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Abstract: Pleomorphic adenomas (PAs) are the most frequently diagnosed benign salivary gland
tumors. Although the majority of PAs are characterized by slow growth, some develop very fast
and are more prone to recur. The reason for such differences remains unidentified. In this study,
we performed global DNA methylation profiling using the Infinium Human Methylation EPIC
850k BeadChip Array (Illumina) to search for epigenetic biomarkers that could distinguish both
groups of tumors. The analysis was performed in four fast-growing tumors (FGTs) and four slow-
growing tumors (SGTs). In all, 85 CpG dinucleotides differentiating both groups were identified.
Six CpG tags (cg06748470, cg18413218, cg10121788, cg08249296, cg18455472, and cg19930657) were
selected for bisulfite pyrosequencing in the extended group of samples. We confirmed differences in
DNA methylation between both groups of samples. To evaluate the potential diagnostic accuracy
of the selected markers, ROC curves were constructed. We indicated that CpGs included in two
assays showed an area under the curve with an acceptable prognostic value (AUC > 0.7). However,
logistic regression analysis allowed us to indicate a more optimal model consisting of five CpGs
((1) cg06748470, (2) cg00600454, (3) CpG located in chr14: 77,371,501–77,371,502 (not annotated in
GRCh37/hg19), (4) CpG2 located in chr16: 77,469,589–77,469,590 (not annotated GRCh37/hg19), and
(5) cg19930657) with AUC > 0.8. This set of epigenetic biomarkers may be considered as differentiating
factors between FGT and SGT during salivary gland tumor diagnosis. However, this data should be
confirmed in a larger cohort of samples.

Keywords: salivary gland pleomorphic adenoma; fast-growing tumors; slow-growing tumors; DNA
methylation; CpG; bisulfite pyrosequencing

1. Introduction

Salivary gland neoplasms constitute a very heterogeneous group of tumors, both in
terms of histology and anatomical location. According to the 2017 WHO classification of
head and neck tumors, over 40 different malignant and benign types of salivary gland
tumors can be distinguished [1]. These tumors may arise in major salivary glands, i.e.,
in the parotid, submandibular, and sublingual glands, but they also affect minor salivary
glands. Most of these tumors are benign and their predominant location is the parotid
gland [2,3]. Among them, pleomorphic adenomas (PAs) appear as the most frequent, with an
increasing rate in recent years [4–6]. The surgical resection sparing the facial nerve remains
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a standard treatment option for PA. Depending on the site and the extent of the tumor,
the surgical techniques include extracapsular resection, partial superficial parotidectomy,
superficial parotidectomy, subtotal parotidectomy, or total parotidectomy [7,8]. In cases of
submandibular tumor gland, dissection is performed.

Pleomorphic adenomas are composed of epithelial and myoepithelial cells differen-
tially arranged in a variable background stroma, depending on the case [1,4]. PAs are
usually slow-growing tumors, with a firm, mobile, well-circumscribed mass. Their growth
is rather painless and asymptomatic; therefore, they may remain unrecognized for a long
period of time [9]. Their malignant transformation is a very rare event [10,11]. Nevertheless,
there is a subgroup of PAs that break out of these characteristics, showing significantly
diverse clinical behavior. Such tumors grow faster, and patients may observe the enlarging
thickening in the neck/lower jaw area even within a few months. The observed differences
were recently described by Piwowarczyk et al., who distinguished three groups of PAs:
(I) fast-growing, (II) normal/stable, and (III) slow-growing based on the clinical and radio-
logical data of 636 PAs patients [12]. The reason for such diversity in the clinical behavior is
so far unknown. At the stage of PA diagnosis, neither the pathologist (based on fine needle
aspiration biopsy (FNA)), nor the clinician (based on patients’ history, clinical examination,
and imaging) is able to categorize the tumor, i.e., to predict its fast- or slow-growing nature.
Although the level of malignant transformation rate of PAs is not high, they may recur,
predominantly within the fast-growing group, which results in the necessity of additional
surgery and inconvenience for the patient [12]. The relapse occurrence depends mainly
on the surgeon’s skills; however, adverse PA findings, such as high tumor growth rate,
multifocal character, and lack of encapsulation, and its ability for malignant transformation
depend on the tumor biology.

The most comprehensive information concerning PAs is derived from histological
studies [13]; however, these data are not sufficient to predict the rate of tumor growth.
On the other hand, little is known about the genetic background of PA’s development.
Although it was shown that PLAG1 and HDMD2 rearrangements are a characteristic feature
of these tumors, these findings have not been associated with a differential course of PAs [4].
Therefore, the recognition of genetic characteristics of both groups would be helpful in the
decision-making process concerning PA patients.

The lack of recurrent genetic events in PAs triggered us to analyze for epigenetic
alterations in these tumors. DNA methylation is known to be involved in tumor devel-
opment [14]. The significant role of this process during carcinogenesis was previously
indicated for promoter regions of various tumor-suppressor genes, which are frequently
affected by hypermethylation, which results in the loss of their protective, anticancer func-
tions [14,15]. In recent years, several DNA methylation biomarkers have been introduced
in the early diagnostic process of different cancers [16]. Moreover, the utility of DNA
methylation was also indicated in the development of various nonmalignant diseases [17].

