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Abstract

Chronic pain affects 50% of adults with sickle cell disease (SCD). Although central sensitiza-

tion is thought to contribute to the pathogenesis of this chronic pain, no studies have exam-

ined differences in functional connectivity of the brain between patients with SCD with and

without chronic pain. We performed an observational cohort study using resting-state func-

tional MRI (rsfMRI) of the brain on adults with SCD with and without chronic pain. We tested

the hypothesis that, compared to those without chronic pain, those with chronic pain would

have differences in functional connectivity between the periaqueductal grey (PAG) and

other regions of the brain. Twenty-two adults with SCD, 15 with chronic pain and 7 without

chronic pain, as well as 10 African-American controls, underwent rsfMRI of the brain. When

SCD patients with chronic pain were compared to those without chronic pain, significant dif-

ferences in connectivity were noted between the PAG and 9 regions of the brain, including

several in the default mode network, a network involved in introspection that has been impli-

cated in other chronic pain syndromes. Changes in functional connectivity between patients

with SCD with and without chronic pain suggest a mechanism for chronic pain that involves

neuro-plastic changes to the brain.

Introduction

Chronic pain is prevalent in adults with sickle cell disease (SCD) [1]. Thirty percent of patients

experience daily pain, and 50% meet criteria for a chronic pain syndrome [1]. Although it is

logical to assume that vaso-occlusion-induced tissue damage (avascular necrosis, leg ulcers) is

the cause of this chronic pain [2,3], many patients have widespread pain, or lack an anatomic

correlate for their pain, and exhibit hyperalgesia and/or allodynia, signs of peripheral and cen-

tral sensitization [4–6]. It has been hypothesized that factors inherent to SCD, such as tissue
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damage, persistent pain input, and inflammation, cause maladaptive changes in the central

nervous system (CNS), which promote and sustain the perception of pain and contribute to

the pathogenesis of a chronic pain syndrome [7–9]. Recent functional MRI (fMRI) studies of

the brain, have demonstrated potentially maladaptive connectivity differences between those

with other chronic pain disorders, including fibromyalgia and chronic low back pain, and con-

trols [10–12]. These studies have suggested that the neuro-plastic changes, which links areas

of the brain responsible for pain with those responsible for sensation, memory, and emotion,

transforms the sensation of pain from a response to noxious stimuli to a neurologic perception

in the absence of a stimulus. This “uncoupling” is thought to contribute to the evolution of

pain from an intermittent to a chronic phenomenon [13].

Limited data suggest that these neuro-plastic changes occur in patients with SCD

[8,9,13,14]. Compared to controls, SCD patients were found to have differences in the default

mode network (DMN), insula, and the anterior cingulate cortex (ACC) using electroencepha-

logram and resting-state (rs)fMRI [9,13]. Another study investigated children with SCD and

found associations between changes in the ACC and DMN and rate of acute pain episodes that

required hospitalization [8].

In this study, we used rsfMRI of the brain to test the hypothesis that patients with SCD and

chronic pain, compared to those without chronic pain, would have differences in connectivity

between an area of the brain involved in the suppression of pain, the periaqueductal grey

(PAG), and other regions.

Methods

Subjects

The institutional review board at the Medical College of Wisconsin and Froedtert Hospital

approved this observational cohort study. A convenience sample of African-American adults

with SCD was recruited from the Adult Sickle Cell Clinic at Froedtert Hospital. Key eligibility

criteria for SCD subjects were: 1) ages 18 to 70 years; 2) any SCD-associated genotype (HbSS,

HbSC, HbSbthal) 3) at least 2 exacerbations of pain in the past 12 months requiring contact

with medical professionals; 4) no pregnancy; 5) no hematopoietic stem cell transplant; 6) no

illicit substances; and 7) no history of stroke or cerebrovascular disease. Key eligibility criteria

for controls subjects were: 1) African American; 2) ages 18 to 70 years; 3) no known sickle cell

disease or trait; 4) no history of acute or chronic pain disorder; 5) no history of stroke or cere-

brovascular disease; and 6) no pregnancy.

