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SUMMARY

The high storage capacity of the episodic memory system relies on distinct representations for 

events that are separated in time and space. The spatial component of these computations includes 

the formation of independent maps by hippocampal place cells across environments, referred to as 

global re-mapping. Such remapping is thought to emerge by the switching of input patterns from 

specialized spatially selective cells in medial entorhinal cortex (mEC), such as grid and border 

cells. Although it has been shown that acute manipulations of mEC firing patterns are sufficient 

for inducing hippocampal remapping, it remains unknown whether specialized spatial mEC inputs 

are necessary for the reorganization of hippocampal spatial representations. Here, we examined 

remapping in rats without mEC input to the hippocampus and found that highly distinct spatial 

maps emerged rapidly in every individual rat. Our data suggest that hippocampal spatial 

computations do not depend on inputs from specialized cell types in mEC.

In Brief

Schlesiger et al. find that specialized spatial cells in mEC are not required for generating distinct 

hippocampal maps across environments. Inputs to the hippocampus, therefore, do not need to be 

specialized for spatial coding to support hippocampal spatial computations.
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INTRODUCTION

The encoding of distinguishable episodic memories requires that neural representations for a 

multitude of places, contexts, and contents are generated with minimal overlap (Treves and 

Rolls, 1994). One fundamental component of this computation is the formation of distinct 

spatial maps by hippocampal place cells. Whereas place cells typically retain their firing 

locations within the same environment, minor changes to environmental features result in 

either rate changes without a spatial reorganization of place fields or in a partial 

reorganization of place field locations. In contrast, extended training across similar 

environments or exposure to highly distinct environments results in a reorganization of the 

spatial firing patterns of nearly all hippocampal cells (Muller and Kubie, 1987; Lever et al., 

2002; Leutgeb et al., 2004, 2005; Alme et al., 2014). In the case when the resulting spatial 

representations across environments become maximally distinct, or orthogonal, this 

phenomenon is referred to as global remapping (Leutgeb et al., 2005).

It is widely assumed that the formation of distinct hippocampal maps depends on 

computations in the medial entorhinal cortex (mEC) (Buzsáki and Moser, 2013; Moser et al., 

2014; Kanter et al., 2017), which sends projections to the hippocampus and contains 

functional cell types that are specialized in spatial coding, such as grid cells, border cells, 

directionally selective cells, and nongrid spatial cells (Köhler, 1985; Witter et al., 1988; 

Hafting et al., 2005; Sargolini et al., 2006; Solstad et al., 2008; Diehl et al., 2017; Hardcastle 

et al., 2017). The theory that mEC computations are part of the core mechanism for 

hippocampal global remapping is based on two lines of evidence. First, grid cells, border 

cells, and head direction cells rotate and shift their receptive fields between distinct 

environments and spatial nongrid cells alter their spatial firing patterns in response to 

differences in room configuration (Fyhn et al., 2007; Solstad et al., 2008; Diehl et al., 2017). 

These changes in mEC firing patterns occur along with hippocampal remapping, and it is 

therefore assumed that mEC provides the hippocampus with distinct spatial and directional 
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information. Second, experimentally induced changes to mEC firing patterns have been 

shown to result in a spatial reorganization of hippocampal place fields (Miao et al., 2015; 

Rueckemann et al., 2016; Kanter et al., 2017). Taken together, these findings indicate that 

changes in mEC firing patterns are sufficient to cause hippocampal remapping.

