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Changes in organic carbon to clay 
ratios in different soils and land 
uses in England and Wales 
over time
Jonah M. Prout1,2, Keith D. Shepherd3, Steve P. McGrath1, Guy J. D. Kirk2*, 
Kirsty L. Hassall4 & Stephan M. Haefele1

Realistic targets for soil organic carbon (SOC) concentrations are needed, accounting for differences 
between soils and land uses. We assess the use of SOC/clay ratio for this purpose by comparing 
changes over time in (a) the National Soil Inventory of England and Wales, first sampled in 1978–1983 
and resampled in 1994–2003, and (b) two long-term experiments under ley-arable rotations on 
contrasting soils in the East of England. The results showed that normalising for clay concentration 
provides a more meaningful separation between land uses than changes in SOC alone. Almost half 
of arable soils in the NSI had degraded SOC/clay ratios (< 1/13), compared with just 5% of permanent 
grass and woodland soils. Soils with initially large SOC/clay ratios (≥ 1/8) were prone to greater losses 
of SOC between the two NSI samplings than those with smaller ratios. The results suggest realistic 
long-term targets for SOC/clay in arable, ley grass, permanent grass and woodland soils are 1/13, 1/10, 
and > 1/8, respectively. Given the wide range of soils and land uses across England and Wales in the 
datasets used to test these targets, they should apply across similar temperate regions globally, and 
at national to sub-regional scales.

There is much interest in the potential for increasing the amounts of carbon held as organic matter in the world’s 
soils, both as a means of sequestering atmospheric CO2 and for improving soil properties generally. How realistic 
this is in practice is much debated, given the required large-scale changes in land management, the finite scope 
for SOC accumulation in any given soil, and the reversibility of increases in SOC stocks if land management or 
environmental conditions change1–4. Over millennial time scales, cultivation has caused losses of soil carbon of 
approx. 116 Gt C5,6, and soils are currently losing carbon in many parts of the world. For example, an analysis 
of data in the National Soil Inventory (NSI) of England and Wales found widespread losses of carbon from soils 
across both countries during the 1980s and 1990s7, mostly due to past changes in land management but possibly 
also linked to warming during that period8,9. On the other hand, soils in some regions show gains in carbon under 
both managed and natural vegetation10–14. Gauging realistic targets for SOC sequestration at local to national 
scales, and monitoring progress against targets, requires practicable indices which allow for governing factors 
and are based on readily measurable soil properties3.

Soil clay concentration is a key determinant of SOC concentration under given land use and environmental 
conditions. This is because SOC is protected from microbial attack by adsorption on clay-mineral surfaces 
and by occlusion within soil aggregates, and both of these are functions of clay concentration15–17. An analysis 
of 252 Polish arable soils, 305 French arable soils and 51 French pasture soils showed that a SOC/clay ratio of 
1/10 marked the capacity for SOC protection by clay18. Soil physical conditions (bulk density, water retention, 
clay dispersibility) could be better explained by calculated properties of ‘complexed’ and ‘non-complexed’ SOC 
and clay. The 1/10 ratio corresponded to an approximate maximum for correlations between these and the soil 
physical properties. This idea was developed further and found, from an analysis of 161 Swiss arable and pasture 
soils, that SOC/clay ratios of 1/8, 1/10 and 1/13 marked boundaries between Very Good, Good, Moderate and 
Degraded levels of soil structure, respectively19. We have confirmed the value of an index of SOC status based on 
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these threshold values for 3809 soils in the NSI of England and Wales under arable crops, ley grass, permanent 
grass and woodland20. Though highly weathered tropical soils with clay fractions dominated by sesquioxides 
may behave differently21, the index appears to work very successfully for a wide range of temperate soils across 
Northern Europe. By extension it should work in other temperate parts of the world.

In this paper we consider the use of the index for gauging changes in SOC over time under different land uses, 
and its use for assessing SOC status across different soil types under given land uses. We assessed changes in the 
SOC/clay index between the two samplings of the NSI of England and Wales over 12–25 years, during which 
both large losses and gains of SOC were found, largely due to historic changes in land management8. This is one 
of the most comprehensive datasets globally for this purpose, covering a wide range of soils and land uses, and 
with the same sampling and analytical methods used at both samplings. We also analyse changes in the index in 
more frequent sampling of two long-term experiments in contrasting soils under ley-arable cropping with dif-
ferent organic matter managements. Due to past cropping history, one of these experiments started at low SOC 
on a soil low in clay and the other started with a higher SOC and clay. We show how management systems that 
increase or decrease SOC can be normalised by using the SOC/clay index, and how long management changes 
take to bring about changes.