In the present study, we harnessed DNA methylation analysis in the process of discrim-
inating between fast-growing and slow-growing salivary gland PAs. We performed global
DNA methylation profiling of these tumors in order to establish methylation biomarkers
that could distinguish both groups. We assume that such a set of markers could be poten-
tially applied in the early diagnostics of PA patients during, e.g., fine needle aspiration
biopsy of the gland. It could also serve as a guide for a surgeon to choose a more extensive
procedure (parotidectomy) rather than a sparing one (extracapsular dissection). Such an
approach allowed recently for the identification of several methylation biomarkers in other
tumors [18,19].

To our knowledge, this is the first whole-genome study concerning DNA methylation
biomarkers in PAs.

2. Results

The MDS analysis revealed clear separation of the studied groups (FGT vs. SGT;
Figure 1), serving as a proof of principle that DNA methylation can be used to distinguish
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these two groups of tumors. However, the relatively close distance between the groups is
indicative of minor differences in their methylome.
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Figure 2. Volcano plot of DNA methylation data derived from microarray analysis of FGT (n = 4) 
and SGT (n = 4) samples. Red and blue dots represent hyper- and hypomethylated CpG sites in 
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Figure 1. Visualization of MDS analysis using the “Manhattan” method of distance calculation. Two
analyzed cohorts are shown: fast-growing salivary gland tumors (red) and slow-growing salivary
gland tumors (green).

2.1. CpG Tags Selection Based on DNA Methylation Profiling

To detect differentially methylated regions (DMRs) distinguishing FGTs from SGTs,
we selected CpG tags located on autosomal chromosomes, for which the difference in DNA
methylation between fast- and slow-growing tumors exceeded 0.4 (i.e., 40%). With this
approach, we obtained 215 CpG dinucleotides. This list was further shortened to 85 CpG
sites, when the SD criterion was included. The list of these CpG tags, together with their
chromosome position, mean methylation value, mean methylation difference between the
analyzed groups, and standard deviation is presented in Supplementary Table S1. The
distribution of the selected 85 CpGs in relation to all tags indicates that the selected tags are
included in the group of CpGs significantly hypermethylated in the fast-growing tumors
and is, therefore, a proof of concept of the applied approach (Figure 2).
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Figure 2. Volcano plot of DNA methylation data derived from microarray analysis of FGT (n = 4)
and SGT (n = 4) samples. Red and blue dots represent hyper- and hypomethylated CpG sites in
FGTs, respectively, gray dots represent nonsignificant CpG sites. In all, 85 CpGs hypermethylated
in FGT, selected based on MMD, are shown as yellow dots in the background of all significantly
hypermethylated tags.
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Afterward, each of the 85 tags was checked using the array data, for the presence
of adjacent tags in its close proximity (~500 bp). Only regions, where additional tag(s)
showed a trend toward higher methylation in FGT compared to SGT were analyzed. With
this approach, we selected six CpG tags, cg06748470, cg18413218, cg10121788, cg08249296,
cg18455472, and cg19930657, to be the most promising biomarkers differentiating both
groups (Supplementary Table S2). Mean methylation differences for the selected CpGs are
presented in Figure 3. Two of the tags, cg10121788 and cg08249296, are located close to each
other (at 128 bp distance) in the regulatory region of ADAMTS18 gene. Therefore, in the end,
five chromosomal regions were selected for further testing by bisulfite pyrosequencing.
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Figure 3. Mean methylation levels between fast-growing (dark gray) and slow-growing (light gray)
tumors for the six CG tags selected based on the results of the Illumina Infinium Human Methylation
EPIC BeadChip Array.

2.2. Bisulfite Pyrosequencing Confirms Differential DNA Methylation between FGT and
SGT Samples

The assays were designed with PyroMark Assay Design Software 2.0 (Qiagen, Hilden,
Germany) to assess the methylation level in individual CpG sites. We designed five assays
to amplify the sequences containing primarily CpG tags selected from the methylation
array (i.e., cg06748470, cg18413218, cg10121788, cg18455472, and cg19930657). However,
due to the presence of rs62043630 SNP in cytosine of cg08249296, we decided to exclude this
sequence tag from further analysis. Moreover, as a result of inter-sequence homopolymer
presence in assay 2, we were not able to analyze the results obtained for the cg18413218 tag,
providing only results obtained for its adjacent CpG tags. The chromosomal location of all
analyzed CpGs in each pyrosequencing assay is given in Supplementary Table S3.

We found that the mean methylation level for each of the analyzed CpG sites was
significantly higher in FGT samples in comparison to that for the SGT samples (Table 1).
The mean methylation values for the consecutive assays were as follows: assay 1—53.8%
FGT vs. 42.2% SGT; assay 2—38.7% FGT vs. 25.2% SGT; assay 3—51.5% FGT vs. 33.7%
SGT; assay 4—66.5% FGT vs. 51.8% SGT; assay 5—52.4% FGT vs. 32.1% SGT samples.
Overall, the mean methylation difference between FGT and SGT in the given assays ranged
from 11.6% to 20.3%. With the use of nonparametric Mann–Whitney test for unpaired
data, we showed that not only each individual CpG tag but also each assay differentiated
both groups of PA patients with significant differences (Table 1, Supplementary Figure S1,
Figure 4).
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Table 1. The results of DNA bisulfite pyrosequencing analysis.

