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1  |   INTRODUCTION

The 3-chymotrypsin (C)-like cysteine protease (3CLpro) of 
coronaviruses (CoVs) is a target for developing antiviral 
drugs against SARS-CoV,1-3 MERS-CoV,4-6 and SARS-
CoV-2.7-10 CoVs encode four structural and accessory pro-
teins: spike protein (S-protein), envelope protein (E-protein), 

membrane protein (M-protein), and nucleocapsid protein (N-
protein); and two replicase polyproteins (pp1a and pp1ab). 
The open reading frames (ORFs) 1a and 1b encode pp1a and 
pp1ab,11-13 which are cleaved by papain-like protease (PLpro) 
and 3CLpro.14

pp1ab can be cleaved into 16 nonstructural proteins 
(nsps).15,16 PLpro is released from nsp3 through autocleavage, 
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Abstract
Coronavirus (CoV) 3-chymotrypsin (C)-like cysteine protease (3CLpro) is a target for 
anti-CoV drug development and drug repurposing because along with papain-like 
protease, it cleaves CoV-encoded polyproteins (pp1a and pp1ab) into nonstructural 
proteins (nsps) for viral replication. However, the cleavage sites of 3CLpro and their 
relevant nsps remain unclear, which is the subject of this perspective. Here, we ad-
dress the subject from three standpoints. First, we explore the inconsistency in the 
cleavage sites and relevant nsps across CoVs, and investigate the function of nsp11. 
Second, we consider the nsp16 mRNA overlapping of the spike protein mRNA, and 
analyze the effect of this overlapping on mRNA vaccines. Finally, we study nsp12, 
whose existence depends on ribosomal frameshifting, and investigate whether 3CLpro 
requires a large number of inhibitors to achieve full inhibition. This perspective helps 
us to clarify viral replication and is useful for developing anti-CoV drugs with 3CLpro 
as a target in the current coronavirus disease 2019 (COVID-19) pandemic.

K E Y W O R D S

3CLpro, COVID-19, MERS-CoV, nsp, SARS-CoV, SARS-CoV-2

www.wileyonlinelibrary.com/journal/fsb2
https://orcid.org/0000-0001-7642-3972
mailto:﻿￼
https://orcid.org/0000-0003-0775-5759
mailto:hongguanglishibahao@gxas.cn


2 of 9  |      YAN and WU

and then cleaves three sites: between nsps1/2, nsps2/3, and 
nsps3/4 with the LXGG recognition motif.17 3CLpro—also 
called the main protease (Mpro)—is released from nsp5 
through autocleavage.18 Using recognition motifs such as 
XXXLQAXXX and XXXLQSXXX,19 3CLpro cleaves the 
remaining nsps.20

3CLpro is a desirable target for developing wide-spectrum 
anti-CoV drugs and drug repurposing21-24 because (a) the 
nsps cleaved by 3CLpro influence the formation of the double-
membraned vesicles (DMV),18,25-31 (b) 3CLpro shares signifi-
cant sequence identity and 3D structure among CoVs,32,33 (c) 
human proteases do not have identical cleavage specificity,8 
and (d) 3CLpro inhibitors are unlikely to be toxic to humans.8

However, 3CLpro has the potential for industrial applica-
tion because its autocleavage occurs near the membrane34 or 
in the cytoplasm;35-37 therefore, its efficacy is higher than 
that of other proteases.35

Much information on the 3D structure,38 mechanism,39 
and substrate specificity40 of 3CLpro has been elucidated. 
For example, 3CLpro has at least three crystal structures41: 
the wild-type active dimer (wt-dimer) with one active site 
per subunit1,35; the monomeric form or the G11A, R298A, 
and S139A mutants that cannot dimerize42-45; and the super-
active octamer form.3 Therefore, two strategies have been 
employed to develop 3CLpro inhibitors based on their active 
sites and dimerization.46-48

So far, however the cleavage sites by 3CLpro and cleaved 
nsps remain controversial. For instance, a study based on 
24 completely sequenced CoV genomes predicted 11 cleav-
age sites between nsp2, nsp3, nsp4, nsp5, nsp6, nsp7, nsp9, 
nsp10, nsp11, nsp12, and nsp13,49 but found that the cleavage 
site between nsp7/8 in pp1a and the cleavage site between 
nsp7/9 in pp1ab are the same.49 Here, there is no nsp8.