Methods
National soil inventory.  The NSI was first sampled between 1978 and 1983. Topsoil (0–15 cm depth) sam-
ples were collected as 25 samples on a 20 × 20 m grid at each site. These sites were located at intersections of an 
orthogonal 5 km grid over the entire area of England and Wales, excluding urban areas and water bodies (www.​
landis.​org.​uk)22. Sufficient subsets of the sites (approximately 40% of the original sites) were resampled at inter-
vals from 12 to 25 years after the original sampling to be able to detect changes in SOC concentration ≥ 2 g kg−1 
with 95% confidence, taking account of the accuracy of the laboratory methods (± 1 g kg−1), the size of the origi-
nal sampling and the distribution of SOC in the original sampling 7. This was done in three phases: in 1994–1995 
for arable and ley grass sites (853 of the original 2578 sites), in 1995–1996 for managed permanent grassland sites 
(771 of the original 1579), and in 2003 for non-agricultural sites (including deciduous and coniferous woodland; 
555 of the original 1505). Soil from both samplings was analysed using the standard methods of the Soil Survey 
of England Wales23: organic carbon by the Walkley–Black method, clay by the pipette method and pH in water 
at 1:2.5 soil:solution ratio. To check for differences in analytical precision between the samplings, stored samples 
from 10% of the original sites were reanalysed for SOC, and good agreement (± 1 g kg−1) with the original values 
was found across the full range of values7. How accurately the sites could be relocated was assessed by revisiting 
10 sites following the original site descriptions and recording positions with a global positioning system; accu-
racy was better than 20 m on enclosed land and better than 50 m on open land7.

For the analyses presented here, we only considered arable, ley grass, permanent grass and woodland sites 
which had the same land use at the two sampling dates. We excluded sites (a) classified as peat or organic as 
defined by SOC concentration > 120–180 g kg−1 for clay concentration 0–600 g kg−124, (b) without measurements 
of clay concentration or pH, and (c) with SOC/clay ratio > 0.361 to agree with Prout et al.20. To allow for differ-
ences in sampling interval between sites, we adjusted SOC values in the second sampling for a notional sampling 
interval of 15 years, assuming the rate of change over the actual interval was constant. We calculated annual rates 
of change in SOC and SOC/clay ratio from the change in SOC between the samplings divided by the accurate 
time interval. Since clay concentrations were only measured on soils from the original sampling, we assumed 
no change between samplings. We excluded sites for which changes in SOC/clay per year were greater than 0.02. 
This gave 1418 sites, whose distributions across England and Wales are shown in Fig. 1.

We divided sites according to SOC/clay thresholds of 1/8, 1/10 and 1/13 as the boundaries between Very 
Good, Good, Moderate and Degraded levels of soil structure, respectively, following Johannes et al.19. In our earlier 
paper20 we showed that these thresholds were supported by the SOC/clay ratios of soils from the first NSI sam-
pling that differed in structural condition, which we determined using a method derived from the Agricultural 
Land Classification of England and Wales26.

Long‑term experiments.  Detailed land management practices were not recorded in the NSI, but the land 
use was the same at the two dates 12–25 years apart. To give more information on how more detailed changes 
in land management affect the SOC/clay index at more frequent time intervals, we used data from two long-
term experiments under arable, ley grass and permanent grass. The two experiments have run over similar time 
periods, overlapping the period of the NSI samplings. One is on a sandy loam soil (Woburn) and the other on a 
silty clay loam (Harpenden).

Woburn ley‑arable experiment.  The Woburn experiment was established at Woburn Experimental Station, 
Woburn, Bedfordshire in 1938–1942. Details and treatments are in Table 1. We considered six treatments: arable 
(with or without fallows), lucerne (or sainfoin) converted to 3-year grass-clover ley, grazed ley converted to 
3-year grass ley with inorganic nitrogen (N) additions, and alternating cycles of arable, lucerne, and grazed ley 
converted to 8-year leys (either grass-clover or with inorganic N). Farmyard manure (FYM) additions (fresh 
weight of 38 Mg ha−1 year−1) were applied to the first test-crop on one of the two paired-rotation plots in each 
experimental block until the mid-1960s; the SOC measurements of with- and without FYM plots were averaged 
for each treatment. Soils were sampled every fifth year. The SOC values used here are averages of five experi-
mental blocks for each treatment. Only the first of the two 8-year ley treatment cycles was used for this analysis.