For this study, we defined chronic pain as the presence of disease-related pain on� 3 days

per week for 6 months [15]. Standard practice in our clinic is to ask the number of days per

week that the patient has pain on average to determine the diagnosis of chronic pain. This

information was specifically abstracted from medical charts. Patient age, gender, hydroxyurea

use, and hospital utilization history was also obtained via the electronic medical record. Lastly,

morphine milligram equivalent opioid dose (MME) was calculated from refill records in the

electronic medical record.

MRI and rsfMRI scanning sessions. Imaging was performed using a whole-body 3T

Signa GE scanner with a standard quadrature transmit receive head coil. During the resting-

state acquisitions, no specific cognitive tasks were performed, and the study participants were

instructed to close their eyes and relax inside the scanner. High-resolution SPGR 3D axial

images were acquired for anatomical reference. The number of slices is 144, slice thickness is 1

mm, matrix size is 256 × 192. The sagittal rsfMRI datasets of the whole brain were obtained in

10 minutes with a single-shot gradient echo-planar imaging (EPI) pulse sequence. The fMRI

imaging parameters were: echo time (TE) of 25 ms, repetition time (TR) of 2 s, flip angle of

Resting state fMRI of chronic pain in adults with SCD
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90˚; 36 slices were obtained without gap; slice thickness was 4 mm with a matrix size of 64 × 64

and field of view of 24 × 24 cm.

rsfMRI preprocessing. Since rsfMRI data is obtained in voxels, the analysis was carried

out using the AFNI software and MATLAB programs using SAS 9.4+. The image pre-process-

ing steps included: 1) removal of the first five volumes, 2) motion correction, 3) detrending, 4)

removal of averaged signals from white matter and cerebrospinal fluid from each voxel, 5)

regression of global signals, and 6) application of a band-pass filter to keep only low-frequency

modulations (0.01 Hz to 0.15 Hz). Cardiorespiratory motion artifacts were corrected for using

the RETROICOR in the AFNI program. Participant head motion was assessed by evaluating

3 translations and 3 rotations for each scan. Translational thresholds were set to ± 2 mm,

whereas rotational thresholds were limited to ± 1˚. A subject was excluded from the analysis if

head motion exceeded either of these thresholds.

Periaqueductal grey (PAG) seed-based functional connectivity (FC) analysis. The

PAG, an area of the midbrain that surrounds the cerebral aqueduct, is well known for its role

in pain modulation [16]. A descending inhibitor of pain signals, the PAG activates neurons in

the brainstem, which in turn activate descending, serotonin-releasing neurons that interfere

with ascending signals in the dorsal horn of the spinal cord, where nociceptive signals from

the periphery are processed [16]. Beyond its role in blunting pain through its connections in

the brainstem, the PAG is also connected to brain regions that are related to executive and

emotive functions, such as the prefrontal cortex, the striatum, and the hippocampus [17,18]. It

is through these locations that the PAG’s roles in fear, anxiety, and cardiovascular responses

are thought to be mediated [17]. Taken together with its role in pain modulation, these execu-

tive and emotive functions have led investigators to postulate that the PAG is an integration

center for behavioral and autonomic responses to pain. Likely, that is why abnormalities in the

PAG have been demonstrated in other chronic pain conditions, including fibromyalgia [11].

Based on these data, we chose the PAG as our “seed.” From there, regions of interest (ROIs)

were used to construct the PAG functional connectivity networks. The PAG ROI were sepa-

rately extracted with the Montreal Imaging Institute (MNI) coordinates (1, -29, -12) provided

by a previous study [12]. It was employed as “seeds” for functional connectivity analysis. The

ROI seed is 4mm diameter sphere around the coordinates. Then the ROI were co-registered to

the functional data (3dfractionize, AFNI). For each subject, the average time course of each

seed was extracted from the functional EPI images, and then, was correlated with the time

courses of whole-brain voxels, using Pearson cross-correlation (i.e. product-moment). Because

the spatial resolutions of the SPGR images (1�1�1 mm) and EPI images (3.75�3.75�4 mm) were

different, only those voxels in the EPI images that were occupied at least 50% by ROI voxels

masked on the 3D SPGR images were included in the voxel time course analysis [19]. Next, the

correlation map was converted to a z-value map [Fisher r-to-z transformation, m = 0.5�ln(1

+r)/(1−r)]. Finally, the data was spatially normalized to the MNI template image, resampled to

2-mm isotropic voxels and smoothed with a 6-mm Gaussian kernel. The individual connectiv-

ity map was obtained.