The finding that mEC inputs are sufficient to induce remapping does not exclude the 

possibility that other inputs to hippocampus could also organize spatial maps. For example, 

numerous theoretical models point to the possibility that hippocampal map organization 

could be achieved independent of specialized mEC cells (O’Reilly and McClelland, 1994; 

Touretzky and Redish, 1996; Tsodyks et al., 1996; D’Albis et al., 2015; Grienberger et al., 

2017). In support of the possibility that spatial firing is at least partially independent of 

mEC, studies that lesioned mEC or acutely inactivated mEC firing patterns found that 

hippocampal place fields persist (Hales et al., 2014; Schlesiger et al., 2013; Miao et al., 

2015; Rueckemann et al., 2016; Kanter et al., 2017). The persistence of precise spatial firing 

while mEC inputs to hippocampus are diminished led to the notion that it is not the 

formation of spatial receptive fields but rather the selection of a particular map for each 

environment that is mEC dependent (Miao et al., 2015; Rueckemann et al., 2016). An 

implication of this view would be that firing fields emerge independent of mEC but that their 

arrangement is fixed when map reorganization is no longer supported by mEC inputs. To 

address the question whether mEC is critical for hippocampal map selection, we first 

performed extensive, bilateral excitotoxic lesions of the mEC, which included up to 100% of 

mEC superficial layers, and then examined hippocampal remapping by recording from the 

CA1 region in freely behaving rats in two different environments. The advantage of 

permanent lesions compared to reversible manipulations (Südhof, 2015 ) is that the extent of 

the disrupted brain regions can be well quantified and does not change over the duration of 

the recording experiments, which excludes the possibility that the manipulation acutely 

alters mEC input patterns to the hippocampus and thereby directly contributes to remapping.

RESULTS

Complete Lesions of the mEC Superficial Layers

To determine whether mEC inputs are necessary for hippocampal global remapping, we 

performed either N-methyl-D-aspartate (NMDA) or sham lesions of mEC and recorded 

neuronal activity from CA1 cells in both hemispheres of the hippocampus. In order to 

exclude the possibility that any retained hippocampal function was the result of spared mEC 

tissue, we confirmed that our lesions included the entire dorsoventral extent of the mEC, 

including the grid cell area located in the dorsocaudal mEC (Hafting et al., 2005; Kerr et al., 

2007). Stereological quantification of the lesion extent revealed up to 100% damage in the 

superficial layers of the mEC (percent damage: n = 5; layer II, median: 100.0%, range: 

97.9%–100.0%; layer III, median: 92.4%, range: 68.6%–100.0%). If there was minor 

sparing, it occurred at the most ventrolateral extent of mEC (Figure S1; see Hales et al., 

2014 and Schlesiger et al., 2013 for additional photographs and detailed quantification of 

mEC lesions). Additional major damage was found in the dorsal and ventral parasubiculum 

(percent damage: medians: 78.0%–66%; ranges: 63.3%–85.8% and 31.0%–75.8%, 

respectively). Minor damage to lateral entorhinal cortex (lEC) along the border to mEC 
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occurred in one of five rats, and minor damage to the ventral dentate gyrus was observed in 

one animal. Given that proximal and distal CA1 receive preferential input from mEC and 

lEC, respectively (Tamamaki and Nojyo, 1995; Witter et al., 2000; Naber et al., 2001), we 

additionally quantified the positions of our electrodes along the proximal-to-distal axis 

between CA2 and subiculum (Figures S1B and S1C). Whereas recording electrodes were 

distributed along the entire axis in control rats, they were preferentially confined to proximal 

CA1 in mEC-lesioned rats.

Hippocampal Place Fields Retained Spatial Selectivity without mEC Inputs

We examined hippocampal spatial firing by recording over 3 days in two separate rooms on 

each day (Figure 1). One of the two rooms was highly familiar (≥5 days of experience; 

referred to as room A), and the other was novel on day 1 of the recording sequence (referred 

to as room B). As previously reported (Schlesiger et al., 2013; Hales et al., 2014), we found 

that place fields remained clearly discernable in the mEC lesion group in both rooms (Figure 

2A), even though place fields were larger and less informative compared to the control group 

