182.g24)
(Figure 6D), respectively. Accession numbers of the genes are
DDBJ LC519766-LC519782. Molecular phylogeny supports ortholo-
gous relationships of these A. tenuis genes with genes of FPs and
nonfluorescent chromoproteins of other corals (Supplementary
Figure S3).

Expression profiles of FP genes
The grade of gene expression measured by FPKM reads is shown
in Supplementary Table S1. Three-color morphs (N, G, and P)
that showed different expression profiles of FP-related genes dur-
ing the summer (Figure 7).

First, in all five-color morphs, the two CFP genes (s0010.g7 and
s0025.g63) and three RFP genes (s0024.g131, s0024g134, and
s0217.g35) showed very low expression levels with almost no de-
tectable changes during the summer (Figure 7). This indicates
that in A. tenuis, genes for the four fluorescence-related proteins
do not necessarily show similar responses to summer environ-
mental changes and that expression of CFP and RFP are less asso-
ciated with environmental responses than GFP and Chrp. On the
other hand, GFP and ChrP genes showed detectable changes in ex-
pression profiles.

Two GFP genes (s0297.g27 and s0297.g29) showed distinctive
changes in expression profiles, while expression levels of the
other three genes (s0077.g62, s0297.g28, and s0366.g7) remained
low, with little change (Figure 7). This indicates that even among
genes that encode the same FP and that are located in close prox-
imity on the same chromosome (Figure 6), their responses to sum-
mer environmental changes are not always the same, suggesting
complicated individual gene regulation in response to environ-
mental stresses. In addition, s0297.g27 and s0297.g29 exhibited an

A B

* *

*

0.2

0.4

0.6

0.8

Fv
/F
m

NO NB GO GB P

0.2

0.4

0.6

0.8

Fv
/F
m

6 7 8 9 11

0.3

0.5

0.7

● NO
● NB
● GO
● GB
● P
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interesting shared expression profile during the study period.
First, the expression level of s0297.g29 was distinctively higher in
GB and GO than in NO, NB, and P (Figure 7). In NB1, NB2, and NB3,
s0297.g29 showed moderate levels of expression in June, but the
expression level decreased in August and September. A similar ex-
pression profile of s0297.g29 was detected in P2 and P3. In con-
trast, a higher level of s0297.g27 and s0297.g29 expression,
especially the latter, was noticed in all three GOs and two GBs
(Figure 7). Differences in the level of s0297.g29 expression between
G and N or P were statistically significant (P< 0.004)
(Supplementary Table S2). In addition, a higher level of s0297.g29
expression in GO1, GO2, GO3, and GB2 was maintained through-
out the summer (Figure 7). Although less obvious, a similar ex-
pression profile was observed in s0297.g27 (Figure 7).

Purple morphs exhibited another expression profile of these
genes, especially in relation to genes for ChrP (Figure 7). Of
seven ChrP genes, expression levels of s0096.g1, s0096.g3,
s0152.g9, s0152.g11, and s0152.g15, the latter three being local-
ized on the same scaffold, were comparatively low (Figure 7). In
contrast, s0096.g4 and s0182.g24 were expressed at high levels
(Figure 7). In addition, s0096.g1, s0096.g3, s0096.g4, and
s0182.g24 were expressed at higher levels in P2 and P3 than in
NO, NB, GB, and GO (Figure 7). Although expression level dif-
fered among the four genes, this pattern was shared by all four
color-morphs and relative levels of the four genes were main-
tained during the summer. s0096.g4 showed significantly
higher expression in both P2 and P3 than the other color-
morphs during the summer. This difference was also supported
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significantly (P< 6E�36) (Supplementary Table S2). These results
indicate that ChrP is likely involved in physiological regulation
in P morphs.

Discussion
There are three major color morphs of A. tenuis along the
Okinawa coast, brown, green, and purple (Nishihira and Veron
1995; Figure 1). They exhibit different profiles of fluorescence in
the axial polyps when excited at 405 nm (Figure 4). We expect
that differences in fluorescence are associated with coloration of
this coral, although detailed molecular, biochemical, and bio-
physical mechanisms underlying these differences should be
addressed in future studies. Based on observations for a decade,
these color morphs are stable, since color polymorphism is asex-
ually heritable and color morphs show no seasonal variation, al-
though the brightness of color changes. These characters have
also been shown in Acropora millepora (Paley 2014). Although it
remains to be determined whether it is also sexually heritable,
color polymorphism is likely caused by genetic variation.

Field studies in 2017 showed that N morphs underwent exten-
sive bleaching (Figure 2, A and B), and 10–15% of NB morphs
eventually died (Figure 2B). In contrast, G morphs did not show
bleaching (Figure 2, C and D). These results indicate that sensitiv-
ity to summer environmental stress differs among the three-
color morphs and that N is the most sensitive while G is resistant.
Along the Okinawa coast, the N color morph is most abundant
(Figure 1 and Supplementary Figure S1), while G and P are not as
common. This suggests that the N morph is probably the ances-
tral or wild type, while G and P color morphs are more recent. If
this feature is heritable, it is tempting to speculate that in
Okinawa, A. tenuis has acquired the capacity to resist summer en-
vironmental stresses by developing new color morphs. In other

words, polyp color polymorphism may be a strategy to survive se-
vere summer environmental stresses, provided that the current
rate of temperature change does not overwhelm the coral’s ca-
pacity to adapt.