Statistical analysis

rsfMRI data. Individual connectivity maps of the PAG ROI for each subject were ana-

lyzed with a one-sample t-test to identify voxels. This showed a significant positive or negative

correlation with the seed time series, and the pattern of each PAG network for each group

was obtained, respectively. To examine the group difference of the PAG network connectivity

across all subjects, a voxel-wise, two-sample t-test was performed (p< 0.05, corrected with

AlphaSim, cluster size > 3060 mm3).

Resting state fMRI of chronic pain in adults with SCD
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First, single sample t-tests were performed using CPM magnitude as a regressor of interest

to determine common correlates regardless of clinical status. Second, connectivity was com-

pared separately in the 3 groups. Third, an interaction was performed, in which connectivity

was compared across the 3 groups; in this case, the test was for clusters whose connectivity had

a differential effect on CPM across groups. Significance was set at P < 0.001 voxel-level, and

P< 0.05 cluster-level family-wise error (FWE)-corrected (AFNI 3dClustSim, version 19.0.26,

https://afni.nimh.nih.gov/afni, was used for the cluster correction). Significant clusters were

extracted and further analyzed in SPSS.

Lastly, in order to account for the possibility that factors unrelated to pain, such as anemia,

influence functional connectivity, we performed a regression analysis addressing the relation-

ship in functional connectivity between PAG and hemoglobin by the following model:

½PAGfc ¼ b0 þ b1Hgbþ b2GroupSCD=CN þ ε�:

Phenotypic data. Median and interquartile ranges (IQR) were used as a summary of con-

tinuous or ordinal variables, and frequency variables were summarized as a percent. Groups

were compared using a Fisher’s exact test for frequency variables, and an Independent-samples

Mann-Whitney U Test was used to determine the significance between groups. A two-sided P-

value of<0.05 was considered as significant. Statistical analyses were done by using SPSS 23

for Windows.

Results

Subject demographics

We obtained resting rsfMRI data from 32 adults, 22 with SCD (median: 28 years, IQR: 25–37

years) and 10 healthy African-American controls (median: 31 years, IQR: 24–41 years). In

comparison to controls, patients with SCD had a lower hemoglobin, and a higher reticulocyte

percent (Table 1).

In the SCD group, 15 (68%) met the criteria for a chronic pain syndrome. When comparing

those with SCD and chronic pain to those without, patients with chronic pain were signifi-

cantly older (P = 0.002), had a higher hemoglobin (P = 0.01), and higher daily opioid use

(P = 0.002) (Table 1).

rsfMRI analysis

Compared to control subjects, adults with SCD (both with and without chronic pain) had

decreased functional connectivity between the PAG and the anterior cingulate cortex (ACC).

There was increased functional connectivity between the PAG and the occipital gyrus, and

the PAG and the parietal lobe (Fig 1). The change identified in the left middle occipital gyrus

could be attributed to the differences in hemoglobin between groups (S1 Fig). When specifi-

cally looking at z-scores, healthy subjects show non-zero connectivity while SCD subjects

show connectivity that is indistinguishable from zero (Fig 1). When patients with SCD without

chronic pain were compared to controls, the only differences in connectivity that were found

were between the PAG and the occipital gyrus, and the PAG and the superior frontal gyrus

(Fig 2).

Next, we compared SCD patients with chronic pain to those without chronic pain. We

identified differences in connectivity between PAG and numerous areas, including 13 areas

involved with sensory processing, 5 areas involved in motor processing, 7 areas involved

in emotion, and 5 areas involved in memory (Table 2, Fig 3). The right/left inferior parietal

lobule, left precuneus, medial frontal gyrus, and left posterior cingulate cortex are known

Resting state fMRI of chronic pain in adults with SCD
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components of the DMN (Table 2). For patients with SCD and chronic pain, most areas show

functional connectivity that is indistinguishable from zero (except area 1 and 3), and for those

same areas, those without chronic pain show a non-zero connectivity (Fig 3).

