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1  | INTRODUC TION

Multivariate ordination, and in particular model‐based ordination 
with latent factor modeling, is used by community ecologists to 

understand patterns in community composition. Data on species 
presence/absence or abundance are used in ordination methods 
to identify compositional similarities between sample units. With 
these ordination models, the goal is not necessarily to learn about 
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Abstract
Variability in ecological community composition is often analyzed by recording the 
presence or abundance of taxa in sample units, calculating a symmetric matrix of 
pairwise distances or dissimilarities among sample units and then mapping the result‐
ing matrix to a low‐dimensional representation through methods collectively called 
ordination. Unconstrained ordination only uses taxon composition data, without any 
environmental or experimental covariates, to infer latent compositional gradients 
associated with the sampling units. Commonly, such distance‐based methods have 
been used for ordination, but recently there has been a shift toward model‐based 
approaches. Model‐based unconstrained ordinations are commonly formulated using 
a Bayesian latent factor model that permits uncertainty assessment for parameters, 
including the latent factors that correspond to gradients in community composition. 
While model‐based methods have the additional benefit of addressing uncertainty 
in the estimated gradients, typically the current practice is to report point estimates 
without summarizing uncertainty. To demonstrate the uncertainty present in model‐
based unconstrained ordination, the well‐known spider and dune data sets were ana‐
lyzed and shown to have large uncertainty in the ordination projections. Hence to 
understand the factors that contribute to the uncertainty, simulation studies were 
conducted to assess the impact of additional sampling units or species to help in‐
form future ordination studies that seek to minimize variability in the latent factors. 
Accurate reporting of uncertainty is an important part of transparency in the scien‐
tific process; thus, a model‐based approach that accounts for uncertainty is valuable. 
An R package, UncertainOrd, contains visualization tools that accurately represent 
estimates of the gradients in community composition in the presence of uncertainty.
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the individual species themselves, but rather the underlying gradi‐
ents that influence species distributions and ultimately community 
composition. However, many data sets do not contain sufficient in‐
formation to discern precise estimates of the ecological gradients 
that influence community composition.

In contrast to constrained ordination methods where environ‐
mental features related to the sample units are used (Anderson & 
Willis, 2003; Birks, Peglar, & Austin, 1996; Økland, 1996), uncon‐
strained ordination models do not include ancillary data about the 
sample units, but rather only use species (or other taxon) compo‐
sition information to estimate the locations of sample units along 
compositional gradients. Traditionally, distance‐based methods have 
been used to determine the compositional gradients and locations of 
sample units (Legendre & Gallagher, 2001; Roberts, 2016); however, 
these methods require resampling‐based approaches for inference 
and uncertainty assessment (De Leeuw & Meulman, 1986; Heiser 
& Meulman, 1983; Jacoby & Armstrong, 2014; Smith & Gray, 2019). 
Recently, model‐based methods have been introduced for uncon‐
strained ordination (Hui, Taskinen, Pledger, Foster, & Warton, 2015; 
Ovaskainen et al., 2017; Warton, Blanchet, et al., 2015; Warton, 
Foster, De'ath, Stoklosa, & Dunstan, 2015), which do permit uncer‐
tainty assessment. A common implementation of model‐based un‐
constrained ordination uses a latent factor model (Hui et al., 2015) 
where the latent gradient of community composition is estimated as 
an unobserved latent variable.