Pyrosequencing
Assay No. CpG No. CpG Name a MMV c

(FGT)
MMV c

(SGT)
MMD d

(MMF—MMS)
p Value

1

CpG1 cg06748470 50.8 38.9 12.0 0.012451

CpG2 N/A b 67.0 54.2 12.9 0.017414

CpG3 cg09774749 48.9 38.0 10.9 0.015255

CpG4 cg15208832 59.9 47.9 12.0 0.025001

CpG5 cg00600454 42.1 32.1 10.0 0.022008

Mean CpG1-CpG5 53.8 42.2 11.6 0.017372

2

CpG1 cg09310348 41.6 26.2 15.4 0.000422

CpG2 N/A b 35.8 24.2 11.6 0.000216

Mean CpG1-CpG2 38.7 25.2 13.5 0.000267

3

CpG1 N/A b 48.6 31.8 16.8 0.002461

CpG2 N/A b 56.2 38.8 17.3 0.003937

CpG3 cg10121788 49.8 30.5 19.3 0.002914

Mean CpG1-CpG3 51.5 33.7 17.8 0.003122

4

CpG1 cg14066163 73.5 59.3 14.2 0.002378

CpG2 cg18455472 59.5 44.3 15.2 0.002297

Mean CpG1-CpG2 66.5 51.8 14.7 0.002068

5 e CpG1 cg19930657 52.4 32.1 20.3 0.000048
a Human GRCh37/hg19 assembly; b CpG dinucleotide not annotated in GRCh37/hg19 database; c MMV—mean
methylation value; d MMD—mean methylation difference; e adjacent CpG tags with a similar methylation pattern
are located outside the sequencing range of the pyrosequencing assay.
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Figure 4. Mean methylation differences between fast-growing (dark gray) and slow-growing (light
gray) tumors for each assay performed by DNA bisulfite pyrosequencing. * p < 0.05, ** p < 0.001,
*** p < 0.0001, **** p < 0.00001.

2.3. Individual CpG Dinucleotides as Potential Biomarkers

Since pyrosequencing confirmed the results provided by the methylation array, we
attempted to check the potential diagnostic utility of the individual CpGs as well as of the
performed assays. For this purpose, ROC curves for each analyzed CpG tag were generated
to establish a relationship between the sensitivity and specificity of this potential diagnostic
approach (Supplementary Figure S2). The sensitivity, specificity, area under the curve,
statistical significance of DeLong’s test, methylation cutoff, positive predictive value, and
negative predictive value are shown in Table 2.

The sensitivity of particular CpG dinucleotides ranged from 0.69 (CpG2 in assay 3
and CpG2 in assay 4) to 0.81 (CpG2 in assay 2 and CpG1 in assay 4), and specificity was
between 0.59 (CpG1 in assay 4) and 0.72 (CpG2 in assay 3 and CpG1 in assay 5). The
smallest area under the curve was 0.63 (CpG4 in assay 1), and the highest was 0.76 (CpG1 in
assay 5). Using DeLong’s test, we proved that, for each individual CpG, the AUC differed
significantly from the fully random classifier (AUC = 0.5).
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Table 2. Individual CpG and assay performance based on ROC curves.

Pyrosequencing
Assay No.

CpG
No.

CpG
Name a Sensitivity Specificity AUC c p Value

(DeLong’s Test) Cutoff d NPV e PPV f

1

CpG1 cg06748470 0.75 0.69 0.65 0.02762 41.95 0.75 0.69

CpG2 N/A b 0.78 0.67 0.64 0.03868 56.81 0.76 0.68

CpG3 cg09774749 0.75 0.67 0.65 0.03353 38.41 0.74 0.68

CpG4 cg15208832 0.72 0.69 0.63 0.05576 51.76 0.73 0.68

CpG5 cg00600454 0.75 0.67 0.64 0.04811 31.24 0.74 0.68

Mean CpG1-CpG5 0.75 0.69 0.64 0.03933 43.48 0.75 0.69

2

CpG1 cg09310348 0.75 0.64 0.72 0.00042 25.39 0.74 0.66

CpG2 N/A b 0.81 0.67 0.73 0.00023 26.43 0.79 0.69

Mean CpG1-CpG2 0.83 0.64 0.73 0.00025 25.67 0.68 0.81

3

CpG1 N/A b 0.78 0.67 0.69 0.00502 28.15 0.76 0.68

CpG2 N/A b 0.69 0.72 0.68 0.00787 50.14 0.72 0.69

CpG3 cg10121788 0.75 0.69 0.69 0.00557 34.28 0.75 0.69

Mean CpG1-CpG3 0.78 0.67 0.68 0.00660 31.67 0.76 0.68

4

CpG1 cg14066163 0.81 0.59 0.69 0.00353 62.89 0.77 0.64

CpG2 cg18455472 0.69 0.64 0.69 0.00359 51.92 0.69 0.64

Mean CpG1-CpG2 0.83 0.56 0.69 0.00317 50.13 0.79 0.64

5 CpG1 cg19930657 0.75 0.72 0.76 0.00353 44.15 0.77 0.64

a Human GRCh37/hg19 assembly; b CpG dinucleotide not annotated in GRCh37/hg19 database; c AUC—area
under the curve; d Cutoff—methylation value above which a given sample is classified as fast-growing tumor;
e NPV—negative predictive value; f PPV—positive predictive value.