Discussion

We demonstrate that a subset of patients with SCD undergo a neuronal re-organization of

the brain that is consistent with a mechanism of central sensitization and could explain how

chronic pain develops and is sustained in this patient population. Compared to controls,

patients with SCD showed few differences in connectivity between the PAG, a region of the

brain involved in pain modulation, and other regions; even fewer differences were found when

controls were compared to the subset of SCD patients who did not have chronic pain. How-

ever, when SCD patients without chronic pain were compared to those with chronic pain,

multiple differences in functional connectivity were identified. Several of these brain regions

have functions that have been implicated in chronic pain, such as memory, emotion, and

introspection, and are part of the DMN, a network whose altered dynamics is thought to be

critical for the development of chronic pain syndromes [13,19–25]. These results suggest that,

although the pathogenesis of vaso-occlusion may be unique to SCD, the mechanism of chronic

pain is not.

In comparison to other chronic pain disorders, such as fibromyalgia [10,11,25] and chronic

low back pain [12,25], little is known about the mechanism of chronic pain in SCD. This

knowledge gap is in contrast to acute pain secondary to vaso-occlusion, which is well-

described [2,3]. A multi-cellular process that involves sickle red cells, white cells, platelets,

coagulation factors and the endothelium, vaso-occlusion causes episodic bouts of ischemia

and injury that occur, on average, once per year in a child with SCD [2,3]. In the pediatric pop-

ulation, these “crises” are typically self-limited and, between episodes, children are pain-free

Table 1. Demographics for control subjects and patients with SCD with and without chronic pain.

Sickle Cell

Disease

Control Group Sickle Cell Disease- Pain phenotype

Demographics Overall (n = 22) No chronic pain

(n = 10)

P-value Chronic pain

(n = 15)

No chronic pain

(n = 7)

P-value

Age, years, median (IQR) 28 (25–37) 31 (24–41) 0.7 31.4 (26–43) 24.1 (21–27) 0.002

Gender, n (% female) 13 (59) 5 (50) 0.7 10 (67) 3 (43) 0.4

SCD genotype (n, %)

HbSS 17 (77) NA NA 10 (67) 7 (100) 0.4

HbSC 4 (18) 4 (27) 0 (0)

HbSbthal0 1 (5) 1 (7) 0 (0)

Hydroxyurea use, n (% yes) 8 (36) NA NA 7 (47) 1 (14) 0.2

Baseline Labs, median (IQR)

WBC (#/ul) 9.1 (5.6–10.9) 6.3 (4.7–8.3) 0.08 9.1 (5.3–10.5) 8.2 (5.7–12.1) 0.9

Hgb (g/dl) 9.3 (8.5–10.5) 13.8 (11.8–15.8) <0.0001 9.5 (9.1–10.6) 8.5 (8.2–9.1) 0.01

reticulocyte percent (%) 7.0 (5.5–14.0) 1.5 (1.2–1.8) <0.0001 7.0 (4.8–12.6) 6.9 (5.9–17.6) 0.5

Hospital Utilization (median number over last 3

years)

Unscheduled Clinic Visit 1.5 (0–8.3) NA NA 1 (0–13) 2 (1–6) 0.8

ED Visit 3 (1–6.3) NA NA 3 (1–8) 4 (1–5) 0.8

Inpatient Hospitalization 3 (1.8–6) NA NA 3 (1–6) 3 (2–6) 0.8

Morphine milligram equivalent (mg), median

(IQR)

72.3 (50.3–240) NA NA 190.7 (72.3–317.1) 33.7 (6.7–62.1) 0.002

https://doi.org/10.1371/journal.pone.0216994.t001
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[26]. However, the pain experience can change as patients with SCD age. In 50% of patients,

these intermittent episodes of pain evolve into a chronic pain syndrome [1]. It is this chronic

pain syndrome that underlies many acute care admissions in adults and is so confusing to cli-

nicians [26–28]. What is frequently observed is not pain due to avascular necrosis, or another

anatomical lesion, but widespread pain, often with accompanying hyperalgesia and allodynia.