(Figure S2A). We confirmed that the decrease in spatial precision was not a consequence of 

differences in recording quality between groups by examining standard cluster quality 

measures, which were similar between the mEC lesion and control group (Figure S3; L 

ratio, p = 0.47; isolation distance, p = 0.84; Mann-Whitney U tests). Despite the observed 

decrease in the spatial information scores of cells recorded in the mEC lesion group, firing 

rates of the active cell populations (mean firing rate ≥0.25 Hz) were similar between mEC 

lesion and control groups (Figure S2A). In addition, we found that the proportions of cells 

that were active in at least one of the rooms did not differ between the two groups (novel 

environment, control: 37/51 cells, mEC lesion: 51/80 cells; ≥5 days of experience, control: 

48/78 cells, mEC lesion: 66/110 cells; both p values ≥0.37; chi-square tests). These results 

suggest that the change in spatial precision following the mEC lesion was not accompanied 

by a concurrent change in the average firing rates across the cell population.

Hippocampal Place Field Stability Was Partially Retained without Inputs from the mEC

We next examined whether place field locations were stable between sessions within the 

same room (Figures 2A and 2B) by computing the spatial correlations between pairs of rate 

maps from two consecutive recording sessions. As expected, control rats showed high map 

similarity in the highly familiar room (room A; ≥5 days of experience) as well as in the 

recently familiarized room (room B; 1 or 2 days of experience; median, 0.89 and 0.82, 

respectively; p = 0.65; χ2 = 0.20; Friedman test). Rats in the mEC lesion group showed 

higher map stability in the highly familiar room than in the recently familiarized room 

(median, 0.65 and 0.33, respectively; p = 0.0065; χ2 = 7.40; Friedman test) and lower map 

stability than controls in both conditions (both p values < 0.001; Mann-Whitney U tests). 

However, the remaining degree of stability was higherthan whatwould be expected 

bychancefor all comparisons, even when there was an intervening session in a different room 

(all p values < 0.001; sign tests with Holm-Bonferroni correction). There was therefore 

sufficient hippocampal map stability in our experimental conditions to test the contribution 

of the mEC to remapping across rooms.
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To further examine the time course of map stabilization, we analyzed map stability within 

the first and within the second daily session in each environment (first versus second 5 min 

of a session; Figure S2B). Similar to the results obtained across sessions (Figure 2B), we 

found that within-session stability was lower in mEC-lesioned than in control rats in all 

sessions and environments (p values ≤ 0.0036; Mann-Whitney U tests). However, whereas 

the spatial firing patterns of control rats showed high stability within both the first and 

second session of a day, mEC-lesioned rats showed lower within-session stability during the 

first session compared to the second session irrespective of the familiarity of the 

environment (all p values ≤0.034; Wilcoxon signed-rank tests). Taken together, these results 

indicate that there was a short-term increase in stability in the MEC-lesioned group toward 

control levels within a recording day but that stabilized maps did not persist over longer time 

periods, such that each recording day in a familiar room started with stability levels that 

were as low as in a novel environment.

Global Remapping in Hippocampal CA1 Ensembles Did Not Require mEC Input

By next comparing pairs of rate maps between consecutive recording sessions in two 

different rooms, we observed that spatial maps reorganized to the same extent in the mEC 

lesion group as in the control group (Figure 2C; both p values ≥ 0.24; Mann-Whitney U 

tests). In both groups, the spatial correlation across rooms was similar to what would be 

expected by chance (all p values ≥0.35; sign tests) or was below chance (first pair of sessions 

in the mEC lesion group; p = 0.0086), confirming the formation of independent spatial maps 

for different spatial environments in both groups. In addition, map similarity for recordings 

across rooms was lower than for repeated recordings within the same room in both the mEC 

lesion and control group (both p values < 0.001; χ2 ≥ 46.14; Friedman tests). Therefore, 

global remapping of CA1 ensembles between two familiar environments was intact after 

mEC lesions.

As not all of our lesions resulted in 100% elimination of the superficial layers, we also 

examined remapping of CA1 ensembles within individual rats (Figures 3A and 3B). The 

degree of remapping was similar across all rats, and individual rats in the mEC lesion and 

control groups remapped to the same extent (p = 0.82; χ2 = 2.20; Kruskal-Wallis test). 