The sensitivity of pyrosequencing assays ranged between 0.75 and 0.83, and specificity
ranged between 0.56 and 0.72. For assays number 2 and 5, the AUC values were above 0.7.
For assays 1, 3, and 4 the AUC values were lower, between 0.6 and 0.7. The probability of
proper qualification of patients to the fast-growing group (PPV) was between 0.64 and 0.81,
and for the slow-growing group (NPV), it was between 0.68 and 0.79 (Table 2).

Due to the low AUC, specificity, and sensitivity of models with individual, particular
CpG dinucleotides as predictor variables, two logistic regression models were prepared:
(1) full model with all explanatory variables included and (2) final model obtained by
stepwise approach based on AIC (Table 3 and Figure 5).

Table 3. Two logistic regression models—comparison of full and final model.

Sensitivity Specificity Cutoff NPV PPV AUC
(Bias)

Bootstrap
AUC AIC

Full model 0.81 0.82 0.53 0.82 0.8 0.858 (0.11) 0.744 99.006

Final model 0.78 0.90 0.57 0.81 0.87 0.845 (0.04) 0.806 87.421

The final model consists of the five following biomarker CpG dinucleotides as a
result of the stepwise selection: CpG1 (cg06748470) and CpG5 (cg00600454) of assay 1,
CpG2 (chr14: 77,371,501–77,371,502 (not annotated in GRCh37/hg19 database)) of assay 2,
CpG2 (chr16: 77,469,589–77,469,590 (not annotated in GRCh37/hg19 database)) of assay
3, and CpG1 (cg19930657) of assay 5. The main advantage of this model is the reduced
number of explanatory variables: 5 CpG dinucleotides instead of 13 CpGs in the full model.
Pyrosequencing of lower number of CpGs may simplify a potential test and speed up early
differential diagnosis of the patients. Moreover, the bootstrap approach in the final model
revealed lower potential bias than in the full model with all 13 variables (Table 3). After bias
correction, the AUC of the final model was >80% in comparison to that of the full model,
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<75%. It shows the final model as the better classifier regarding distinguishing between
slow- and fast-growing tumors.
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3. Discussion

Recent decades have brought a marked increase in the incidence of salivary gland
tumors [5,12,20]. Among them, pleomorphic adenomas are the most frequent, and as
previously observed, their development may vary in the context of tumor growth rate
and malignant transformation [12,21]. On one hand, at the stage of initial diagnosis, both
pathologists as well as clinicians are not able to assign the tumor to the fast-growing
or slow-growing cohort. On the other hand, some PAs should be timely removed, other
scheduled for removal after a longer time period, or some exceptionally even recommended
for the “wait and see” policy. Moreover, the accurate risk stratification also cannot be
predicted based on histopathological assessment of the specimen. There are currently no
recommendations to perform any additional staining that could help to classify PA as
either SGT or FGT. Although PA shows a wide spectrum of histopathological features with
variation in both epithelial and stromal components, the final diagnosis does not reflect
this diversity and is reduced to salivary gland pleomorphic adenoma.

Given that the etiology of this disease as well as its genetic background is still widely
unrecognized, we took a look at the epigenetic landscape of pleomorphic adenomas with
different clinical courses. We performed genome-wide methylation analysis and bisulfite
pyrosequencing validation at selected chromosomal regions (specific CpG) in order to
identify biomarkers potentially discriminating between fast- and slow-growing PAs. Such
an approach is novel in the context of PA as the previous reports have rather examined
selected genes as potentially methylated in PA and/or the subsequent CaexPA and were
not related to the differential course of PA [22–24]. In contrast, in our recent paper, we
revealed differences in p16Ink4a protein expression between FGT and SGT PAs and demon-
strated that its overexpression is connected to PA proliferation and subsequent malignant
transformation to CaexPA [21].

Both groups analyzed in our study had the same pathomorphological diagnosis, i.e.,
pleomorphic adenoma; however we demonstrate that it is possible to discriminate between
FGT and SGT samples based on DNA methylation profiles (Figure 1). Regardless of the fact
that the observed methylome differences were minor and as such were markedly smaller
than those usually found when comparing cancer samples against normal samples, this
observation constitutes the proof of principle of the approach proposed in this study.