3CLpro has 11 cleavage sites, that is, between nsp4/5, 
nsp5/6, nsp6/7, nsp7/8, nsp8/9, nsp9/10, nsp10/11, nsp12/13, 
nsp13/14, nsp14/15, and nsp15/16.26,49-51 Here, there is no 
cleavage site between nsp11/12.

Sometimes, a cleavage site by 3CLpro is defined between 
nsp10/12.10,21 Here, there is no nsp11.

Although these discrepancies seem trivial, they are es-
sential for 3CLpro action and are instrumental for develop-
ing 3CLpro inhibitors. In this perspective, we closely explore 
these inconsistent cleavage sites by 3CLpro and their nsps, and 
discuss their possible relevance to coronavirus disease 2019 
(COVID-19) vaccine and drug development.

2  |   CLEAVAGE SITES BY 3CLpro

Initially, 13 probable cleavage sites with dipeptides Q/S(G) 
were predicted for 3CLpro from infectious bronchitis virus 
(IBV), and cleavage sites 10, 11, 12, and 13 were located in 
F2 polyprotein (pp1b).20 Subsequently, it was revealed that 

these 13 cleavage sites include 2 cleavage sites—sites 3 and 
4—flanking 3CLpro for autocleavage.20 Thus, 3CLpro cleaves 
11 sites.20 These findings seem to show that 3CLpro is located 
in nsp3 in IBV, but 3CLpro is actually located in nsp2 in IBV 
per the current annotation (accession no. NC_001451.1). In 
addition, nsp8 is positioned from nucleotide (nt) 12313 to nt 
12381 in pp1a, but is absent in pp1ab, where it merges with 
nsp9 from nt 12313 to nt 12354, and from nt 13354 to nt 
15131.

Shortly after, seven cleavage sites were experimentally 
identified in ORF1b from murine CoV mouse hepatitis virus 
(MHV),52 which generated eight nsps rather than the five 
nsps generally accepted in pp1b.

Later, it was accepted that PLpro and 3CLpro in HCoV-
229E RNA-directed RNA polymerase ORF1A (accession no, 
464694) have 12 cleavage sites, 1 site cleaved by PLpro and 11 
sites cleaved by 3CLpro, generating 13 nsps.50 Here, the num-
ber of nsps in pp1a is more than that currently accepted—
pp1a has 11 nsps from nsp1 to nsp11 and pp1ab has 16 nsps 
because ORF1b encodes 5 nsps from nsp12 to nsp16.15 In 
addition, HCoV-229E has two copies of PLpro and generates 
two nsps, whereas most CoVs have a single PLpro copy and 
generate three nsps.

Eventually, 3CLpro cleaves 9 sites rather than 11 cleavage 
sites, 2 of which form its own flanking N- and C-terminal 
autoprocessing sites.38,53 This is plausible because 3CLpro 
is located in nsp5, and its own N- and C-terminal autopro-
cessing sites are located at the cleavage sites between nsp4/5 
and nsp5/6. In other words, 3CLpro can trans-cleave five 
sites in pp1a—between nsp6/7, nsp7/8, nsp8/9, nsp9/10, 
and nsp10/11 and trans-cleave four sites in pp1b—between 
nsp12/13, nsp13/14, nsp14/15, and nsp15/16.

Of the frequently referenced CoVs, nsps were clearly an-
notated in nine CoVs (Table 1). As shown in Table 1, the 
identified nsps were inconsistent across different CoVs. For 
example, nsp11 is absent but merges with nsp12 in MHV 
(A59 C12 mutant) and SARS-CoV (Tor2). In another ex-
ample, nsp8, nsp14, nsp15, and nsp16 are absent from avian 
IBV (Beaudette), porcine epidemic diarrhea virus (PEDV) 
CV777, and two SARS-CoVs (CUHK-W1 and TW1), but 
their nsp8 and nsp9 merge.