Moreover, in each individual control and mEC-lesioned rat, across-room map similarity did 

not differ from chance (all p values ≥ 0.27; sign tests) and was lower than the corresponding 

within-room comparison (all p values ≤ 0.047; Mann-Whitney U tests with Holm-

Bonferroni correction). Of note, we confirmed that a rat with 100% bilateral damage to both 

mEC layer II and III retained global remapping comparable to controls (see rat 714 in 

Figures 2A, 3A, 3B, and S1), demonstrating that remapping in mEC-lesioned rats was not 

driven by spared mEC tissue.

In control rats, place field locations can be influenced by distal as well as proximal cues, 

such as the room geometry or a polarizing cue card (Fenton et al., 2000; Lee et al., 2004). In 

our experimental design, the orientation of the cue card was rotated across rooms (Figure 1) 

by either 90 or 270 degrees. This raises the possibility that the low map similarity observed 

in mEC-lesioned rats was not the result of a random redistribution of place field locations 

but instead emerged because the same spatial map was oriented to the new cue card. To test 
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this possibility, we recalculated the correlations between pairs of rate maps obtained in 

different rooms after analytically rotating the map in the novel room according to the cue 

orientation (Figure S4A). We observed that the similarity between pairs of maps was not 

different from chance and did not differ between mEC-lesioned and control rats (Figure 

S4B). To account for the possibility that a constant map could be reoriented by any of the 

box walls or other shared properties between the two rooms, we also calculated the 

correlations between pairs of maps after rotating one of the maps in 90-degree steps (Figure 

S4A) and subsequently selecting the highest pairwise correlation for each cell. Using this 

method, we found that the scores for the mEC lesion and control group were not different 

from each other (both p values ≥ 0.65; Mann-Whitney U tests) and not different from chance 

(Figure S4B; all p values ≥ 0.37; sign tests). For both types of rotation analyses, 

corresponding results were also obtained when examining each rat individually (Figures 

S4C).

After confirming that maps did not simply rotate across rooms, we then more generally 

examined the possibility that map organization could have been retained across rooms. To 

this end, we calculated the distances between place field peaks of simultaneously recorded 

neurons (Figures 4A and 4B). We first established a baseline over repeated sessions in the 

same room and found that distances were retained across sessions in mEC-lesioned and 

control rats (p values < 0.001; r values ≥ 0.60; Pearson product-moment correlations), as 

would be expected if map geometry was corresponding. In contrast, distances between place 

fields in one room were uncorrelated to the distances in the second room for both groups (p 

values ≥ 0.090; r values ≥ 0.15; Pearson product-moment correlations), which indicates that 

there were no preserved spatial relations.

Finally, we tested whether experience was required for distinct hippocampal representations 

to emerge after mEC lesions (Figure 5) by examining the place fields on day 1 of the 

recording series, when room B was novel to the rats (Figure 1). We first confirmed that 

stable maps were formed and retained in the novel room. We found that, for both control and 

mEC-lesioned rats, within-room map similarity was already above chance for the first pair 

of sessions in the novel room (Figures 5A and 5B; both p values ≤ 0.0020; sign tests). We 

then examined remapping between the familiar and novel rooms (Figure 5C) and found no 

difference between control and mEC-lesioned rats (both p values = 1.00; Mann-Whitney U 

tests). For both the control and mEC lesion group, the amount of correlation between maps 

for the different rooms did not exceed what would be expected by chance (all p values 

≥0.13; sign tests). Moreover, the map similarity between consecutive sessions in different 

rooms was lower than the map similarity for consecutive recording sessions in the same 

room for both the mEC lesion and the control group (both p values ≤ 0.047; both X2 values 

≥ 1.57; Friedman tests). In the mEC lesion and control group, remapping thus occurred 

rapidly upon exposure to a novel environment.

