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Abstract: Polymer electrolyte membrane fuel cells require cheap and active electrocatalysts to drive
the oxygen reduction reaction. Nitrogen-doped carbons have been extensively studied regarding
their oxygen reduction reaction. The work at hand looks beyond the nitrogen chemistry and brings
to light the role of oxygen. Nitrogen-doped nanocarbons were obtained by a radio-frequency
plasma route at 0, 100, 250, and 350 W. The lateral size of the graphitic domain, determined from
Raman spectroscopy, showed that the nitrogen plasma treatment decreased the crystallite size.
Synchrotron radiation photoelectron spectroscopy showed a similar nitrogen chemistry, albeit the
nitrogen concentration increased with the plasma power. Lateral crystallite size and several nitrogen
moieties were plotted against the onset potential determined from oxygen reduction reaction curves.
There was no correlation between the electrochemical activity and the sample structure, as determine
from Raman and synchrotron radiation photoelectron spectroscopy. Near-edge X-ray absorption fine
structure (NEXAFS) was performed to unravel the carbon and nitrogen local structure. A difference
analysis of the NEXAFS spectra showed that the oxygen surrounding the pyridinic nitrogen was
critical in achieving high onset potentials. The work shows that there were more factors at play, other
than carbon organization and nitrogen chemistry.

Keywords: nitrogen-doped carbon; structure; oxygen reduction reaction

1. Introduction

To achieve sustainability, there is a need for devices that can store or convert renew-
able energy. Electrochemical devices can store renewable energy in batteries or use the
renewable energy in electrolyzers to generate alternative fuels, such as hydrogen, which
can be used in fuel cells. To balance the charge in such electrochemical devices, a cathode
exposed to air is used for electrochemical reduction reactions. The oxygen reduction reac-
tion (ORR) is the key reaction in air–cathode electrochemical devices: polymer electrolyte
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membrane fuel cells [1], metal–air batteries [2], and microbial fuel cells [3]. Platinum-group
metals and their alloys are the electrocatalysts of choice in the oxygen reduction reaction [1].
Nitrogen-coordinated metals (e.g., Fe, Co) have been shown to drive the oxygen reduc-
tion reaction at similar overpotentials to that of platinum [4,5]. To further decrease the
cost, heteroatom-doped nanocarbons have shown remarkable progress in terms of onset
potential and current density [6].

The ORR active sites on metal nanoparticles are restricted to the metal facets, which
makes it less challenging to identify active sites and understand reaction mechanisms
on metal surfaces than on heteroatom-doped carbons [7]. The quest for ORR active sites
on heteroatom-doped carbons is severely hindered by the challenges in characterizing
heteroatom local structure, carbon organization, and the influence of other dopants (e.g.,
oxygen, inherently present in carbon materials). For example, testing reaction mechanisms
by in situ X-ray probing techniques (attainable for metallic electrocatalysts) is challenging to
perform for light elements due to the additional vacuum needed to extract photoelectrons.
Such experimental challenges in characterizing nanocarbons has impeded the efforts to
reach a consensus on the nature of active sites in heteroatom-doped carbons.

Nitrogen has been considered the active electrocatalytic center in nitrogen-doped
carbons [8,9]. Nitrogen bonds to carbon in different configurations. Some nitrogen atoms
are located at the edge of the carbon network (pyridinic and pyrrolic). Other nitrogen atoms
are bonded to three carbons and located within the carbon network (graphitic nitrogen).
There is an ongoing debate in the literature on the role of pyridinic, pyrrolic, or graphitic
nitrogen in ORR [8,10–13]. Recent studies showed that graphitic and pyridinic nitrogen
can work in synergy to drive ORR [14].

However, there are more factors at play in the ORR on nitrogen-doped carbons.
For a given pH value [12], ORR activity on nitrogenated carbon electrodes is governed
by: (1) the electron-donating ability of the electrode—influenced by the nitrogen concen-
tration [15]; (2) oxygen adsorption and desorption from the surface, influenced by the
nitrogen surface chemistry [9,13,16] (i.e., type of nitrogen); (3) textural properties such
as pore size and effective surface area, which are directly proportional to the number of
active sites [17], and (4) dimension of the crystallites influenced by the carbon organiza-
tion [18–21]. Recent theoretical studies suggested that oxygen does not bind to nitrogen
atoms [22], and a similar mechanism is expected for all heteroatom-doped carbons. The role
of other heteroatoms (other than nitrogen) in oxygen reduction reaction activity has been
studied [23,24]. Nanocarbons are inherently doped with oxygen. Therefore, traditional
heteroatom-doped carbons are dual-doped. A secondary atom has been shown to break
the well-known scaling relationships [25]. There are no studies to date that simultaneously
characterize the inherent heteroatom (that is, oxygen) and the secondary heteroatom (that is,
nitrogen, phosphorous, boron, etc.). Such studies are difficult, as standard characterization
tools focus on one heteroatom at a time.