This inconsistency is interesting because the sizes of nsps 
cleaved by 3CLpro are highly conserved among different 
groups of CoVs, whereas the sizes of nsps cleaved by PLpro 
are irregular.49

Table 1 shows the existence of 16 nsps for several 
CoVs. This is interesting because 15 cleavage sites are re-
quired to generate 16 nsps. However, PLpro cleaves 3 sites 
and 3CLpro cleaves 11 sites—which sums up to 14 cleavage 
sites—generating 15 nsps only. Indeed, 15 nsps are often 
mentioned,54 and therefore, the generation of 15 nsps is ar-
ithmetically correct. Intriguingly, a cleavage site is missing 
from such calculations.



      |  3 of 9YAN and WU

T
A

B
L

E
 1

 
ns

ps
 in

 n
in

e 
cl

ea
rly

 a
nn

ot
at

ed
 C

oV
s a

m
on

g 
th

e 
fr

eq
ue

nt
ly

 re
fe

re
nc

ed
 C

oV
s

Ty
pe

A
vi

an
 IB

V
FC

oV
M

H
V

PE
D

V
SA

R
S-

C
oV

SA
R

S-
C

oV
SA

R
S-

C
oV

M
ER

S-
C

oV
SA

R
S-

C
oV

-2

St
ra

in
B

ea
ud

et
te

FI
PV

 7
9-

11
46

A
59

 C
12

 m
ut

an
t

C
V

77
7

To
r2

C
U

H
K

-W
1

TW
1

H
C

oV
-E

M
C

/2
01

2
W

uh
an

-H
u-

1

ID
N

C
_0

01
45

1.
1

D
Q

01
09

21
N

C
_0

01
84

6.
1

N
C

_0
03

43
6.

1
N

C
_0

04
71

8.
3

A
Y

27
85

54
.2

A
Y

29
14

51
.1

N
C

_0
19

84
3.