This clinical picture has led investigators to speculate that sensitization, or enhanced nocicep-

tion, plays a role in SCD chronic pain [28–32].

In other pain conditions, such as fibromyalgia [33–36], diabetic neuropathy [37,38], and

chronic low back pain [20,23,25,39], patients with sensitization not only display hyperalgesia

or allodynia but also demonstrate synaptic changes on rsfMRI of the brain. In fact, there is a

growing literature in these pain disorders that demonstrate abnormal connectivity between

pain centers of the brain and areas involved in memory, emotion, and introspection [33–39].

Of note, in chronic pain disorders, the directionality of the connectivity (positive or negative)

is likely harder to interpret than simply pro- or anti-nociceptive, precisely because of the

chronic nature of the process. Although a limitation, these abnormal connections are still

thought to be revealing, providing insight into the mechanism of neuro-plasticity, a process by

which nerves form new connections in response to environmental stimuli, such as learning a

new task [40,41]. In the case of central sensitization, however, the changes are maladaptive (for

example, linking an emotive region to a pain region), and in response to pathology: injury,

Fig 1. Periaqueductal gray (PAG) seed-based functional connectivity (FC) analyses between patients with SCD (SCD) and controls (CN). Left:
Images show the results of the two sample t-test pattern of CN (controls, blue) and SCD (patients with sickle cell disease, orange) PAG FC, respectively.

Color is coded based on z-score of the significance. Brain regions with warm color represent the positive connection and cold color represents the

autocorrelation with PAG regions. Brain regions are numbered: (1) right inferior and superior parietal lobule, (2) left inferior occipital gyrus

(Brodmann area 17 and 18), and (3) left and right anterior cingulate. Right: In comparison to CN (blue), SCD (orange) demonstrated increased

connectivity in (1) right inferior and superior parietal lobule, (2) left inferior occipital gyrus (Brodmann area 17 and 18), and decreased connectivity in

the (3) left and right anterior cingulate (y-axis = z-score of the significance, x-axis = brain region of interest by number).

https://doi.org/10.1371/journal.pone.0216994.g001
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inflammation, and/or persistent pain input [13]. Because these are all features inherent to SCD

pathogenesis [3], there is ample rationale that sensitization could cause reorganization of the

neural networks in this patient population too. Beyond the fact that many adults display hyper-

algesia and allodynia, additional evidence that sensitization occurs in patients with SCD comes

from quantitative sensory testing [31,32] as well as limited rsfMRI studies [8,9,14] that show

changes in brain connectivity. Although speculative, if present, these maladaptive changes

could promote and sustain the chronic pain syndrome seen in patients with SCD. In this case,

vaso-occlusion that was previously subclinical might later be perceived as pain, which could

explain why the frequency and severity of pain worsens with age, even though vaso-occlusion

does not [1,26].

In our study, rsfMRI was used to determine if there was evidence of maladaptive changes in

the brains of adults with SCD and chronic pain. Compared to SCD patients without chronic

pain, those with chronic pain demonstrated changes indistinguishable from zero, which sug-

gested a breakdown in connectivity between PAG and 9 regions of the brain, including several

that are part of the DMN, a network that has been implicated in the pathogenesis of chronic

pain [21]. Consisting of the inferior parietal lobule, the posterior cingulate cortex, the precu-

neus, the hippocampus, the posterior lateral cortex, as well as areas of the medial frontal gyri,

the DMN is responsible for what the brain is doing when not attending to a task [42–46].