Herein, we bring to light a new component that is ORR-active and is inherently
present on the surface of carbons; that is, oxygen functionalities. To analyze the ORR
with respect to the nitrogen concentration and type, we have conducted a combined
photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS).
Textural properties were characterized by nitrogen adsorption isotherms. Raman analysis
was used to characterize the carbon structure. The onset potential was plotted against
nitrogen concentration, nitrogen surface chemistry, and carbon organization properties.
Postmortem Raman analysis was used to investigate the role of carbon organization. Based
on the results, we concluded that oxygen and nitrogen moieties were working in synergy
to drive ORR.
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2. Experimental
2.1. Reagents

Carbon Vulcan XC-72R (College Station, TX, USA) and KOH (Cristal R Chim, Bucharest,
Romania) were used without further purification. Ultrapure water (>18.2 MΩ cm) was
supplied by Milli-Q DirectQ System (Burlington, MA, USA).

2.2. Nitrogen Radiofrequency Plasma Treatment

The nitrogen doping of carbon samples was carried out using a home-built radio-
frequency plasma system with a 2.46 MHz plasma frequency. To surface-treat nanocarbon
powders, 100 mg commercial Vulcan XC-72R (herein Vulcan) was mixed with 5 mL acetone
(S.C. Chimreactiv S.R.L., Bucharest, Romania) then placed in a quartz crucible. The solution
formed a thin film upon drying at 130 ◦C. Quartz crucibles containing nanocarbons were
placed inside the quartz tube reactor of the RF plasma system. The base pressure was kept
below 10−2 mbar. The tube was then filled with nitrogen at 100 mL/min. The plasma
treatment took place at 5 × 10−1 mbar. Nitrogen plasma was formed inside the quartz tube
by applying 100, 250, and 350 W RF power for 60 min to convert Vulcan to CN100, CN250,
and CN350, respectively.

2.3. Photoelectron Spectroscopy and X-ray Absorption Spectroscopy

The Materials Science Beamline (bending-magnet beamline; tuning range 22–1000 eV) at
Elettra Synchrotron (Trieste, Italy) was used to carry out the photoemission and X-ray absorp-
tion experiments. The samples were characterized at base pressure below 2 × 10−10 mbar
with a hemispherical electron analyzer (Specs Phoibos 150, Berlin, Germany). Core-level
spectra were collected at normal emission (60◦ incidence) geometry and with a 0.5 eV total
resolution. A gold mesh was used for the calibration of the incident photon flux. Voigt
profiles were used for fitting of the C 1s and N 1s spectra. A Shirley function was used
for background correction. Near-edge X-ray absorption (NEXAFS) measurements were
performed in the Auger-electron yield mode near the C and N K-edges at <0.4 eV resolution.
An Ar-sputtered gold foil was used for calibration and for the intensity normalization.

Raman characterization was carried out on a Jasco NRS-3100 (Tokyo, Japan) spec-
trophotometer with a 532 nm laser and a bandstop filter to eliminate the Rayleigh scattering.
Sample points were collected every 8 cm−1 from 400 to 3000 cm−1. Spectra were analyzed
with Fityk 1.3.1. The best fit was achieved with 4 Voigt functions, during which peak
positions were allowed to change by <5 cm−1.

Elemental analysis was carried out on a Perkin Elmer 2400 (Llantrisant, UK). Samples
were weighted and folded in standard tin capsules. Quartz tubes were filled with cuprin
and EA-6000 and placed in the combustion furnace. The operating temperature was 975 ◦C.
Air and helium (99.9995%) were supplied from a compressor and gas tank, respectively.

Specific surface area was determined by means of a Quantachrome Nova 1200e (Anton
Paar, St Albans, UK) surface-area analyzer. Prior to measuring, the samples were degassed
for 15 h at 473 K. Samples were measured with nitrogen at 77 K. To determine the specific
surface area of the samples under investigation, the BET method was used. The BJH
method (Barret, Joyner, and Halenda) was used to assess the pore-size distribution.