3
N

C
_0

45
51

2.
2

To
ta

l b
p

27
60

8
29

14
7

31
35

7
28

03
3

29
75

1
29

73
6

29
72

9
30

11
9

29
90

3

ns
p1

25
48

-8
86

5
31

2-
64

1
21

0-
95

0
29

82
-7

84
7

26
5-

80
4

27
04

-9
96

9
27

19
-9

98
4

27
9-

85
7

26
6-

80
5

ns
p2

88
66

-9
78

6
64

2-
29

48
95

1-
27

05
92

88
-1

01
93

80
5-

27
18

99
70

-1
08

87
99

85
-1

09
02

85
8-

28
37

80
6-

27
19

ns
p3

97
87

-1
06

65
29

49
-7

31
9

27
06

-9
63

2
10

19
4-

11
03

3
27

19
-8

48
4

10
88

8-
11

75
7

10
90

3-
11

77
2

28
38

-8
49

8
27

20
-8

55
4

ns
p4

10
66

6-
10

91
4

73
20

-8
78

9
96

33
-1

02
08

11
03

4-
11

28
2

84
85

-9
98

4
11

75
8-

12
00

6
11

77
3-

12
02

1
84

99
-1

00
19

85
55

-1
00

54

ns
p5

10
91

5-
11

54
4

87
90

-9
68

6
10

20
9-

11
11

7
11

28
3-

11
86

7
99

85
-1

09
02

12
00

7-
12

60
0

12
02

2-
12

61
5

10
02

0-
10

93
7

10
05

5-
10

97
2

ns
p6

11
54

5-
11

87
7

96
87

-1
05

77
11

11
8-

11
97

8
11

86
8-

12
19

1
10

90
3-

11
77

2
12

60
1-

12
93

9
12

61
6-

12
95

4
10

93
8-

11
81

3
10

97
3-

11
84

2

ns
p7

11
87

8-
12

31
2

10
57

8-
10

82
6

11
97

9-
12

24
5

12
19

2-
12

59
6

11
77

3-
12

02
1

12
94

0-
13

35
6

12
95

5-
13

37
1

11
81

4-
12

06
2

11
84

3-
12

09
1

ns
p8

10
82

7-
11

41
1

12
24

6-
12

83
6

12
02

2-
12

61
5

12
06

3-
12

65
9

12
09

2-
12

68
5

ns
p9

Jo
in

 1
23

13
-

12
35

4,
 

12
35

4-
15

13
1

11
41

2-
11

74
4

12
83

7-
13

16
6

Jo
in

 1
25

97
-

12
62

0,
 

12
62

0-
15

37
6

12
61

6-
12

95
4

Jo
in

 1
33

57
-

13
38

3,
 

13
38

3-
16

15
1

Jo
in

 1
33

72
-

13
39

8,
 

13
39

8-
16

16
6

12
66

0-
12

98
9

12
68

6-
13

02
4

ns
p1

0
15

13
2-

16
93

1
11

74
5-

12
14

9
13

16
7-

13
57

7
15

37
7-

17
16

7
12

95
5-

13
37

1
16

15
2-

17
95

4
16

16
7-

17
96

9
12

99
0-

13
40

9
13

02
5-

13
44

1

ns
p1

1
16

93
2-

18
49

4
12

15
0-

12
20

6
17

16
8-

18
71

8
17

95
5-

19
53

5
17

97
0-

19
55

0
13

41
0-

13
45

1
13

44
2-

13
48

0

ns
p1

2
18

49
5-

19
50

8
Jo

in
 1

21
50

-
12

17
6,

 
12

17
6-

14
93

5

Jo
in

 1
35

78
-1

36
19

, 
13

61
9-

16
36

0
18

71
9-

19
73

5
Jo

in
 1

33
72

-
13

39
2,

 
13

39
2-

13
39

4

19
53

6-
20

57
3

19
55

1-
20

58
8

Jo
in

 1
34

10
-1

34
33

, 
13

43
3-

16
20

7
Jo

in
 1

34
42

-
13

46
8,

 
13

46
8-

16
23

6

ns
p1

3
19

50
9-

20
41

4
14

93
6-

16
73

2
16

36
1-

18
16

0
19

73
6-

20
63

8
16

16
7-

17
96

9
20

57
4-

21
46

7
20

58
9-

21
48

2
16

20
8-

18
00

1
16

23
7-

18
03

9

ns
p1

4
16

73
3-

18
28

9
18

16
1-

19
72

3
17

97
0-

19
55

0
18

00
2-

19
57

3
18

04
0-

19
62

0

ns
p1

5
18

29
0-

19
30

6
19

72
4-

20
84

5
19

55
1-

20
58

8
19

57
4-

20
60

2
19

62
1-

20
65

8

ns
p1

6
19

30
7-

20
20

6
20

84
6-

21
74

2
20

58
9-

21
48

2
20

60
3-

21
51

1
20

65
9-

21
55

2



4 of 9  |      YAN and WU

No predictable cleavage sites were observed between 
nsps10/11 and nsps11/12 in CoVs using the NetCorona 
1.0 webserver.19 Additionally, the cleavage site between 
nsp11/12 in SARS-CoV, MERS-CoV, and SARS-CoV-2 
cannot be found in literature although that between 
nsp10/12 is mentioned.21 pp1ab is a fusion between nsp11 
and nsp12 when a ribosomal frameshifting occurs between 
ORF1a and ORF1b55-57; thus, it is likely that the missing 
cleavage site is between nsp11/12, which is the cleavage site 
between pp1a and pp1b. Hence, a convincing explanation 
is that nsp11 appears only when pp1a exists, in which case 
the ribosomal frameshifting does not occur. Consequently, 
there are 15 nsps for pp1ab, but the co-existence of pp1a 
and pp1ab provides 16 nsps. Here, the function of nsp11 
remains unclear?

nsp14, nsp15, and nsp16 are absent from the four CoVs 
(Table 1). Meanwhile, a comparison based on the data58,59 
shows the absence of nsp11 and nsp16, and total 14 nsps in 
both SARS-CoV and SARS-CoV-2.10 The absence of nsp16 
in pp1ab draws our attention, leading us to explore nsp16 in 
the next section.