In Hui et al. (2015), four benefits of model‐based approaches to 
unconstrained ordination are detailed as follows: controlling spuri‐
ous data properties, model checking, model selection and inference, 
and efficiency; however, little attention is given to assessing uncer‐
tainty in model parameters. In fact, the only mention of confidence 
intervals in this section states that “accuracy of such confidence in‐
tervals in this context is in need of evaluation.” A later paper with a 
Bayesian implementation (Hui, 2016) largely resolves the issue of ac‐
curacy of the intervals and while other recent articles (Hui, Tanaka, 
& Warton, 2018; Hui, Warton, Ormerod, Haapaniemi, & Taskinen, 
2017; Niku, Warton, Hui, & Taskinen, 2017) do touch on variabil‐
ity, understanding and assessing uncertainty in the latent factors is 
still not a point of emphasis. Walker (2015) does include an analysis 
of uncertainty in indirect gradient analysis, but the scope is limited 
to a single dimensional projection of presence/absence data. Ren, 
Bacallado, Favaro, Holmes, and Trippa (2017) details an approach 
using a dependent Dirichlet process that implements for under‐
standing uncertainty in projections for bacteria counts, but is limited 
to count data. Understanding and evaluation of uncertainty is crit‐
ical, in science in general and particularly in unconstrained ordina‐
tion, as estimating latent gradients with precision from abundance or 
presence data is a major challenge. With unconstrained ordination, 
parameter estimation is challenging because, in addition to the latent 
factors, species exhibit significantly varying patterns of occurrence 
or abundance which also need to be estimated. Furthermore, many 
ecological data sets are sparse in that many species are rare, and 
the number of observations can be small compared to the number 
of parameters required to be estimated. The focus of this work is 

to assess uncertainty in latent factors; quantify the effects of the 
number of sample units or species and the relative width of uncer‐
tainty bounds; and encourage accurate reporting of the variability; 
additionally, tools are given for designing ordination studies in a way 
that reduces the variability in the final results.

Bayesian methods have become quite popular for both latent factor 
models (Lopes & West, 2004) and in ecological analyses modeling joint 
species data (Gelfand et al., 2005; Halstead, Wylie, Coates, Valcarcel, 
& Casazza, 2012; Ovaskainen et al., 2017; Pollock et al., 2014; Taylor‐
Rodriguez, Kaufeld, Schliep, Clark, & Gelfand, 2017; Walker, 2015). A 
major benefit of the Bayesian modeling framework is that uncertainty 
in model parameters can be assessed with the posterior distribution, 
typically expressed by calculating credible intervals.

In many statistical situations, increased precision in parameter 
estimates is attained by collecting additional data. In this framework, 
the latent factors are associated with the sample units, and hence, in‐
creased precision would be attained by collecting abundance or pres‐
ence data for additional species at each sampling location. While there 
are sampling protocols in some ecological disciplines where a fixed 
number of organisms is identified for each sample unit, in many cases 
sampling is exhaustive and the number of species per sample unit can‐
not be increased. Furthermore, the inclusion of rare species results in 
sparse data where some species are rarely observed. The sparse data 
do not provide much information about the latent factors associated 
with the sample units. Fortunately, increasing the number of sample 
units does have an indirect impact on the latent factors associated with 
an community composition gradient as it allows the species parame‐
ters to be more precisely estimated, which, in turn, results in more pre‐
cise site‐level estimation. The trade‐offs between collecting additional 
species or data at additional sites will be addressed in Section 4.

To determine the characteristics required to achieve a speci‐
fied precision in estimating the underlying gradients, we present a 
framework for addressing the sample unit characteristics necessary 
to detect the latent factors with a specified precision. Precision is 
impacted by the number of sample units, the number of species, 
and the assumed generating distribution of the data, but also by the 
factors associated with the abundance distribution for each spe‐
cies and each sample unit. Simulation studies are presented for a 
variety of scenarios, and code is made available with our R package, 
UncertainOrd, that is available on github (Hoegh, 2018).

In this article, we detail the challenges in using model‐based 
methods for unconstrained ordination and emphasize the impor‐
tance of understanding and relaying the uncertainty in estimates. 
Furthermore, in addition to providing tools to calculate the charac‐
teristics required to detect underlying gradients at a specified preci‐
sion level, we also provide software for creating figures that display 
the uncertainty in the parameters.