2.4. Electrochemical Characterization

The electrocatalytic activity of the nitrogen-doped carbon samples was evaluated
under controlled hydrodynamic conditions in a three-electrode glass-cell setup. A po-
tentiostat (Origalys model OrigaFlex-OGF01A) was used to perform the electrochemical
measurements. Nitrogenated carbon samples were placed on the surface of glassy carbons
from a 5 µL drop of an ultrapure water ink (3.5 mg/mL concentration). The working
electrode was represented by the functionalized carbon samples deposited on the glassy-
carbon rotating-disk electrode (RDE, Rillieux-la-Pape, Origalys) with a 3 mm diameter.
The reference electrode was a reversible hydrogen electrode (RHE, Hydroflex®, Gaskatel,
Kassel, Germany). To avoid Pt contamination, a graphite rod was used as the counter
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electrode. GC disks were cleaned by polishing with a 0.8 µm alumina slurry on a synthetic
fiber cloth (NWF+, Presi, Le Cocle, Switzerland), rinsed with ultrapure water, and then
polished with a 0.04 µm alumina slurry on a microcloth (DBM, Presi, Le Cocle, Switzerland).
The GC disks were rinsed in ultrapure water, and then ultrasonicated in fresh ultrapure
water for 5 min. The electrochemical cell was kept at 80 ◦C overnight in ultrapure water
prior to use. All electrochemical measurements were carried out in 0.1 M KOH aqueous
solutions. The working electrode was conditioned by running 10 cyclic voltammograms
(CVs) between 50 mV and 1200 mV versus RHE at a 100 mV s−1 scan rate in N2 saturated
0.1 M KOH. An additional three CVs were recorded at 50 mV and 1200 mV versus RHE
at 20 mV s−1 scan rate. Oxygen reduction reactions (ORRs) were recorded at 0, 400, 900,
and 1600 rpm in O2-saturated 0.1 M KOH. In order to correct for the capacitive current, the
CVs in nitrogen were subtracted from the ORR sweeps. The as-obtained potentials were
further corrected for uncompensated solution resistance determined from electrochemical
impedance spectroscopy measurements. Electrochemical degradation was carried out for
6 h in 0.1 M KOH between 0.05 and 1.20 V vs. RHE at 0.1 V s−1.

3. Results and Discussion

Textural properties were assessed by nitrogen adsorption/desorption isotherms in line
with the IUPAC recommendations [26,27] (Supplementary Figure S1). Investigated samples
showed a surface area of 240 m2g−1, 192 m2g−1, 204 m2g−1, and 174 m2g−1 for Vulcan,
CN100, CN250, and CN350, respectively. It was evident that the RF plasma treatment
decreased the surface area by approximately 20% for all the samples. The BJH method was
used to measure the pore diameter. Average pore-size values of 3.05 nm, 3.39 nm, 3.45 nm,
and 3.39 nm were determined for Vulcan, CN100, CN250, and CN350, respectively. The
smallest pore size corresponded to the sample with the largest surface area; that is, Vulcan.
There was a less than 2% difference between the pore sizes of nitrogenated samples. It
can be inferred that the nitrogenated carbons had similar textural properties, considering
the small differences in pore size and surface area. The focus was then turned to other
characteristics, such as the carbon organization.

Samples were obtained by surface treatment in a home-built cold RF plasma reactor in
a nitrogen atmosphere. Elemental analysis showed an N/C ratio of 0, 2.1%, 4.7%, and 1.7%
for Vulcan, CN100, CN250, and CN350, respectively. The nitrogen concentration increased
linearly with the plasma power up to 250 W. At 350 W, the nitrogen concentration was
smaller than at 250 W. Most probably, the average kinetic energy of the nitrogen ionized
was too high, which led to scattering. Although the study of nitrogen concentration into
carbon materials is interesting, it falls beyond the general scope of this study.

Synchrotron radiation photoemission spectroscopy (SRPES) was used to evaluate
the nitrogen chemistry on the surface of the electrodes. The core-level peaks analyzed by
synchrotron radiation had a considerably smaller full width–half maximum, which was
leveraged for the multicomponent deconvolution of N 1s. The wide spectrum (Supple-
mentary Figure S2) showed that there was only carbon, nitrogen, and oxygen present on
the surface. Core-level spectra of C 1s and O 1s were not fitted due to the presence of
adventitious carbon and its inherent oxygen, which can easily mislead the fitting. Moreover,
there were many carbon–oxygen and carbon–nitrogen overlapping moieties, which must
be considered when fitting C 1s; this is still a matter of debate in the literature [15,28]. To
eliminate any possible artefacts, the attention was focused only on the N 1s peak—a signal
that can arise only from the sample.