Fig 2. Periaqueductal gray (PAG) seed-based functional connectivity (FC) analyses between patients with SCD without chronic pain (NCP) and

controls (CN). Left: Images show the results of the two sample t-test pattern of CN (controls, blue) and SCD without chronic pain (patients with sickle

cell disease and no chronic pain, orange) PAG FC, respectively. Color is coded based on z-score of the significance. Brain regions with warm color

represent the positive connection and cold color represents the autocorrelation with PAG regions. Brain regions are numbered: (1) Left and right

Cuneus/ left inferior occipital gyrus (brodmann area 18)/ left middle occipital gyrus/ left and right lingual gyrus, and (2) Left and right superior frontal

gyrus. Right: In comparison to CN, NCP demonstrated increased connectivity only in the (1) Left and right Cuneus/ left inferior occipital gyrus

(brodmann area 18)/ left middle occipital gyrus/ left and right lingual gyrus, and decreased connectivity of the (2) Left and right superior frontal gyrus

(y-axis = z-score of the significance, x-axis = brain region of interest by number).

https://doi.org/10.1371/journal.pone.0216994.g002

Resting state fMRI of chronic pain in adults with SCD

PLOS ONE | https://doi.org/10.1371/journal.pone.0216994 May 20, 2019 7 / 13

https://doi.org/10.1371/journal.pone.0216994.g002
https://doi.org/10.1371/journal.pone.0216994


Table 2. Brain regions and their functions where differences in functional connectivity were observed between SCD adults with and without chronic pain.

Function Sensory processing Motor processing/ executive

function

Emotion Memory/Learning

Brain

Region

Right superior temporal gyrus Right insula Right superior temporal gyrus Right cerebellum

Right insula Right/left superior frontal gyrus Right insula Left lingual gyrus

Right postcentral gyrus (i.e. 1˚ somatosensory

cortex)

Medial frontal gyrus Right/left inferior parietal

lobule

Left precuneus

Right/left inferior parietal lobule� Right cerebellum Right cerebellum Left superior parietal lobule

Right/left superior frontal gyrus Left precuneus Left lingual gyrus Left posterior cingulate

cortex

Left lingual gyrus Left precuneus

Left inferior occipital gyrus Left posterior cingulate cortex

Left middle occipital gyrus

Left middle temporal gyrus

Left precuneus

Left inferior parietal lobule

Left superior parietal lobule

Left supramarginal gyrus

�Bold = regions associated with the default mode network (DMN).

https://doi.org/10.1371/journal.pone.0216994.t002

Fig 3. Periaqueductal gray (PAG) seed-based functional connectivity (FC) analyses between patients with SCD with chronic pain (CP) and

without chronic pain (NCP). Left: Images show the results of the two sample t-test pattern of NCP (SCD patients without chronic pain, blue) and

patients with chronic pain (SCD patients with sickle cell disease and chronic pain, orange) PAG FC, respectively. Color is coded based on z-score of the

significance. Brain regions with warm color represent the positive connection and cold color represents the autocorrelation with PAG regions. Brain

regions are numbered: (1) right superior temporal gyrus/ right insula/ right postcentral gyrus/ right inferior parietal lobule, (2) left lingual gyrus/ left

inferior occipital gyrus/ left middle occipital gyrus, (3) left middle temporal gyrus/ left precuneus/ left inferior parietal lobule/ left superior parietal

lobule, (4) left and right superior frontal gyrus (right most)/ medial frontal gyrus, (5) left supramarginal gyrus, (6) left superior frontal, (7) left posterior

cingulate cortex, (8) right culmen of the cerebellum, and the (9) right middle and superior frontal lobe. Right: In comparison to NCP, patients with

chronic pain demonstrated increased connectivity in the (1) right superior temporal gyrus/ right insula/ right postcentral gyrus/ right inferior parietal

lobule, (4) left and right superior frontal gyrus (right most)/ medial frontal gyrus, (5) left supramarginal gyrus, (6) left superior frontal, (8) right culmen

(cerebellum), and the (9) right middle and superior frontal lobe. Decreased connectivity was noted in the (2) left lingual gyrus/ left inferior occipital

gyrus/ left middle occipital gyrus, (3) left middle temporal gyrus/ left precuneus/ left inferior parietal lobule/ left superior parietal lobule, and (7) left

posterior cingulate cortex (y-axis = z-score of the significance, x-axis = brain region of interest by number).