2  | MATERIAL S AND METHODS

There is a variety of ways to collect data for species response. 
Common responses include presence/absence, counts of individuals, 
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and percent cover which is typically reported using ordinal cover 
classes. Presence/absence and count responses are self‐explana‐
tory. Percent cover is often reported in discrete ordinal categories, 
such as Daubenmire's cover classes (Daubenmire, 1959), which, 
when including zero, has six classes: 0, 0%–5%, 5%–25%, 25%–50%, 
50%–75%, 75%–95%, and 95%–100%. Regardless of the response 
type, statistical distributions and model‐based approaches are avail‐
able for each scenario.

A common approach for model‐based unconstrained ordination 
uses latent factor models. Following notation from Hui et al. (2015), 
the latent factor model with random effects for sample units can be 
formulated as

where αi represents the effect for site i, βj is the effect for species j, 
zi =  (zi1, …, ziq) is the q‐dimensional vector of latent factors, at site i, 
each of which is assumed to be independent and standard normal in 
distribution, and θj are the factor loadings associated with the latent 
factors. The function g() is a generic function used to link the mean 
term μij to the assumed generative distribution of the data. The zi's are 
referred to as latent factors and are assumed to represent the under‐
lying gradient that influences community composition. Typically, q, the 
dimension of the latent factors, is two or three for ordination. Without 
constraints on the vector of θj values, the latent variables are not in‐
variant to rotation. Hence with q = 2, for identifiability θ is constrained 
such that θ11 > 0, θ12 = 0, and θ21 > 0, where θjk is the coefficient, or 
factor loading, associated with the jth species and kth dimension of the 
latent factor.

All variables in Equation (1) are fit using a Bayesian paradigm. 
Hence, the following model specifications and prior distributions are 
used

where μα and μβ are the mean parameters for the prior distributions for 
α and β, respectively, and are usually set to zero. Variance in the prior 
distributions is specified as Vα, Vβ, or Vθ, which can be a covariance ma‐
trix. To satisfy the constraints on θ, the upper diagonal element, θ12, is 
set to zero and the diagonal elements θ11 and θ22 are forced to be pos‐
itive by using a truncated normal distribution as the prior. The latent 
factors are assumed to follow a standard normal distribution.

Unconstrained ordination approaches using only species abun‐
dance, presence/absence, or ordinal responses tend to have large 
uncertainty in the estimates of the latent factors; however, un‐
derstanding the impact of the number of species and number of 
sample units on uncertainty in the latent factors is an important 
part of planning an ordination study. Regardless of the sampling 

model of the data, a posterior distribution for the latent factors 
can be examined to assess the uncertainty in the projections. In 
practice, there are a collection of ways to summarize the poste‐
rior distribution. We present tools to visualize the uncertainty in 
the ordination projection of the latent factors. The uncertainty 
can be presented as a collection of points a 95% highest posterior 
density (HPD) interval, or density representation of the posterior 
distribution. Simulation studies are created to understand how the 
number of species and the number of sampling units impact the 
uncertainty in the posterior distribution of the latent factors.

2.1 | Models for binary data

Multivariate species data are often recorded in a presence/ab‐
sence format. This results in binary data, and there are two com‐
mon approaches for this data structure: logistic regression using 
the logit link and probit regression using a probit link. Generally, 
in a Bayesian framework, which we adopt in this article, the pro‐
bit model specification is preferred due to efficient sampling. In 
particular, a Gibbs sampler can be implemented with the probit 
link function using a latent normal data augmentation approach 
(Albert & Chib, 1993; Chib & Greenberg, 1998). However, the 
recent advances in the Polya‐Gamma random variables and ef‐
ficient sampling also permit Gibbs sampling in the logistic case 
(Polson, Scott, & Windle, 2013). In this article, we will focus on the 
probit regression, but the results are quite similar using logistic 
regression.

The probit regression uses a data augmentation approach to 
facilitate efficient computation of the posterior distribution. In this 
case, we assume there is a latent, continuous variable such that if the 
latent variable is <0, then the observed binary response is equal to 
zero; otherwise, if the latent variable is >0, then the observed binary 
response is equal to one. Then, the model can be written as

where yij is the binary response for species i at location j and Φ() is the 
cumulative distribution function of a standard normal random variable. 
The prior distributions from Equations (2–4) are used for parameter 
estimation.