Three peaks were observed in the N 1s core-level spectra: pyridinic (i.e., nitrogen
in a six-membered ring), pyrrolic (i.e., nitrogen in a five-membered ring) and graphitic
(i.e., nitrogen bonded to 3 carbon atoms) [29,30]. The fitting of the N 1s can be found in
Supplementary Figure S3. There is a large body of work that relates the ORR activity to
pyridinic or graphitic, or a mix of the two [8,9,13,14,16]. The potential at 0.1 mAcm−2,
also known as the onset potential, was plotted against the nitrogen surface concentration
(Figure 1 and Supplementary Figure S4). The largest onset potential was determined for
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CN250: approximately 0.72 V vs. RHE. The concentration of pyridinic increased from
CN100 to CN350. The concentration of pyrrolic and graphitic decreased from CN100 to
CN350 (Figure 1). It was expected for at least 1 nitrogen concentration ratio to have a
maximum or minimum for the CN250. However, there was no clear dependence found
between the nitrogen surface chemistry and onset potential.
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Raman spectroscopy on amorphous nanocarbons has been well studied in the liter-
ature. It is generally accepted that there are four bands: the D band at approximately
1350 cm−1, the G band at approximately 1600 cm−1, the A band at 1500 cm−1, and the I
band at approximately 1200 cm−1. A thorough discussion on the rationale of every band
can be found in the three-stage model proposed by Ferrari and Robertson [31]. Peak fitting
was performed with 4 Voigt functions. Further details on the fitting parameters can be
found in the Supplementary Materials. All the samples had AD/AG ratios (i.e., area ratios)
between 2.19 and 3.19, suggesting a strong amorphous character. Similar values were
obtained for Vulcan [32] and nitrogen-doped carbons [30]. The average lateral dimension
of the graphitic cluster (La) is inversely proportional to the AD/AG ratio (Supplementary
Figure S5) [33–35]. To put it simply, the sample with the lowest ID/IG (i.e., 2.19 for Vulcan)
possessed the highest La; that is, 8.21 nm. The nitrogenated samples had a higher ID/IG
ratio than the non-nitrogenated sample (i.e., Vulcan), which implies a lower graphitization.
A similar trend has been observed on other nanocarbons [30]. The first-order Raman (i.e.,
1000–2000 cm−1) had 2 minor peaks, A and I, which were assigned to both trigonal and
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tetragonal carbons [36]. In this respect, the area of the A peak was normalized to the area
of the D and G peaks, respectively.

Three carbon-organization characteristics (Figure 2) were plotted against the onset
potential: La (that is, inversely proportional to ID/IG), AA/AD (area ratio) and AA/AG (area
ratio). CN250 had the highest La among the nitrogen-doped samples. The lowest AA/AD
and AA/AG ratio was determined for CN250 among the nitrogenated samples. One might
be tempted to conclude that these carbon characteristics were better ORR descriptors for
nanocarbons than the nitrogen surface chemistry. However, the non-nitrogenated carbon
had a higher La and a lower AA/AD and AA/AG than CN250. If the non-nitrogenated
sample is considered, then the conclusion cannot be deemed valid (Figure 2).
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3.1. What Is the Reason behind ORR Activity in Nitrogen-Doped Carbons?

There was no clear standalone ORR descriptor for the samples tested in this work. It
is clear from Figure 1 that nitrogen was mandatory to drive the ORR on carbon electrodes.
The graphitization degree (Figure 2) was also a critical parameter that should be considered
in designing future nanocarbon electrocatalysts. To sum up, none of the characteristics
mentioned above can be viewed as a unique descriptor, albeit the combination of nitrogen
surface chemistry and graphitization degree can offer guidance. Looking at the data in
Figures 1 and 2, it can be easily inferred that a high ORR activity included a combination of
factors. To answer the question at the beginning of this subsection, one has to look beyond
nitrogen surface chemistry and carbon organization.