Bleaching responses are complicated, varying among colonies,
taxa, and events (van Woesik et al. 2011). Scleractinian corals
form obligate endosymbioses with photosynthetic dinoflagellates
of the family Symbiodiniaceae, and host-symbiont interactions
contribute to differential bleaching susceptibility (Enriquez et al.
2005; Hawkins et al. 2014; Wooldridge 2014). Acropora corals lost a
gene for cystathionine ß-synthase, an essential enzyme for cyste-
ine biosynthesis, and they depend upon symbionts to produce
cysteine (Shinzato et al. 2011, 2021), partially explaining the
higher sensitivity of Acropora to bleaching than other coral taxa.
Because bleaching is usually caused by escape and/or death of
symbionts, declining photosynthetic activity of Symbiodiniaceae
may portend bleaching, as shown by previous studies (Smith et al.
2013; Gittins et al. 2015). Indeed, decreased photosynthetic activ-
ity was detected in July in NB and P morphs (Figure 3). In contrast,
GO and GB morphs maintained photosynthetic activity compara-
ble to that in other months. Since this suggests that G color
morphs provide a more suitable physiological environment for
symbionts than N and P morphs during times of high thermal
stress. Genetic and molecular mechanisms involved in this rela-
tionship are intriguing and should be addressed in future studies.

The family Symbiodiniaceae has recently been reorganized
into nine clades or genera (A–I), according to new analyses of
combinatorial data (LaJeunesse et al. 2018). It has been suggested
that in general, corals hosting clade D (Durusdinium) are more
heat-resistant than those hosting clade C (Cladocopium) or that
specific Symbiodinium phylotypes, such as D1, D1–4, C15, and A3
are exceptionally thermotolerant, while others (e.g., C3, C7, B17,
and A13) are thermosensitive (Silverstein et al. 2011; Tonk et al.
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2014). Therefore, it seemed possible that differing capacities of
A. tenuis color morphs to resist higher summer seawater temper-
atures might be due to different zooxanthella hosted by the
three-color morphs. However, this is not the case in Okinawa A.
tenuis, because all three host a very similar repertoires of clade C
Symbiodinium, especially C1 and C5 types (Figure 5).

Acropora tenuis is useful as an experimental system because its
approximately 400-Mb genome has been decoded and is thought
to contain 22,802 protein-coding genes (Shinzato et al. 2021).
Moreover, approximately 95% of the gene models are confirmed
with corresponding mRNAs. Therefore, we were able to investi-
gate not only genes for GFP, CFP and RFP, and ChrP, but also their
expression profiles in colonies with different color morphs during
the summer of 2017. We found that all three morphs possess an

identical array of fluorescence-related genes and that expression
of these genes was confirmed in all morphs using RNA-seq. This
indicates that color polymorphism is not caused by mutations in
the genes themselves. Instead, molecular and genic mechanisms
that control transcriptional activity or quantitative regulation of
gene products probably produce the three-color morphs. Genetic
and genic mechanisms underlying FP-mediated color polymor-
phisms and adaptation potential to variable environmental con-
ditions have been studied in Acropora millepora (D’Angelo et al.
2008; Smith et al. 2013; Gittins et al. 2015). In this species, an RFP
gene, amiFP597, is essential for color polymorphism. amiFP597
exists in multiple copies with a particular promoter type in the
genome, and the number of gene copies is strongly correlated
with the level of gene expression. Higher levels of gene expression
are found in more intensely red morphs, which show higher re-
sistance to strong insolation (Gittins et al. 2015). This suggests the
presence of variable genetic mechanisms in color polymorphism,
depending on coral species.

Interestingly, the P morph of A. tenuis exhibits a gene expres-
sion profile different from those of the N and G morphs.
Specifically, the P morph shows higher ChrP gene expression, es-
pecially s0096.g4 (Figure 7). In addition, the N and G morphs dif-
fer in expression levels of GFP genes, especially s0297.g29 and
s02897.g27 (Figure 7). Higher gene expression was evident in the
G morph compared to the N morph (Figure 7). Because the G
morph is the most resistant to summer environmental stress, it
is likely that stress resistance varies with expression levels of GFP
genes. We expect that different control mechanisms of GFP gene
expression in N and G morphs explain their different thermal tol-
erance. We will address this question in future studies.

Coral bleaching is caused by multiple, complex environmental
stresses. Except for outbreaks of crown-of-thorns starfish,
typhoons, and diseases, the most deleterious influence is surface
seawater temperature warming. Strong solar radiation also likely
contributes to environmental stress. Seawater in Okinawa
Prefecture is very transparent; thus, UV irradiation acts in con-
cert with higher sea temperatures to cause bleaching. FPs and
chromoproteins absorb UV radiation, rendering corals and their
symbionts more resistant to solar stress (Dove et al. 2001; Dove
2004; Banaszak and Lesser 2009; Salih et al. 2010). We need to bet-
ter understand the relationship between solar stress and differ-
ent expression profiles of genes for GFP and ChrP.

Divers and marine researchers have noticed that some corals,
sometimes called “super corals” and/or “super coral reefs” (Dance
2019), are able to survive severe environmental stresses.
Nonetheless, almost nothing is known about how such super cor-
als have appeared in the reefs. Our present results regarding dif-
ferent stress tolerances of three A. tenuis color morphs may help
to explain the resilience of these super corals.
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