2.2 | Models for count data

Multivariate species data are often observed as an abundance, 
where the recorded value is the count of the number of individuals 
by species. Count data are commonly modeled with the Poisson 
distribution; however, the Poisson distribution has a strict mean/
variance property that is not always realistic. Negative binomial 
models provide an alternative that has a more flexible structure to 
fit data where the mean and variance are not equal as in a Poisson 
model.

(1)g(�ij)=�i+�j+zT
i
�j,

(2)�i∼N(�� ,V� )

(3)�j∼N(�� ,V� )

(4)�j∼N(0,V� )

(5)zi∼N(0,I),

(6)yij∼Bernoulli(�ij)

(7)�ij=Φ(�i+�j+zT
i
�j)
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2.2.1 | Poisson model

The Poisson model can be written as

where yij is the count response for species i at location j. The prior dis‐
tributions from Equations (2–4) are used for parameter estimation.

2.2.2 | Negative binomial distribution

The negative binomial is quite similar to the Poisson distribution, but 
also includes an overdispersion parameter to account for extra vari‐
ation in the counts. Specifically, the model can be written as

note that this parameterization of the negative binomial distribution 
is different from many approaches that use the number of trials and a 
probability of success (or failure). With this parameterization, the vari‐
ance of yij=�ij+��2

ij
. This framework also requires a prior distribution 

on the overdispersion parameter ω. Common prior distributions for ω 
include a half‐normal distribution or a half‐Cauchy distribution.

2.3 | Ordinal data

In some cases rather than counts or presence, the response of in‐
terest is the percent cover of each species. In this case, rather 
than estimating a percent, values are often recorded in ordinal re‐
sponses. When modeling ordinal data, a common approach uses 
the cumulative probit link function. Building off the probit model 
from Equation (7), and extending to k categories, the goal is estimat‐
ing the probabilities of the outcome being in each of the k classes, 
{Pr [Yij=1],… , Pr [Yij=k]}. To estimate these probabilities, a latent 
variable is constructed as

where

where cl is the lth cutoff point. The variance is set to be one for 
identifiability in this framework. Then for a given species and site 
combination, the cumulative probit model is used to determine the 
probability of each class.

3  | RESULTS

In this section, we analyze two well‐known data sets to illustrate 
the uncertainty inherent in model‐based unconstrained ordination.

3.1 | Spider data set

The spider data set was first published in Van der Aart and Smeenk‐
Enserink (1974) and contains counts for 12 species of spiders at 28 
sampling sites. The spider data set is generally considered informa‐
tion dense as more than 54% of the values are >0 with an average 
total abundance across all species and sites of nearly ten. In model‐
based unconstrained ordination, the focus is the latent factors which 
are then used as coordinates in a low‐dimensional projection.

3.1.1 | Spider presence analysis

We begin with treating the spider data set as a binary response by 
mapping the abundance data to presence data. Naturally, treating 
the data as binary provides less information for identifying the latent 
factors. Nevertheless, many data sets are collected as presence/ab‐
sence data and this provides a direct measure of the effect of infor‐
mation loss when compared to the spider abundance data below.

Using the probit link function, we fit the model specified in 
Equations (6 and 7) using a two‐dimensional latent variable Z = {z1, 
z2}. Priors were specified from the distributions in Equations (2–4) 
where the hyperparameters were set as �� =�� =0, �2

�
=�2

�
=1, and 

V� = I. Our interest is the latent factors z1 and z2 which are used to 
interpret a latent gradient associated with the 28 sample units. Using 
a Bayesian framework, uncertainty in the latent factors can be as‐
sessed with the posterior distribution.