DISCUSSION

It has been proposed that inputs from specialized cell types in the mEC are essential for the 

reorganization of hippocampal maps between different spatial environments (Monaco et al., 

2011; Buzsáki and Moser, 2013; Kammerer and Leibold, 2014; Rowland and Moser, 2014; 
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Miao et al., 2015). Whereas it has been shown that manipulations of mEC can result in 

hippocampal remapping, the previous studies did not ask whether mEC inputs are necessary 

for reorganizing hippocampal maps or whether the same function could also be performed 

without the highly specialized spatial and directional cell types that are found selectively in 

mEC. We addressed this question by recording hippocampal firing patterns in two different 

rooms in the absence of mEC input and found that highly distinct spatial maps emerged 

rapidly after exposure to a novel environment. The amount of rate map correlation between 

rooms was similar to what would be expected by chance and lower than during repeated 

recordings within the same room. Importantly, hippocampal global remapping was intact in 

each mEC-lesioned rat, even in individuals that had no detectable sparing of the superficial 

layers, which renders it unlikely that spared mEC input accounted for the formation of 

distinct hippocampal maps. Whereas mEC lesions did not preclude map formation in novel 

environments, the within-session stability of hippocampal place cells was decreased 

irrespective of room familiarity (Figure S2B). Therefore, our results indicate that map 

formation and map stabilization depend on separate entorhino-hippocampal circuits.

Since the discovery of remapping, it has been proposed that differences in the firing patterns 

of entorhinal cells are forwarded to the hippocampus, such that separate hippocampal maps 

emerge from the readout of this information (Muller and Kubie, 1987). Following the 

finding that hippocampal global remapping is accompanied by a coordinated shift in medial 

entorhinal grid cell firing patterns (Fyhn et al., 2007), this hypothesis was modified to 

suggest that the spatial reorganization of grid cells generates a redistribution of firing 

locations in the hippocampus (Monaco et al., 2011; Buzsáki and Moser, 2013; Kammerer 

and Leibold, 2014; Rowland and Moser, 2014; Miao et al., 2015). However, recent studies 

demonstrate that grid cells are not required for hippocampal global remapping (Brandon et 

al., 2014), raising the possibility that mEC cell types other than grid cells could provide 

distinct spatial information to the hippocampus. For example, it was recently shown that 

nongrid spatial cells remap in response to changes in environmental context (Diehl et al., 

2017). Head direction cells and border cells are also known to distinguish environments with 

a coordinated rotation in their firing patterns and could thus be an additional contributor to 

hippocampal global remapping (Solstad et al., 2008). In addition to these correlative 

findings, acute manipulations of the mEC were shown to result in various degrees of 

hippocampal re-mapping (Miao et al., 2015; Rueckemann et al., 2016; Kanter et al., 2017). 

Taken together, these findings suggest that altered mEC inputs are sufficient to result in the 

formation of distinct spatial maps in the hippocampus.

Whereas previous studies that manipulated mEC firing patterns suggested that the mEC 

contributes to hippocampal re-mapping in the intact brain (Miao et al., 2015; Rueckemann et 

al., 2016; Kanter et al., 2017), they did not address whether the reorganization of 

hippocampal spatial maps requires highly specialized spatial and directional input from the 

mEC or whether spatial reorganization can also be achieved exclusively by the neuronal 

processing of less well-defined spatial inputs, for example, from the lEC (Hargreaves et al., 

2005; Tsao et al., 2013). By performing extensive, bilateral mEC lesions that included up to 

100% of the cells in the superficial layers, we tested whether mEC spatial inputs are 

necessary for the generation of new and distinct hippocampal maps. The lesion approach has 

the advantage that inputs from an entire brain region can be permanently eliminated before 
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the experiment is performed. In contrast, optogenetic and chemogenetic inactivation 

techniques are known to not completely silence a target region and to allow for a 

compensatory increase of firing rates in a small population of cells. Such complex responses 

in the area that is targeted for inactivation would therefore not only reduce neuronal activity 

in mEC but also acutely alter the activity patterns during the recording experiment 