https://doi.org/10.1371/journal.pone.0216994.g003
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Although counter-intuitive, emerging data has demonstrated that, even in the absence of a

task, the brain is never fully at rest [42]. On the contrary, processes such as introspection and

memory are always occurring in the background and it is these functions that are thought to

be critical to the pathogenesis of chronic pain [20,21]. If the regions of the DMN become frag-

mented as a result of chronic pain as has been seen in other populations, the perception of

pain can become uncoupled from the need for noxious stimuli and, instead, linked to these

“background” functions [20,21]. Given that the patients with SCD and chronic pain in our

cohort demonstrated a similar breakdown of functional connectivity, these changes may

explain how an intermittent, vaso-occlusion-associated phenomenon could become one that is

chronic and may occur with minimal injury or in the absence of it altogether.

Like the DMN, another area that has been implicated in chronic pain is the insula [47]. The

insula is postulated to play a role in the integration of motor, emotional, autonomic, and cog-

nitive aspects of pain signals [48–50]. With this complex integration, it has been identified as

playing a role in the experience of body self-awareness [51,52], sense of agency (the capacity of

an individual to act independently and to make their own free choices) [53], and sense of body

ownership [54]. Previous fMRI studies have demonstrated that the insula is activated during

experimental pain tasks, and is involved in the conscious determination of pain severity [48–

50,55,56]. Interestingly, recent research in patients with fibromyalgia has indicated that the

insula may also be critical for DMN modulation, suggesting a possible dual role for the insula

in chronic pain [57].

As with any study, ours had limitations. First, several confounders may have affected our

results. Mental health [58], opioid use [59], substance abuse [60], and neurodegenerative

conditions [61,62], have all been demonstrated to independently affect functional connectiv-

ity. Although our eligibility criteria, which precluded patients with known stroke and sub-

stance abuse, should have diminished the effect of these confounders, they may not have

removed their influence entirely. While we will not be able to address these limitations

within the current study, they will be the focus of future studies by our research group. Sec-

ond, adults with SCD in our cohort had a significantly lower hemoglobin than the healthy

controls. Potentially, this difference raises the question of whether the functional changes

noted might be driven by anemia [63]. To address this, we performed a regression analysis in

which we adjusted for group differences (cases/controls) to examine the effects of hemoglo-

bin. The only location that was common between this regression analysis examining hemo-

globin and our case/control analysis was the left occipital gyrus (S1 Fig). Given that others

have found no global differences in BOLD signal between patients with SCD and controls at

rest [9], these data suggest that the changes in functional connectivity identified in our study

are not anemia-driven. Third, while SCD phenotype differs by genotype, we chose to include

all genotypes to increase the generalizability of our findings. The phenotype that we focused

on, chronic pain, is present in all SCD genotypes. Lastly, as is the case with most rsfMRI

studies, ours had a small sample size. The small sample size increases the risk of both type I

and type II errors. While true, our findings largely agree with the findings from fibromyalgia

and chronic low back pain, suggesting that the differences in connectivity that we did iden-

tify are biologically meaningful.

Taken together, our data demonstrate that adult patients with SCD have synaptic changes

in the CNS that may contribute to the pathogenesis of chronic pain. Like those with fibromyal-

gia and chronic low back pain, functional areas important for memory, emotion, and intro-

spection are altered, suggesting a common mechanism for the development and maintenance

of chronic pain across disease states. Regardless of the inciting event, these maladaptive

changes remove the sensation of pain from strictly nociceptive pathways, and may explain

how pain evolves from acute to chronic.
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Supporting information

S1 Fig. Periaqueductal gray (PAG) seed-based functional connectivity (FC) analyses

between patients with SCD (SCD) and controls (CN) as a function of hemoglobin. Image

shows the results of the two sample t-test pattern based on hemoglobin level. Color is coded

based on z-score of the significance. Brain regions with warm color represent the positive con-

nection and cold color represents the autocorrelation with PAG regions. Brain regions are

numbered: (1) Left and right medial frontal and superior frontal gyrus, (2) Left middle occipi-

tal gyrus, 3) Left and right medial frontal gyrus, Rectal part, (4) Left Thalamus, and (5) Right

Thalamus.

(TIF)
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