There is a large amount of uncertainty in all of the latent fac‐
tors; in fact, the posterior distribution contains zero for each vari‐
able. The interest of the study is not in a traditional hypothesis 
test to determine whether the variables are different from zero, 
but nevertheless proper accounting of uncertainty is important in 
the scientific process.

To illustrate the uncertainty in the latent factors, the posterior 
distribution of a single site, number 25, was plotted in the top right 
corner of Figure 1. Site 25 was chosen because it was near the cen‐
ter of the figure and most of the posterior distribution would fit on 
the plot with the same scale as the left part of the figure which only 
contains the point estimates of the latent factors. The interpretation 
is that the posterior mean would be centered at the number 25 on 
the figure, but the value could be at any of the gray points in the 
background. This uncertainty should encourage caution in reporting 
a single‐point estimate for the projection of latent factors, like those 
on the left panels of Figure 1.

3.1.2 | Spider abundance analysis

The spider data set was also analyzed using the recorded counts 
of individuals by species. The abundance data set contains more 

(8)yij∼Poisson(�ij)

(9)�ij=exp (�i+�j+zT
i
�j)

(10)yij∼NegativeBinomial (mean=�ij, overdispersion=�)

(11)�ij=exp (�i+�j+zT
i
�j),

(12)z∗
ij
∼N(�i+�j+zT

i
�j,1),

(13)yij=

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

1 if z∗
ij
< c1

2 if c1≤ z∗
ij
< c2

⋮

k−1 if ck−1≤ z∗
ij
< ck

k if z∗
ij
> ck



     |  63HOEGH and ROBERTS

information than the presence data set, as it better represents vari‐
ability in species response to the latent factors. While the Poisson 
distribution could be used here, Hui et al. (2015) found the negative 
binomial to be a better fit to the spider data. Additionally, deviance 
information criteria (DIC; Spiegelhalter, Best, Carlin, & Linde, 2002) 
are used to compare the two models and we also find a negative 
binomial to be more appropriate for this data. Hence, the negative 
binomial model specified in Equation (10) is used in this example. 
With this specification, standard normal priors are placed on α, β, Z, 
and θ. The dispersion term in the negative binomial distribution has a 
half‐Cauchy prior with variance of 20.

Similar to the abundance data analysis, the uncertainty in the 
latent factors can be visualized. The parameters exhibit less uncer‐
tainty than do the parameters for the presence/absence data, but 
there is still a large amount of variability present. Figure 1 shows 
the point estimates of the latent factors using the negative binomial 
sampling model along with the variability for site 25.

3.2 | Dune data set

The dune data set is another famous data set that contains the 
abundances of 30 plant species collected across 20 sampling sites. 
The data set was reported in Batterink and Wijffels (1983) in Dutch 
and later in Jongman, Braak, and Tongeren (1995). The response is 
collected using a Braun‐Blanquet method with nine ordinal classes. 

Roughly, two‐thirds of the responses are zero, which denotes no 
presence of the species. Of the 30 species, 10 are recoded in three 
sampling units or fewer; more specifically, three of the species are 
only recorded in one plot, two species are recorded in two plots, and 
five species are recorded in three plots. The most abundant species, 
in terms of presence across a number of plots, occurs in 18 of the 
plots.

3.2.1 | Dune ordinal data analysis

The ordinal data analysis uses standard normal priors for z, θ, α, and 
β. The ordinal model specified in Equations (12 and 13) also requires 
a prior distribution for the cutoffs. A standard normal prior is used 
here too with the constraint that order of the cutoffs is appropriately 
preserved.

The data are analyzed, and a point estimate of latent factors is 
presented in the left panel of Figure 2. Additionally, the uncertainty 
for site 18 is presented in the right panel of Figure 2.