(Rueckemann et al., 2016; Miao et al., 2015; Kanter et al., 2017). Such acute manipulations 

can thus not answer the question whether mEC inputs are necessary for hippocampal 

remapping. However, our observation that global remapping is at control levels without 

sparing of the superficial layers allows for the conclusion that mEC is not required for 

hippocampal global remapping. These results are even more striking as recordings in mEC-

lesioned rats were mostly obtained from proximal CA1, which would normally receive mEC 

input (Figures S1B and S1C). Anatomical adaptations, such as sprouting, or physiological 

adaptations, such as heightened responsiveness to CA3 inputs, may increase the contribution 

of the remaining entorhinal inputs to CA1, including inputs that reach CA1 indirectly 

through CA3 and dentate gyrus (DG). Although neuronal firing patterns in lEC are 

substantially less spatial than in mEC (Hargreaves et al., 2005), they nonetheless change 

across distinct contexts (Tsao et al., 2013; Keene et al., 2016). Our results thus raise the 

possibility that lEC contributions are not limited to non-spatial modifications of the 

hippocampal maps, as has been concluded from a previous study with partial lEC lesions 

(Lu et al., 2013), but are also sufficient to reorganize spatial maps.

In addition to a possible contribution from lEC, it can also be speculated that hippocampal 

remapping could be induced more indirectly by the medial prefrontal cortex (mPFC). Cells 

in the mPFC strongly differentiate distinct spatial environments with firing rate changes and 

are additionally modulated by other task contingencies, such as the receipt of reward 

(Miyazaki et al., 2004; Hyman et al., 2005, 2012; Ito et al., 2015). Whereas a recent study 

demonstrated that medial prefrontal projections drive hippocampal rate remapping via the 

nucleus reunions of the thalamus (NR) (Ito et al., 2015), it is possible that the mPFC-NR 

pathway is also involved in the generation of global re-mapping. Future studies are needed 

to determine whether any of the inputs to hippocampus can generate distinct spatial maps as 

long as they provide sufficiently distinct patterns across environments. Irrespective of the 

nature of the alternative inputs to hippocampus that result in remapping in mEC-lesioned 

rats, our findings demonstrate that distinct hippocampal maps emerge without input from 

specialized cell types in the mEC and that weakly spatially selective inputs in combination 

with intrahippocampal processing are sufficient to result in a major spatial reorganization of 

the hippocampal map.

EXPERIMENTAL PROCEDURES

Further details and an outline of resources used in this work can be found in Supplemental 

Experimental Procedures.

Animals

Seven male adult Long-Evans rats were used for recordings from the hippocampal CA1 cell 

layer. Five received mEC lesions, and two received sham lesions. The mEC lesion extent 
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was quantified in NeuN-stained sections. All experimental procedures were approved by the 

Institutional Animal Care and Use Committee at the University of California, San Diego.

Behavioral Procedures

Rats randomly foraged in up to 4 different environments with each environment placed in a 

different room. Over 3 consecutive days, a series of 10-min recording sessions was 

performed in two different rooms on each day (Figure 1). One of the two rooms was familiar 

to the rats, whereas the second room was novel to the rats at the beginning of the recording 

sequence.

Data Analysis

All data analysis was performed by importing position and spike data into MATLAB and by 

further processing the data with custom-written scripts and functions. Spike sorting was 

performed manually using the graphical cluster-cutting software (MClust, D. Redish), which 

we modified in order to reliably track clusters across sessions. Spatial firing rate 

distributions were constructed for 5 cm by 5 cm bins and by smoothing with a Gaussian 

filter with a SD of approximately 1 bin. The spatial information was calculated for the rate 

map of each session, and spatial similarity between rate maps was compared across sessions 

using Pearson’s correlation. In addition, the distances between place field peaks were 

calculated for each pair of simultaneously recorded cells when each cell in the pair had at 

least one field.