Near-edge X-ray absorption fine structure (NEXAFS) was used to characterize the
local structure of carbon and nitrogen (Supplementary Figure S6). NEXAFS has been
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extensively used to characterize the carbon nanostructures, but this will not be detailed in
the work at hand [37–40]. Similar to SRPES, peak fitting in NEXAFS is subject to speculation.
To further understand the difference between the materials, a difference analysis on the
NEXAFS spectra is shown in Figure 3. NEXAFS difference analysis [38] has been recently
used to highlight the difference between nanocarbons and nitrogenated nanocarbons. The
difference analysis (Figure 3A) showed a horizontal line before the K-edge of carbon (i.e.,
approximately 284 eV), which held for all the samples. There was no reason for the pre-
edge to change, which validated the technique. A peak above the horizontal line indicates
that there is an excess of that specific moiety characterized by that photon energy. For
example, CN350 had the largest pyridinic concentration (Figure 2) which was evident
from the increase in the peak at 398.5 eV for the CN350–CN100 and the decrease for the
CN250–CN350 (Figure 3B). The above-mentioned examples further supported the validity
of the NEXAFS difference analysis [37,38].
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There were two regions of interest in the NEXAFS difference analysis of C K-edge
(Figure 3A): (1) the region between 284 and 286 eV, which has been previously assigned to
C 1s→π* in C = C; and (2) the region between 287 and 291 eV, which has been previously
assigned to different oxygen functionalities, such as the C 1s→π* of C = O (286.5 eV) and
COOH (288.3 eV), and the C 1s→σ* of C–OH (289.3 eV). Minor differences were found be-
tween CN350 and CN100. A considerable decrease was measured in the 284–286 eV region
for CN250 when compared to CN100 and CN350. The decrease in this area suggested that
the aromaticity was lost, which was further confirmed by an increase in the 287–291 eV
region, specific for oxygen functionalities (vide supra). The reader should bear in mind
that the region between 287 and 291 eV is also specific for different nitrogen functionali-
ties [37,38]. The N/C concentration followed the trend CN250 > CN350 > CN100, which
can also be inferred from Figure 3A.
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C–N and C=N have remarkably similar photon-energy values as C−O and C=O
in the C K-edge. To unravel the nitrogen local structure, the analysis of the N K-edge
is paramount. The peak at 399.3 eV was specific for pyridine rings (i.e., N=C N 1s→π*
transitions), and was shown to be the most abundant on the CN350 surface. In consequence,
there was a negative peak and a positive peak at 399.5 eV for CN250–CN350 and CN250–
CN100, respectively (blue and black curves in Figure 3B). The same rationale held for the
CN350–CN100 curve, because the pyridinic concentration trend was CN350 > CN250 >
CN100. Our attention then was turned to the pre-edge feature in the N K-edge. The peak
centered at 398.5 eV (Figure 3B) was specific for pyridine conjugated to benzene units, such
as the pyridine in quinoline, acridine, or phenazine. There was no difference between the
CN350 and CN100 in the pre-edge area of the N-K edge (Figure 3B). The pre-edge feature
was negative in the difference analysis of CN250–CN350 and CN250–CN100, which was
surprising, considering the pyridinic trend determined from XPS (i.e., CN350 > CN250 >
CN100). To reflect the pyridinic trend established by the XPS, the pyridinic nitrogen in
CN250 must have an increased effective nuclear charge due to an electron-withdrawing
group. Only oxygen has such ability among the composing elements; that is, carbon,
nitrogen, and oxygen. Indeed, 4-hydroxy-2-pyridone and 2,3-pyridinedicarboxylic acid
showed a 2 eV shift in the N 1s→π* in N=C with a photon energy between 401 and
402 eV [37,38]. A closer investigation of the 401–402 eV region in Figure 3B showed a peak
in the 401–402 eV region for CN250–CN350 and CN250–CN100. When such a finding is
corroborated with the pre-edge feature in the difference analysis of CN250–CN350 and
CN250–CN100, then the pyridinic-oxygen moiety is unraveled. It is interesting to go back
and look at the C K-edge in light of the pyridinic–oxygen moiety (Figure 3A). Now, the
sharp peak at 288.3 eV can be explained on the basis of the C 1s→π* in COOH.