Based on global DNA methylation analysis, we indicated six selected CpG dinu-
cleotides to be the most promising biomarkers differentiating both groups (Supplementary
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Table S2), which was further confirmed by DNA bisulfite pyrosequencing performed in
the enlarged groups of samples. Due to the specificity of the collected material (lack of
the corresponding normal samples), we focused only on finding epigenetic biomarkers
differentiating both analyzed groups instead of searching for characteristic genes that are
hypermethylated during the faster course of PA development. A similar approach for
identifying biomarkers has been already applied in tumor studies [25].

Regardless of tissue similarities between the analyzed groups in our study, we were
able to indicate significantly higher methylation levels in FGTs in comparison to SGTs
for both consecutive assays as well as for particular CpG tags (Table 1). Encouraged by
this result, we evaluated the potential diagnostic utility of the assays. Only two out of
five assays (No. 2 and No. 5) showed an acceptable prognostic value (AUC > 0.7) [26].
Therefore, to assess whether the combination of all 13 CpG dinucleotides (full model with
all explanatory variables included in all five assays) will allow to create more accurate
prognostic model, logistic regression analysis was performed. With this model, higher
AUC, sensitivity, and specificity in comparison to the individual CpG sites were shown
(Table 3; Figure 5A). However, the subsequent bootstrap approach revealed relatively
high bias regarding this full model, negatively influencing the final AUC value. The
AIC approach, limited to the optimal explanatory variables with the highest influence on
the response variable (fast or slow character of the tumor) revealed the optimal model
with similar accuracy to the original variant but with lower bias. In addition, the higher
specificity (0.9) should be noted here. Hence, the obtained final model may be considered
as a potential epigenetic biomarker model that may be used to diagnose a particular
salivary gland tumor as fast growing or slow growing. The proposed panel is based on the
methylation of five CpG dinucleotides: (1) cg06748470, (2) cg00600454, (3) CpG located in
chr14: 77,371,501–77,371,502 (not annotated in GRCh37/hg19 database), (4) CpG2 located
in chr16: 77,469,589–77,469,590 (not annotated GRCh37/hg19 database), and (5) cg19930657
(Table 3; Figure 5B). A similar approach was recently applied for miRNA biomarkers in
head and neck squamous cell carcinomas [27].

Nevertheless, our research has several limitations. The model was built with the use
of a small number of data (75 samples); therefore, it should be verified in the larger cohort
of pleomorphic adenoma patients. Additionally, to observe whether the classification of
SGT and FGT makes a relevant difference with regard to follow up, PA patients should
be observed for at least 10 years before the final conclusion can be drawn. In the studied
group, for some patients, the follow-up observation did not exceed two years, but was still
ongoing. None of the patients developed recurrence or CaexPA so far.

To conclude, the study has the potential to be efficiently translated into clinical prac-
tice. The proposed panel based on DNA methylation can be applied on the oligobiopsy
specimens prior to surgery in the decision-making process. Our results indicate that the
molecular assessment may be invaluable after a relevant period of observation; however,
for now, it should rather be considered as a helpful supplement in the diagnostic process.
In addition, it seems that searching for other genetic alterations differentiating FGTs and
SGTs is highly justified.

4. Materials and Methods
4.1. Study Group

The study group consisted of 75 patients diagnosed and treated for PA in the De-
partment of Otolaryngology and Laryngological Surgery, Poznan University of Medical
Sciences, between 2015 and 2020. The study was approved by the Ethical Board of the Poz-
nan University of Medical Sciences (approval 721/18). Patients were enrolled to the study
when they initially presented in the outpatient department and qualified for surgery. At
that time, based on patients’ history, clinical examination, and imaging, they were divided
into SGT or FGT, and written consents for molecular examination were collected. Each pa-
tient was classified with either a fast-growing tumor (FGT) or a slow-growing tumor (SGT)
tumor based on the anamnesis, including symptoms onset and ultrasound examination of
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the tumor by two independent ENT specialists (E.B. and M.W.). The inclusion criteria were
based on a recent publication with slight modification resulting from the lack of patients
fulfilling the temporal criteria of slow-growing tumors (appearance > 10 years) [12]. The
aim was to distinguish fast-growing PAs from the remaining ones, growing either slow or
normal. Therefore, herein, slow- and normal-growing tumors were considered together as
one group, namely SGT. Ultimately, FGTs (n = 36) were characterized by anamnesis <3 years;
>5% growth of the tumor size within six months; multi-polycyclic outline, heterogeneous
echostructure, and loss of capsule echogenicity in the radiological investigation. For SGTs
(n = 39), the inclusion criteria were as follows: anamnesis > 3 years, <5% growth of the
tumor size within six months, well-visualized tumor capsule in radiological investigation,
and tumor homogeneity.

From each patient, a small fragment of tumor tissue was taken during the surgery
and kept frozen at −80 ◦C until DNA isolation. The remaining tissue was passed for
routine histopathological examination, where pathologists confirmed the diagnosis of PA.
Thereafter, the patient was ultimately classified to the study. DNA isolation was conducted
using standard phenol/chloroform procedure. The data concerning age, sex, and applied
treatment of PA patients are presented in Supplementary Table S4.