Statistical Analysis

All statistical tests were two sided with α = 0.05. Proportions were compared with chi-

square tests. For all remaining statistical analysis, Kolmogorov-Smirnov tests were first 

performed to test for normality. Because all distributions were non-normal, Mann-Whitney 

U (MWU) tests and Kruskal-Wallis tests were used for between-group comparisons and 

Wilcoxon signed-rank tests and Friedman tests for within-group comparisons. Sign tests 

were used to test the samples against chance. Multiple comparisons were corrected with the 

Holm-Bonferroni procedure, and Tukey-Kramer tests were used for post hoc analysis.

DATA AND SOFTWARE AVAILABILITY

MClust software is freely available from A.D. Redish at http://

redishlab.neuroscience.umn.edu/MClust/MClust.html. Reasonable requests for data and for 

software will be fulfilled by the lead contact.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Hippocampal maps without mEC inputs are sufficiently stable to test for 

remapping

• Hippocampal global remapping is intact without mEC inputs

• Rapid generation of distinct hippocampal maps does not require mEC inputs

• Maps that form without mEC inputs in novel rooms stabilize within minutes
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Figure 1. Experimental Design
Rats were trained to forage for randomly scattered chocolate sprinkles in open field arenas. 

Hippocampal recordings were performed over 3 days in two separate rooms on each day. 

One of the rooms was highly familiar at the beginning of the recording sequence (≥5 days of 

experience; referred to as room A), and one was novel on day 1 (referred to as room B). The 

recording environment in room A was either a squared enclosure with black walls or a 

circular enclosure with a black wall, and the recording environment in room B was a square 

enclosure with white walls. Each recording day consisted of five daily 10-min sessions with 

intersession intervals of 5 min. On day 1, three consecutive sessions in room B were 

performed to examine map stability in the novel environment. On days 2 and 3, one of the 

recording sessions in room B was replaced with a room A recording to be able to compare 

map stability over two consecutive sessions in room A (e.g., A′ and A″) and in room B (B′ 
and B″).
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Figure 2. Map Stability between Repeated Sessions in the Same Room Was Reduced, but 
Remapping across Rooms Was Not Disrupted by mEC Lesions
(A) The rate map correlation between two consecutive sessions within and across rooms was 

analyzed in familiar rooms (≥5 and ≥1 day of experience in room A and B, respectively). 

Hippocampal rate maps from representative simultaneously recorded example cells in 

control rat 505 and mEC-lesioned rats 714 and 645. The color scale is from 0 Hz (blue) to 

peak rate (red, indicated to the right of each session in Hz).

(B) Spatial correlations between pairs of consecutive sessions within the same room. 

Medians and inter-quartile range (IQR) (left panel) and cumulative distribution functions 

(right panel) are shown. Within-room map similarity was decreased in mEC-lesioned 

compared to control rats (p values < 0.001; MWU tests) but nonetheless remained above 

chance (i.e., the median of the shuffled distribution) for all comparisons (p values < 0.001; 

sign tests).

(C) Across-room map similarity was as low in the mEC lesion as in the control group (p 

values ≥ 0.24; MWU tests) and did not differ from chance for any comparison between 

rooms (all p values ≥ 0.35; sign tests) except for the first pair of sessions in the mEC lesion 

group (A–B), which showed a rate map correlation lower than chance (p = 0.0086). Error 

bars represent IQR, and black dots are values for individual cells. Dotted line indicates 

chance level. Holm-Bonferroni correction procedure was applied for multiple comparisons. 

mEC lesion versus control group, ***p ≤ 0.001; mEC lesion or control group versus 

shuffled distribution, #p ≤ 0.05 and ###p ≤ 0.001.