In summary, this section indicates that (a) nsp11 exists 
in pp1a only but not in pp1ab, and there is no cleavage site 
between nsp11/12; (b) the 11 3CLpro cleavage sites are only 
applicable to pp1ab; and (c) the function of nsp11 is yet to be 
determined.

3  |   nsp16 IN CoVs

nsp16 is an RNA cap-modifying enzyme,60 and forms a 
complex with nsp10.60-62 Therefore, it plays the role of 
2′-O-methyltransferase (2′-O-MTase) in CoVs, which was 
first found in the nsp16 from feline CoV (FCoV) FIPV 79-
114663; in the FASTA format of the FCoV genome (acces-
sion no, DQ010921), the mRNA for nsp16 is positioned at 
nt 19307—nt 20206, whereas the mRNA for S-protein is 
positioned at nt 20206—nt 24564, thus, their ORFs overlap 
at a single nt, 20206. In the graphics format of this FCoV 
genome, the mRNA for nsp16 is positioned at nt 19307—nt 
20209, whereas the mRNA for S-protein is positioned at nt 
20206—nt 24564, thereby, their ORFs overlap at three nu-
cleotides, 20206-20209.

Table 2 lists 39 frequently referenced CoV genomes, 
where ORF1ab overlaps the mRNA for S-protein in 22 CoVs 
(† in the last column in Table 2), that is, the mRNA for pp1ab 
overlaps the mRNA for S-protein in some groups of CoVs. 
This feature is more remarkable in CoVs from avian, bat, fe-
line, swine as well as MERS-CoVs. The overlapping can be 
as large as 58 nts for MERS-CoV (the penultimate row in 
Table 2).

The overlap of ORF1ab on the subgenomic mRNA in 
CoVs is intriguing because the size of proteins translated from 

subgenomic mRNA is theoretically that of non-overlapping 
coding regions.64 Most subgenomic mRNAs are structurally 
polycistronic but functionally monocistronic, and thus their 
translation begins only from the 5′ of most ORF in viral 
proteins.65

In the 1990s, the S-protein gene in equine isolate 
Berne virus (BEV), a torovirus,66 overlapped the replicase 
gene (ORF1b).64 Therefore, it was proposed that a motif, 
UGUUUAGU, directs the synthesis of the S-protein gene.67 
Subsequently, this S-protein gene (mRNA 2) was found to 
have a short non-contiguous leader coming from the 5′ termi-
nus of the BEV genome.68 Here, the overlapping results from 
a heterologous RNA recombination.68

In contrast to torovirus, CoVs have a common 5′ leader 
sequence,29 which protects the capped mRNAs from nsp1-
induced endonucleolytic cleavage, causing the accumulation 
of SARS-CoV mRNAs and proteins.69 In CoV lifecycle, the 
production of pp1ab occurs in the first phase of translation, 
whereas S-protein production by subgenomic mRNA occurs 
in the second phase.70 Between these two phases is the rep-
lication of minus- and plus-strand RNA in DMV. It is also 
unclear whether such overlapping affects nsp16 and S-protein 
functions, and the fusion of S-protein with a leader sequence, 
which includes the transcription-regulating sequence (TRS). 
This leads to the question of the selective advantage of CoV 
with the leader sequence in its subgenomic mRNAs.65

As the RNA-dependent RNA polymerase (RdRp), 
nsp12,71 catalyzes leader-body fusion, we closely explore 
nsp12 in the next section.

In summary, this section focuses on the overlapping of 
the S-protein mRNA by the nsp16 mRNA because several 
mRNA vaccines are based on the S-protein mRNA,72-74 
whereas the overlapping could be a potential source for het-
erologous RNA recombination.