3.3 | Data analysis summary

The figures of the dune data set and the spider data set suggest there 
is a high level of uncertainty in the projections from model‐based 
ordinations; however, they do not provide an easy way to quantify 
the uncertainty. Before describing ways to quantify and compare 

F I G U R E  1   Point estimates of latent 
factors for the spider data are shown in 
the left two panels, where the top row 
contains information from the spider 
presence analysis and the bottom row is 
from the spider abundance analysis. The 
right panels also contain the posterior 
distribution of site 25 as the point 
cloud. The uncertainty is smaller for the 
abundance data set than in the presence 
data analysis, but the variability is still 
relatively large
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uncertainty, we first note that with these ordination approaches, the 
interest is more in relative differences than absolute differences. In 
other words, the interest is not in the absolute value of the latent 
factors used for projection, but rather in the relative differences be‐
tween the positions for sampling locations.

Relative differences can be visualized by anchoring one of the 
sampling sites at (0,0) on the projection figures. Then, the posterior 
samples for the other sites are transformed as distances from the 
anchored point. This controls for cases where the entire set of ordi‐
nation values shift together.

Figure 3 shows four ways to visualize the relative uncertain‐
ties of the projected latent factors for the dune analysis. The top 
left shows the mean of the relative differences from site 18. In 
essence, the figure is shifted so that site 18 is anchored at (0,0). 
The three other figures show combinations of 95% highest poste‐
rior densities of the latent factors and points of posterior samples 

for selected sites. Again, these are relative locations or distances 
to site 18.

Another way to summarize the uncertainty in the estimated la‐
tent factors is to look at the width of the posterior credible intervals. 
In particular, we considered the 95% HPD posterior intervals for the 
latent factors and report the average width of these intervals. The 
average width of the HPD intervals was 2.51 and 1.73 for presence 
and abundance, respectively, for the spider data set and 2.15 for the 
dune data set. The one‐dimensional gradient used in Walker (2015) 
for the dune data set had similar levels of uncertainty. With the spi‐
der data set, abundance data models have substantially smaller lev‐
els of uncertainty than presence data. Hence to limit uncertainty, 
whenever possible, abundance data should be collected rather than 
absence or presence.

There are a few differences between the dune and spider data 
sets that explain the differences in HPD interval widths. To further 

F I G U R E  2   Point estimates of latent 
factors for the dune data are shown in the 
left panel. The right panel also contains 
the posterior distribution of site 18 as the 
point cloud
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F I G U R E  3   Point estimates of latent 
factors for the dune data are shown in 
the top left panel. The other three figures 
contain various ways of displaying the 
uncertainty in the projections, where 
the colors of the ellipses or point clouds 
correspond to similarly colored numbers
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explore the differences, the dune data set was converted to pres‐
ence/absence and analyzed using the same priors as the spider 
analysis, resulting in a mean HPD width of 2.01. In comparing the 
average HPD width for the spider and dune data sets, in a binary 
setting, the dune data set has a narrower posterior interval. This is 
due to a combination of factors. The dune data set has a larger num‐
ber of species, which likely leads to the increased precision in the 
latent factors; however, the dune data contains more zeros (67% of 
species/site combinations are zero) compared to the spider data set 
(45% of species/site combinations are zero). Comparing the results 
for the abundance data, the count data appear to contain more in‐
formation than the ordinal percent cover data. The impact of the 
number of species observed as well as species rarity and data set 
sparsity will be further addressed in Section 4.

Unfortunately, ecologists have more control over the number of 
sample units than the number of species that occur in a sample unit. 
In addition, including species that very rarely occur does not provide 
much information for estimating the latent factors. Fortunately, ob‐
taining more sample units is helpful in that the species parameters 
are more precisely estimated which results in more precise estimates 
of site parameters as well.

Finally, it is not always possible to achieve a small amount of 
uncertainty in the latent factors; hence, we strongly urge report‐
ing results in a way that reflects the uncertainty. In our R package, 
UncertainOrd, MCMC samples can be extracted to give two‐di‐
mensional HPD credible intervals around each latent factor. Using 
the dune analysis, Figure 3 contains examples of ways to show the 
projection of the latent factors that respect the uncertainty.