See Figure S1 for histology, Figure S2 for quantification of firing patterns within sessions, 

and Figure S3 for quantification of cluster stability.
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Figure 3. Global Remapping Was Intact in All mEC-Lesioned Rats, including Those with the 
Most Extensive Lesions
(A) Rate maps from representative example cells recorded in consecutive sessions across 

two different rooms are shown for rats with varying extent of damage to mEC layer III. Note 

that the amount of mEC layer II damage was ~100% in all mEC-lesioned rats. The color 

scale is from 0 Hz (blue) to peak rate (red, indicated to the right of each session in Hz).

(B) Remapping was intact in every individual rat. Within-room map similarity was higher 

than across-room map similarity for each rat in the control and mEC lesion group (all p 

values ≤0.047; MWU tests). Moreover, each rat showed across-room map similarity that was 

not different from chance (median of shuffled distribution; all p values ≥ 0.27; sign tests), 

whereas the within-room map similarity was higher than chance (all p values ≤ 0.016; sign 

tests) for all rats except for mEC-lesioned rat 714 (p = 0.065; sign test). Error bars represent 

IQR, and black dots are values for individual cells. Dotted line indicates chance level. Holm-

Bonferroni correction procedure was applied for multiple comparisons. Within-room versus 

across-room comparison, *p ≤ 0.05, **p ≤ 0.005, and ***p ≤ 0.001; each rat versus shuffled 

distribution, #p ≤0.05 and ###p ≤0.001.
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Figure 4. Place Field Distances Were Reorganized across Rooms in Both the mEC Lesion and the 
Control Group
The distances between place field peaks of pairs of simultaneously recorded cells were 

compared between two sessions within the same room (left) and across two different rooms 

(right).

(A) Schematic of expected distances between the place fields of three simultaneously 

recorded cells. Over consecutive recording sessions within the same room (A′ and A″), 

place field distances are expected to be similar. In contrast, reorganization is expected to 

result in unrelated distances across two sessions in different rooms (A′ and B′).

(B) Over repeated sessions within the same room, place field peak distances were highly 

correlated in both control and mEC-lesioned rats (both p values < 0.001; both r values ≥ 

0.60; Pearson product-moment correlations). Across rooms, distances were uncorrelated for 

both groups (p values ≥ 0.090; r values ≥ 0.15; Pearson product-moment correlations).
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Figure 5. Distinct Hippocampal Maps Emerged Rapidly upon the First Exposure to a Novel 
Environment in Both mEC-Lesioned and Control Rats
Rate map correlations between consecutive sessions within and across rooms were analyzed 

on day 1 of the experiment, when room B was novel. (A) Hippocampal rate maps from 

representative CA1 cells in control rat 505 and mEC-lesioned rats 714 and 645. The color 

scale is from 0 Hz (blue) to peak rate (red).

(B) Rate map correlations for pairs of consecutive sessions recorded within the same room. 

Medians and IQR (left panel) and cumulative distribution functions (right panel) are shown. 

Within-room map similarity in the mEC lesion group was lower than in the control group (p 

values < 0.001; MWU tests) but higher than chance (i.e., median of the shuffled 

distribution), even for the first pair of sessions in the novel room (all p values ≤ 0.0034; sign 

tests). The rate map correlation was higher for the second pair of sessions within the novel 

room (B′–B″) compared to the first pair of sessions in the novel room (B–B′) for both the 

control and mEC lesion group (p values ≤ 0.030; Wilcoxon signed-rank tests).

(C) Across-room map similarity was as low in the mEC lesion as in the control group (both 

p values ≥ 1.00; MWU tests) and did not differ from chance in either group (all p values ≥ 

0.13; sign tests).

Error bars represent IQR, and black dots are values for individual cells. Dotted line indicates 

chance level. Holm-Bonferroni correction procedure was applied for multiple comparisons. 

MEC lesion versus control group, ***p ≤0.001; mEC lesion or control group versus shuffled 

distribution, ##p ≤ 0.005 and ###p ≤ 0.001. See Figure S4 for analysis of across-room map 

similarity that allows for box rotation.
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