4  |   nsp12 IN CoVs

RdRp (nsp12) is a target for developing anti-CoV drugs.16,75 
Usually, nsp7 and nsp8 act as nsp12 cofactors.76 Remdesivir, 
currently authorized by the FDA for emergency use,77 was 
originally designed to target the polymerases in HIV and 
hepatitis C virus (HCV).78

The first high-resolution cryo-electron microscopy struc-
ture of SARS-CoV-2 full-length nsp12 has 932 residues,79 
which is the size of joined nts 13442-13468 and 13468-16236 
(SARS-CoV-2, Table 1). This illustration again confirms 
that nsp11 does not exist as a single entity in pp1ab; nsp11 
only appears when ribosomal frameshifting does not occur, 
whereas ribosomal frameshifting is the only way to generate 
the joined nsp12, RdRp.

Here, one may ask whether RdRp and nsp11 must merge 
to function and whether nsp12 alone is nonfunctional. ORF1b 
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T A B L E  2   Overlap (†) and non-overlap of nsp16 mRNA over the S-protein mRNA in 39 frequently referenced CoVs

Accession no Strain or isolate pp1ab (nt) S-Protein (nt)

NC_001451.1 IBV strain Beaudette 529-20417 20368-23856†

NC_048213.1 IBV isolate Ind-TN92-03 529-20423 20374-23835†

JF732903.1 IBV strain Sczy3 526-20414 20365-23862†

MN711790.1 IBV isolate GA/1472/2004 529-20408 20359-23865†

MT460496.1 IBV isolate CK/CH/LAH/1806 526-12387 20371-23898†

12462-20420

NC_048212.1 Bat CoV isolate CMR704-P12 210-20842 20814-24623†

NC_028824.1 BtRf-AlphaCoV/YN2012 135-20284 20281-23679†

MF370205.1 Rhinolophus bat CoV HKU2 isolate swine enteric alphacoronavirus 
CH/GD-01/2017/P2

297-20482 20479-23871†

AF220295.1 BCoV strain Quebec 211-13362 23655-27746

13332-21389

AF391542.1 BCoV isolate BCoV-LUN 211-21494 23641-27732

NC_003045.1 BCoV isolate BCoV-ENT 211-21494 23641-27732

U00735.2 Bovine CoV strain Mebus 211-21494 23641-27732

DQ010921 FCoV strain FIPV 79-1146 312-20209 20206-24564†

NC_002306.3 Feline infectious peritonitis virus isolate 79-1146 311-20439 20436-24794†