4  | SIMUL ATION STUDY AND EFFEC T SIZE 
ESTIMATION

This section presents a set of simulation studies designed to assess 
the uncertainty in the latent factors as a function of the number of 
species, species frequency of occurrence, and the number of sites. 
To simulate species responses, the framework in Equation (1) is used. 
The species and site effects are randomly sampled from normal dis‐
tributions with mean μα and μβ and standard deviations σα and σβ, 
respectively. These values are explicitly detailed for each separate 
simulation study. For all simulation studies, θ and z are simulated 
from standard normal distributions. Given the species and site ef‐
fects as well as θ and z, raw species counts are simulated. The simu‐
lations are set up using a factorial design for both the number of 
species and the number of sample units.

4.1 | Presence/absence versus abundance 
simulations

To evaluate uncertainty in presence/absence and abundance or‐
dinations, credible interval widths for latent factor estimates were 
assessed with a simulation analysis varying the number of species 
and sites. The goal is to understand the impact of n and p on cred‐
ible interval width of the latent factors and compare across pres‐
ence/absence and abundance data. Synthetic data were generated 
from a Poisson distribution with �� =�� =0 and �� =�� =1. Note that 
Section 4.3 describes an alternative scenario where these values can 
be estimated from a pilot study and specified. A factorial structure 

F I G U R E  4  Average HPD width for abundance data with specified n and p based on 50 replicates
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was used with 10, 25, 50, 75, and 100 units for species and sampling 
sites. Fifty replicates were included for each pair of species and sam‐
pling sites. The data were then analyzed as both a count response 
and a binary response, assuming only presence/absence is recorded.

The uncertainty in the latent factors for both scenarios can be 
seen in Figures 4 and 5. The abundance data allow more precise es‐
timation of the latent factors. This is not surprising as useful infor‐
mation is discarded when counts are mapped to presence/absence. 
Thus, whenever possible, counts rather than presence should be 
recorded.

4.2 | Sparsity simulation

In ordination studies, utility of the species data is to learn about the 
sites. Accordingly, observing more species is one option for increas‐
ing the information content of the data. Unfortunately, these addi‐
tional species may rarely occur; hence, we investigate the impact of 
adding rare species on the uncertainty in the estimates of the latent 
factors. To explore the effect of infrequently occurring species, we 
created a simulation using presence/absence data where rare spe‐
cies are included. Note, common heuristics suggest dropping species 
that occur less than m times, where m is generally 5 or less.

For all simulations, the number of sites was fixed at 20. This 
value for the number of sites is arbitrary, but puts the focus on im‐
pacts from changing the species data. We considered two scenarios: 
first a standard presence/absence data structure where the species 
effects are simulated from a standard normal distribution and sec‐
ondly a framework where a subset of the species are extremely rare. 
For both cases, standard normal distributions are used for simulating 

Z and θ. The site effects, α, are simulated from a normal distribution 
with mean of zero and standard deviation of 0.5 for all of the stan‐
dard species. In general, this results in a hypothetical species being 
observed 50% of the time or at 10 sites, on average. Then, we con‐
sider a data set that is augmented with rare species that have effects 
simulated from a normal distribution with mean of −4 and standard 
deviation of 0.5. Approximately 75% of the simulated rare species 
had zero occurrences across the 20 sites. Across all combinations of 
site and species, the probability of occurrence is 0.027.

The width of the HPD intervals for the latent factors, calculated 
as the average width of the latent factors across the replicates, can 
be seen in Table 1.

Unsurprisingly, the data that include the rarer species has more 
uncertainty in the width of the credible intervals. However, note that 
the rare species do include some additional information such that 
10 species plus 10 rare species contains more information than just 
10 regular species. Furthermore, the information from 10 commonly 
occurring species and 10 rare species does lead to more uncertainty 
than 20 commonly occurring species.