4.2. Global DNA Methylation Profiling

From the group of 75 PA samples, 4 FGTs and 4 SGTs were selected for global DNA
methylation profiling, performed with the use of a high-resolution Infinium Human Methy-
lation EPIC 850k BeadChip Array (Illumina Inc. San Diego, CA, USA) in the Atlas Biolabs
Company (Berlin, Germany). This array provides information on the DNA methylation
status of 865,859 CpG dinucleotides (called CpG sequence tags) dispersed throughout
the whole human genome. The obtained data were subsequently preprocessed using the
minfi package with functional normalization (funnorm) followed by noob background
correction [28–30]. As a result, β-values, i.e., methylation levels of each sample at each CpG
dinucleotide, ranging from 0 (fully unmethylated) to 1 (fully methylated) were obtained.
β-values were derived from the following calculation: ratio of the probe’s methylated signal
intensity to the sum of the methylated and unmethylated probe signal intensities [31].

4.3. Selection of CpG Tags Differentiating Fast-Growing from Slow-Growing PAs

The assumption of the methylome analysis was to indicate CpG sites with a sig-
nificantly higher DNA methylation level in the FGTs in comparison to the SGTs. Mean
methylation values (MMVs) for fast-growing PAs (n = 4) and for slow-growing PAs (n = 4)
were calculated for each of the 865,859 CpG tags. To avoid any gender-specific methyla-
tion bias, CpGs located on chromosomes X and Y were excluded. Afterward, the mean
methylation difference (MMD) between the FGT and the SGT was established for each
sequence tag. Only CpG dinucleotides for which the difference between the FGT mean β

value and the SGT mean β value exceeded 0.4 were further considered. Moreover, in both
analyzed groups, the standard deviation (SD) was determined, and CpG dinucleotides
with SD exceeding 0.2 (representing diversity in DNA methylation above 20% between
samples in the compared groups) in either of the groups were excluded.

4.4. Validation of DNA Methylation by Bisulfite Pyrosequencing

To perform DNA methylation analysis of the selected regions in the extended group of
patients (36 FGTs vs. 39 SGTs), bisulfite pyrosequencing was performed. At first, assays for each
selected region were designed with the use of PyroMark Assay Design Software 2.0 (Qiagen,
Hilden, Germany). Each pyrosequencing assay included two primers for amplicon preparation
(one of the primers was biotin-labeled at the 5′ end) and one sequencing primer. All primers
were purchased from the Genomed Company (Warsaw, Poland; Supplementary Table S5).

Briefly, 500 ng of DNA was bisulfite treated using an EZ DNA Methylation—GoldTM

Kit (Zymo Research, Irvine, CA, USA), according to the manufacturer’s protocol. PCR
was performed with the use of a PyroMark PCR kit (Qiagen, Hilden, Germany). The PCR
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reaction mixture’s composition and the reaction conditions are presented in Supplementary
Table S6. The specificity of the PCR reaction was checked by electrophoresis in 1.8%
SimplySafe stained agarose gel (EurX, Gdansk, Poland) and visualized under UV light. All
assays included conversion control and were designed using the PyroMarkQ48 Autoprep
2.4.2 Software (Qiagen, Hilden, Germany). Pyrosequencing was performed with the use
of PyroMark Q48 Advanced CpG Reagents (Qiagen, Hilden, Germany) and a PyroMark
Q48 Autoprep sequencer (Qiagen, Hilden, Germany) according to standard manufacturer’s
protocol. In addition to the tested samples, each analysis included fully methylated and
unmethylated controls (Sigma-Aldrich, Saint Louis, MO, USA). As a result, the mean
methylation level of the analyzed CpGs within the region of interest (ranged 0–100%) was
obtained in each analyzed sample. Overall, in individual assays, DNA methylation was
measured in one to five CpG sites.

4.5. Statistical Analysis

To visualize the global comparison between studied samples (4 FGTs and 4 SGTs),
multidimensional scaling (MDS) with Manhattan distance was used. A volcano plot was
created with the ggplot2 R package using normalized microarray methylation data [32].
The differences in the methylation levels for particular CpGs between the FGT and SGT
groups were determined with the use of a nonparametric Mann–Whitney Test for unpaired
data [33]. Since our goal in this study was to determine hypermethylated regions exclusive
in FGT compared to SGT, the one-sided test was used. The statistical significance threshold
was set at p < 0.05. Likewise, the difference in methylation level was also assessed for
each pyrosequencing assay by calculating DNA mean methylation values of all CpG
dinucleotides included in the given assay between analyzed groups (36 FGTs and 39 SGTs).

To evaluate the potential diagnostic accuracy of selected methylation markers, re-
ceiver operating characteristic (ROC) curves were constructed separately for each CpG
dinucleotide and for the given assay. The ROC curves were obtained by plotting the true
positive rate (sensitivity) on the y-axis as a function of false positive rate (1-specificity) on
the x-axis [26]. By calculating the area under the curve (AUC), we measured the power
of particular CpGs as well as of whole assays in discriminating between the analyzed
group of samples. While an AUC of 1.0 reflects a perfectly accurate test, values above 0.7
are considered acceptable [26]. Moreover, by using the DeLong test we verified whether
the AUCs of the analyzed CpGs and assays differed significantly from the fully random
classifier (AUC = 0.5).