3.2. Tracking Degradation by Postmortem Raman Analysis

Postmortem studies; that is, the study of electrodes before and after electrochemical
experiments, are paramount in elucidating the role of active sites. The reader should
bear in mind that the nitrogen and carbon core-level spectra obtained from photoelectron
spectroscopy were challenging to analyze due to the inherent presence of oxygen in high
concentrations (arising from carbon corrosion and water adsorption). It is well-known that
the aromatic rings open under ORR, which should change the carbon organization and,
therefore, alter the Raman signal (Supplementary Figure S7). However, the AD/AG ratio
changes were quite low (Table 1). Investigating the AD/AG ratio values at EOT (end of test)
showed remarkably similar values for nitrogenated carbons, which were spread between
2.76 and 3.05 (Table 1). Such small differences have been previously reported for Vulcan
and Ketjenblack, although the authors showed a decrease in the AD/AG ratio at EOT.

Table 1. Postmortem Raman investigation results. BOT = beginning of test; EOT = end of test. The
electrochemical stability was performed for 6 h (see Experimental section). If the relative loss has a
negative sign, then it can be considered as a gain.

AD/AG AA/AG ORR

BOT EOT Relative
Loss BOT EOT Relative

Loss
E1/2

Difference/mV

Vulcan 2.215 2.300 −1.2% 0.512 0.528 −3.1% −12
CN100 3.193 3.050 +4.5% 0.999 1.044 −4.5% −18
CN250 2.838 2.896 −2.0% 0.898 1.152 −28.3% −40
CN350 2.755 2.764 −0.4% 1.037 1.093 −5.5% −25

Another widely used Raman parameter is the area ratio of the A and G peak. The
losses experienced by the AA/AG were considerably larger than the AD/AG ratio (Table 1).
For example, the initial ratios of CN250 and CN100 were 0.898 and 0.999, respectively,
and by EOT had increased to 1.152 and 1.044 for CN250 and CN100, respectively (Table 1).
The changes in the AD/AG and AA/AG ratios are consistent with the ORR loss of the
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nitrogenated carbons (Table 1). The values for the AD/AG ratio losses were considerably
smaller than the values for the AA/AG ratio loss. A similar trend could be inferred for the
AA/AD ratio. All in all, the postmortem Raman investigation revealed significant changes
that occurred upon long-term ORR.

The CVs at EOT had similar onset potentials for all the samples, irrespective of nitro-
gen concentration (Supplementary Figure S8). Table 1 shows that there was a considerable
loss in the AA/AG ratio loss upon extended ORR for the sample with the highest nitro-
gen concentration (i.e., CN250), which was also consistent with the largest loss in ORR
performance. XPS was used to measure the nitrogen concentration decrease in carbon
nitrides (>50% nitrogen) during photoelectrochemical water splitting. The low nitrogen
concentrations that occurred during nitrogen doping (i.e., below 10%) made it hard to
trace small changes in the nitrogen concentration due to inherent sample contamination
with adventitious carbon (which increased the carbon concentration and decreased the
N/C ratio). Table 1 shows that the AA/AG ratio could be used to qualitatively assess
the degradation in heteroatom-doped carbons. Further investigations are needed to fully
understand the nature of the A peak (centered at 1500 cm−1) in heteroatom-doped carbons
and its role in ORR.

4. Conclusions

In this article, we made use of a surface plasma functionalization to achieve a better
understanding of the role of nitrogen in the oxygen reduction reaction on nitrogen-doped
carbons. We found that if the plasma power was increased beyond 250 W, then nitrogen
was not incorporated in the carbon structure. The graphitization degree decreased with
increasing plasma power. Nitrogen concentration and surface chemistry (type of nitrogen)
were found to be poor ORR standalone descriptors. Similarly, the degree of graphitization
did not correlate with the measured ORR activity. The focus was turned to the role of
oxygen, which was inherently present on the carbon surface. -edge X-ray absorption fine
structure showed that if both oxygen and nitrogen were present in the same aromatic
ring, then the onset potential for the ORR increased. This work shed light on the synergy
between nitrogen and oxygen. Near-edge X-ray absorption fine structure should be used
in the future to probe multiple heteroatoms, as it is the only available technique that can
elucidate the synergy of multiple active sites.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11051198/s1, Figure S1. Nitrogen adsorbtion/desorbtion isotherms; Figure S2. Wide
spectrum X-ray photoelectron spectroscopy; Figure S3. Deconvolution of the N 1s peak obtained
from the synchrotron radiation photoelectron spectroscopy; Figure S4 Oxygen reduction reaction
curves; Figure S5 Raman peaks deconvolution; Figure S6. Near edge X-ray absorption fine structure;
Figure S7 Raman spectra of postmortem samples; Figure S8 CVs at the end of the accelerated
stress test.
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