F I G U R E  5  Average HPD width for presence data with specified n and p based on 50 replicates

TA B L E  1  Average width of the HPD intervals for the latent 
factors based on 50 replicates

p Width prare Width

10 2.77 5 + 5 2.83

20 2.18 10 + 10 2.30

40 1.74 20 + 20 1.83

80 1.12 40 + 40 1.24
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4.3 | Interval width estimation

To better assist researchers designing ordination studies, we created 
a function, (HPD width) in the R package UncertainOrd, that al‐
lows users to enter various parameters and evaluate the anticipated 
HPD width both numerically and visually. The function takes the fol‐
lowing arguments: family of the sampling distribution, n, p, μα, μβ, σα, 
and σβ.

When designing a study, a common question is how many sites/
species should be estimated. This simulation looks at the trade‐off 
between n and p with parameters that control abundance and pres‐
ence that relate to a specific data set. As an example, we revisited 
the spider data set to examine the impacts of changing n and p on 
the expected HPD width of the latent factors. Using the observed 
parameter values of the spiders data, we simulated data sets with 
additional species or sample units. The estimated parameters for all 
of these data sets are available in Table 2.

Figure 6 presents the population characteristics of the spider 
data set used to estimate HPD width of the latent factors for a va‐
riety of values of n and p. In this experiment, a factorial structure 
was used with 10, 20, 30, 40, and 50 observations for the number of 
species and the number of sites. Fifty replicates were run for each 
combination of species and sites.

In general, the results suggest that increasing the species count 
is slightly preferable to increasing the number of sites when the goal 
is to minimize the width of the credible intervals. For instance, with 
40 sites and 50 species the HPD interval width of the latent factors 
is 0.97 and 2.04 which is smaller than 1.05 and 2.22 for 50 sites and 
40 species. Given constraints on an experiment, this tool will allows 
researchers to use data‐driven methods to choose the appropriate 
number of species or sites.

5  | DISCUSSION

The goal of this research was to examine the uncertainty inherent in 
model‐based unconstrained ordination and to provide tools for accu‐
rate reporting of the uncertainty in the latent factors associated with 
community composition gradients. The tools allow researchers to plan 
for uncertainty due to controllable factors, such as the number of sam‐
ple units and species to observe. We strongly recommend that model‐
based ordination results include some representation of uncertainty.

TA B L E  2   Estimated parameters for α and β for spider data set

  μα SDα μβ SDβ

Spider presence 0.04 0.73 0.10 1.02

Spider abundance 0.03 0.66 0.05 1.08

Note: These values represent the average across all species or sample 
units.

F I G U R E  6  Average HPD credible interval width for simulated scenarios using population characteristics from spider data set. With n = 28 
and p = 12 the average width of the HPD intervals was 1.72 and 2.95 for abundance and presence respectively
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Model‐based methods, using Bayesian credible intervals, provide 
a way to estimate uncertainty in model parameters associated with 
latent gradients. Large variability in gradients exhibited by these 
methods is not a reason to eschew model‐based methods; rather on 
the contrary, accounting for uncertainty is an essential element in 
the scientific process.

In general, larger numbers of species and sampling locations 
help limit uncertainty in the underlying gradients. While observing 
a large number of total units at a site influences the uncertainty 
in the latent factors, the total number of sites also plays a role. 
Where collecting species composition at additional sites also can 
help reduce variability in the latent factors. Collecting data as an 
abundance rather than presence/absence is recommended as this 
also helps limit uncertainty.

Given the complexity of latent factor models in solving for 
community composition gradients and the lack of additional infor‐
mation outside of species presence/absence or abundance, uncer‐
tainty is an unavoidable part of unconstrained ordination. Hence, 
we have created tools that permit projections in the estimates of 
the gradients that account for and express the uncertainty pres‐
ent. Accounting for and reporting uncertainty is an essential part 
of the scientific process and being transparent in the knowledge 
gained from a scientific study. These tools presented here can be 
used by ecologists to in the same manner as standard ordination 
projections, such as determining overlap between sampling units 
based on the species composition; however, credible regions ac‐
count for uncertainty and provide valid statistical inferences.
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