Afterward, the stepwise logistic regression was used in order to determine the subset of
selected CpG dinucleotides as optimal predictive model. To obtain such a model, Akaike’s
Information Criteria (AIC) were used. This method allows the determination of the best
model (with the highest prediction accuracy) with the fewest number of independent
variables, i.e., CpG dinucleotides, which is crucial for possible diagnostic use in the future.
Due to the small number of observations, this selection was performed using the model
built on a full dataset, i.e., 75 observations and 13 explanatory variables/predictors (full
model, i.e., 13 CpG dinucleotides analyzed together using five pyrosequencing assays).
The final model with the lowest AIC coefficient was built using selected predictors and
was evaluated against its accuracy and prediction power. The evaluation consisted of ROC
analysis and 1000 simulations of predictions using training and test data split in an 8:2
ratio. Finally, to add bias correction to the AUC of the discussed models, the bootstrap
approach was applied. The analysis and calculations were performed using the following
R packages: stats, pROC, and caret [34–37].

The highest sensitivity and specificity values obtained from selected classifiers indicated
the optimal cutoff points regarding each selected methylation marker. These cutoff points
denote a particular methylation level of the selected marker as a potential diagnostic threshold.
By this approach, based on the methylation level of the analyzed tumor, a sample may be
classified as a fast-growing subtype. Eventually, positive predictive value (PPV) and negative
predictive value (NPV) were calculated in order to establish the probability that the patients
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were adequately classified to the groups both for those who truly have a fast-growing tumor
(PPV) and for those who truly do not have a fast-growing tumor (NPV).

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms23115962/s1.

Author Contributions: Conceptualization, K.K. and M.G.; methodology, K.K., E.K.-W. and A.U.;
software, A.U.; validation, E.K.-W. and A.U.; formal analysis, K.K.; investigation, K.K., E.K.-W. and
A.U.; resources, M.W. and E.B.; data curation, K.K. and A.U.; writing—original draft preparation, K.K.;
writing—review and editing, E.K.-W., A.U., M.J.-S., M.W. and M.G.; visualization, A.U.; supervision,
M.G.; project administration, K.K.; funding acquisition, K.K. and M.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the National Science Centre, Miniatura, project No.
2018/02/X/NZ5/00365 (granted to K.K.) and from statutory funds of the Department of Otolaryn-
gology and Laryngological Oncology (provided by M.W.).

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki and was approved by the Ethical Board of the Poznan University of Medical Sciences
(approval 721/18).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The datasets generated during the current study are not publicly available
due to other ongoing studies but are available from the corresponding author on reasonable request.

Acknowledgments: We thank Natalia Soloch for her excellent technical assistance. We would
also like to express our gratitude to the late Tomasz Kopec, who inspired us to study the genetic
background of salivary gland pleomorphic adenomas.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. El-Naggar, A.K.; Chan, J.K.C.; Grandis, J.R.; Takata, T.; Slootweg, P.J. WHO Classification of Head and Neck Tumours. In WHO

Classification of Tumours, 4th ed.; IARC Press: Lyon, France, 2017; Volume 9.
2. de Oliveira, F.A.; Duarte, E.C.; Taveira, C.T.; Máximo, A.A.; de Aquino, É.C.; Alencar, R.d.C.; Vencio, E.F. Salivary gland tumor: A

review of 599 cases in a Brazilian population. Head Neck Pathol. 2009, 3, 271–275. [CrossRef] [PubMed]
3. Israel, Y.; Rachmiel, A.; Ziv, G.; Nagler, R. Benign and Malignant Salivary Gland Tumors-Clinical and Demographic Characteristics.

Anticancer Res. 2016, 36, 4151–4154. [PubMed]
4. Persson, F.; Andrén, Y.; Winnes, M.; Wedell, B.; Nordkvist, A.; Gudnadottir, G.; Dahlenfors, R.; Sjögren, H.; Mark, J.; Stenman, G.

High-resolution genomic profiling of adenomas and carcinomas of the salivary glands reveals amplification, rearrangement, and
fusion of HMGA2. Genes Chromosom. Cancer 2009, 48, 69–82. [CrossRef] [PubMed]

5. Andreasen, S.; Therkildsen, M.H.; Bjørndal, K.; Homøe, P. Pleomorphic adenoma of the parotid gland 1985–2010: A Danish
nationwide study of incidence, recurrence rate, and malignant transformation. Head Neck 2016, 38 (Suppl. S1), E1364–E1369.
[CrossRef] [PubMed]

6. Piwowarczyk, K.; Bartkowiak, E.; Klimza, H.; Greczka, G.; Wierzbicka, M. Review and characteristics of 585 salivary gland
neoplasms from a tertiary hospital registered in the Polish National Major Salivary Gland Benign Tumors Registry over a period
of 5 years: A prospective study. Otolaryngol. Pol. 2020, 74, 1–6. [CrossRef] [PubMed]