NC_001846.1 MHV A59 C12 mutant 210-21745 23929-27903

AF201929.1 MHV strain 2 210-13460 23755-27840

13382-21583

AF208066.1 MHV strain Penn 97-1 210-13460 23712-27677

13382-21580

AF208067.1 MHV strain ML-10 210-13613 23867-27841

13535-21736

NC_003436.1 PEDV strain CV777 297-20641 20638-24789†

NC_028806.1 Swine enteric CoV strain Italy/213306/2009 307-12354 20355-24503

12312-20354

KR610993.1 PEDV clone CBR1 1-20345 20342-24499†

MF769442.1 SADS-CoV isolate DCD5 304-20489 20486-23878†

MK994937.1 SADS-CoV isolate GDWT-P83 304-20489 20486-23878†

MT039231.1 Mutant SADS-CoV strain icSADS 312-20497 20494-23886†

MT747188.1 SADS-CoV isolate CN/GDST/2017 304-20489 20486-23878†

NC_002645.1 HCoV-229E 293-20568 20570-24091

NC_004718.3 SARS-CoV Tor2 265-21485 21492-25259

AY278488.2 SARS-CoV BJ01 246-21466 21473-25240

AY278554.2 SARS-CoV CUHK-W1 250-21470 21477-25244

AY278741.1 SARS-CoV Urbani 265-21485 21492-25259

AY282752.2 SARS-CoV CUHK-Su10 250-21470 21477-25244

AY291451.1 SARS-CoV TW1 265-21485 21492-25259

NC_019843.3 MERS-CoV isolate HCoV-EMC/2012 279-21514 21456-25517†

KT029139.1 MERS-CoV/KOR/KNIH/002_05_2015 279-21514 21456-25517†

MF598722.1 MERS-CoV strain camel/UAE_415915_W6_2015 279-21514 21456-25517†

MG596803.1 MERS-CoV/Bat-CoV/P.khulii/Italy/206645-63/2011 208-21437 21379-25416†

MK967708.1 MERS-CoV isolate Merscov/Egypt/Camel/AHRI-FAO-1/2018 268-21503 21445-25505†

MN120514.1 MERS-CoV isolate 013 279-21514 21456-25517†

NC_045512.2 SARS-CoV-2 isolate Wuhan-Hu-1 266-21555 21563-25384
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can encode a polyprotein only if ribosomal frameshifting 
from ORF1a into ORF1b occurs80,81 because ORF1b does 
not have an independent site for translation initiation.82 Thus, 
pp1b does not exist alone, and consequently nsp12 does not 
exist without nsp11.

Hence, the key point for generating RdRp is the −1 ri-
bosomal frameshifting,82 which is the focus of many stud-
ies.50,83-85 This ribosomal frameshifting overlaps two ORFs 
with 43 nucleotides in HCoV-229E51, with 86 nucleotides 
in IBV,83 and with 130 nucleotides in the L-A double-
stranded RNA virus of Saccharomyces cerevisiae.86 The 
occurrence of ribosomal frameshifting is required for the 
production of RdRp,70 which is needed in the second phase 
of translation.70 Although the signal for ribosomal frame-
shifting has been well studied57,80,87-90 and the RNA pseu-
doknot is designed as a target for anti-SARS agents,91,92 
regulation of the ribosomal frameshifting mechanism re-
mains unclarified.

A simple explanation of the mechanism is that the expres-
sion of ORF1b is initiated at specific levels relative to pp1a 
in CoVs,82 assuming there is a threshold for the occurrence 
of ribosomal frameshifting based on the ratio of pp1ab to 
pp1a. This ratio ranges from 1.8% to 1.9% in the L-A double-
stranded RNA virus of S. cerevisiae,86,93 and from 5% to 10% 
in HIV-1.94,95 For HCoV-229E, the ribosomal frameshifting 
frequency ranges between 18% and 30%, of which less than 
1% can synthesize pp1ab.55 Thus, the chance of generating 
pp1ab in CoVs is remarkably lower than that in the L-A 
double-stranded RNA virus of S. cerevisiae,86,93 and HIV-
1.94,95 Indeed, both pp1a and pp1ab from CoVs are difficult 
to detect in vivo.96

This implies that many copies of pp1a, but few copies 
of pp1ab occur in CoVs. Although 3CLpro is derived from 
nsp5 in both pp1a and pp1ab, most of 3CLpro is from pp1a-
derived. Thus, not every 3CLpro has a good chance of cleav-
ing the sites between nsp12/13, 13/14, 14/15, and nsp15/16 
in pp1b.

In summary, this section reveals that the 3CLpro signifi-
cantly outnumbers its cleavage sites in pp1b; thus, a consid-
erable number of 3CLpro inhibitors are required to completely 
inhibit 3CLpro action.

5  |   CONCLUSION

In this perspective, we attempted to address several contro-
versial issues on the cleavage sites and cleaved nsps in CoV 
pp1a and pp1ab by 3CLpro. Meanwhile, several questions are 
raised: (a) what function does nsp11 perform, (b) can the 
overlap of nsp16 mRNA over the S-protein mRNA affect 
mRNA vaccine, and (c) can a low ribosomal frameshifting 
frequency affect 3CLpro activity? The answers to these ques-
tions will enrich our understanding of the mechanism of viral 

replication and benefit the development of anti-CoV drugs 
with 3CLpro as targets in the current COVID-19 pandemic.
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