7. Quer, M.; Guntinas-Lichius, O.; Marchal, F.; Vander Poorten, V.; Chevalier, D.; León, X.; Eisele, D.; Dulguerov, P. Classification
of parotidectomies: A proposal of the European Salivary Gland Society. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 3307–3312.
[CrossRef]

8. Wong, W.K.; Shetty, S. Classification of parotidectomy: A proposed modification to the European Salivary Gland Society
classification system. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 3175–3181. [CrossRef]

9. Bradley, P.J. Frequency and Histopathology by Site, Major Pathologies, Symptoms and Signs of Salivary Gland Neoplasms. Adv.
Otorhinolaryngol. 2016, 78, 9–16. [CrossRef]

10. Antony, J.; Gopalan, V.; Smith, R.A.; Lam, A.K. Carcinoma ex pleomorphic adenoma: A comprehensive review of clinical,
pathological and molecular data. Head Neck Pathol. 2012, 6, 1–9. [CrossRef]

11. Lee, H.; Ahn, D.; Sohn, J.H.; Kim, Y.H.; Lee, J.H.; Kim, H. Different correlations between tumor size and cancer-related gene
profiles according to histologic type of salivary gland tumor. Int. J. Clin. Exp. Pathol. 2019, 12, 2809–2816.

12. Piwowarczyk, K.; Bartkowiak, E.; Kosikowski, P.; Chou, J.T.; Wierzbicka, M. Salivary Gland Pleomorphic Adenomas Presenting
with Extremely Varied Clinical Courses. A Single Institution Case-Control Study. Front. Oncol. 2021, 10, 600707. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms23115962/s1
https://www.mdpi.com/article/10.3390/ijms23115962/s1
http://doi.org/10.1007/s12105-009-0139-9
http://www.ncbi.nlm.nih.gov/pubmed/20596844
http://www.ncbi.nlm.nih.gov/pubmed/27466524
http://doi.org/10.1002/gcc.20619
http://www.ncbi.nlm.nih.gov/pubmed/18828159
http://doi.org/10.1002/hed.24228
http://www.ncbi.nlm.nih.gov/pubmed/26382619
http://doi.org/10.5604/01.3001.0014.1261
http://www.ncbi.nlm.nih.gov/pubmed/34550095
http://doi.org/10.1007/s00405-016-3916-6
http://doi.org/10.1007/s00405-017-4581-0
http://doi.org/10.1159/000442120
http://doi.org/10.1007/s12105-011-0281-z
http://doi.org/10.3389/fonc.2020.600707


Int. J. Mol. Sci. 2022, 23, 5962 12 of 12

13. Ito, F.A.; Jorge, J.; Vargas, P.A.; Lopes, M.A. Histopathological findings of pleomorphic adenomas of the salivary glands. Med.
Oral Patol. Oral Cir. Bucal. 2009, 14, E57–E61. [PubMed]

14. Baylin, S.B.; Jones, P.A. Epigenetic Determinants of Cancer. Cold Spring Harb. Perspect. Biol. 2016, 8, a019505. [CrossRef]
15. Esteller, M. CpG island hypermethylation and tumor suppressor genes: A booming present, a brighter future. Oncogene 2002, 21,

5427–5440. [CrossRef]
16. Koch, A.; Joosten, S.C.; Feng, Z.; De Ruijter, T.C.; Draht, M.X.; Melotte, V.; Smits, K.M.; Veeck, J.; Herman, J.G.; Van Neste, L.; et al.

Analysis of DNA methylation in cancer: Location revisited. Nat. Rev. Clin. Oncol. 2018, 15, 459–466. [CrossRef] [PubMed]
17. Arechederra, M.; Recalde, M.; Gárate-Rascón, M.; Fernández-Barrena, M.G.; Ávila, M.A.; Berasain, C. Epigenetic Biomarkers for

the Diagnosis and Treatment of Liver Disease. Cancers 2021, 13, 1265. [CrossRef] [PubMed]
18. Jiao, X.; Zhang, S.; Jiao, J.; Zhang, T.; Qu, W.; Muloye, G.M.; Kong, B.; Zhang, Q.; Cui, B. Promoter methylation of SEPT9 as a potential

biomarker for early detection of cervical cancer and its overexpression predicts radioresistance. Clin. Epigenet. 2019, 11, 120. [CrossRef]
19. Mao, X.-H.; Ye, Q.; Zhang, G.-B.; Jiang, J.-Y.; Zhao, H.-Y.; Shao, Y.-F.; Ye, Z.-Q.; Xuan, Z.-X.; Huang, P. Identification of differentially

methylated genes as diagnostic and prognostic biomarkers of breast cancer. World J. Surg. Oncol. 2021, 19, 29. [CrossRef]
20. Del Signore, A.G.; Megwalu, U.C. The rising incidence of major salivary gland cancer in the United States. Ear Nose Throat J. 2017,

96, E13–E16. [CrossRef]
21. Bartkowiak, E.; Piwowarczyk, K.; Bodnar, M.; Kosikowski, P.; Chou, J.; Woźniak, A.; Wierzbicka, M. Expression of p16Ink4a
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