Highfield ley‑arable experiment.  The Highfield experiment was established at Rothamsted Research (formerly 
Rothamsted Experimental Station), Harpenden, Hertfordshire in 1948. Details and treatments are in Table 1. We 
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Figure 1.   Distribution of National Soil Inventory sites selected for analyses (n = 1418). The map was produced 
using QGIS 3.0.1-Girona25.

Table 1.   Summary of treatments in the long-term experiments. a Clay concentrations for Woburn from Catt 
et al.27, and for Highfield from Jensen et al.28. b,c Change in treatment occurred at approximately the same time 
between samplings in all treatments of each experiment respectively.

Woburn Highfield

Location 52° 1′ 12″ N, 0° 37′ 12″ W 51° 80′ N, 00° 36′ W

Establishment 1938–1942 1948 (1959 for bare fallow)

Previous history > 62 years of arable > 100 years of permanent grass

Soila Sandy loam, 114–164 g clay kg−1 Flinty silty clay loam, 233–335 g clay kg−1

Structure Three years of treatment crops followed by 2 years of test crops Three years of treatment crops followed by 3 years of test crops

Treatments

Arable (no fallows) Arable crop rotations with 1-year hay 
in rotation until 1975 Arable Arable crop rotations

Arable (with fallows)
Arable crop rotations with 1-year 
root crop until 1975 and 1-year fallow 
until 1995

Bare fallow Routinely ploughed and kept free of 
vegetation

Lucerne/LC3b Lucerne or sainfoin until 1975 after 
which 3-year grass-clover ley (LC3) Grazed ley/LC3c

Changed from grazed ley to grass-
clover ley (no inorganic nitrogen) 
from 1962

Grazed ley/LN3b
Grazed ley until 1975 after which 
3-year grass with inorganic nitrogen 
(LN3)

Cut grass/LN3c
Changed from cut-grass ley to grass-
ley with inorganic N additions from 
1962

Alternating/LC8b

Alternating/LN8b

Alternating cycles (arable, lucerne, 
or grazed ley) until 1975 after which 
a 10-year structure of either 8-year 
grass-clover ley (LC8) or 8-year grass 
with inorganic N (LN8)

Old grass

Old grass was undisturbed pasture and 
reseeded grass was broken up and re-
sown to long-term grass; 3-year cycles 
(2 years sheep grazing, 1 years hay 
with aftermath grazing); grazing was 
discontinued in 1962 (old grass) and 
1963 (reseeded grass)
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considered the following treatments: arable, ley grass, reseeded grass, old grass, and bare fallow. From 1961, FYM 
additions (fresh weight of 30 Mg ha−1 year−1) to sub-plots of potato crops were made to whole plots instead, then 
discontinued in 1970. The experiment was designed with four blocks and for each treatment the SOC/clay ratio 
was averaged across blocks. Incomplete sampling between years meant that the number of SOC measurements 
averaged was not always four. The bare fallow treatment comprised 4 plots, for which the SOC measurements 
per sampling year are averaged here. Where clay concentration was not measured directly in a plot, we used the 
clay concentration of the closest plot.

Changes in carbon stocks.  Estimates of carbon stocks (Mg C ha−1 to 25 cm) were calculated for each SOC/clay 
threshold using the mean clay concentration of each long-term dataset (138 g kg−1 for Woburn, and 263 g kg−1 
for Highfield), and the difference between each SOC/clay threshold (including a value of SOC/clay = 1/16, which 
emerged as a common ratio for long-term arable management at the two sites; see “Results”). For Woburn, a 
topsoil weight of 3770 t ha−1 was used for continuous arable soils29. The bulk density of Highfield soil was esti-
mated to be 1.12 g cm−3 (topsoil weight = 2880 Mg ha−1) at the start of the experiment using starting SOC, tex-
ture measurements of Jensen et al.28, and a pedotransfer function for non-cultivated soils30 (the corresponding 
function for cultivated soils gave good agreement with the bulk density back-calculated from the soil weight for 
the arable soil of Woburn). We calculated equivalent soil masses so that changes in bulk density with SOC were 
accounted for. The standard deviations of SOC/clay values for each of the long-term experiments are presented 
in the Supplementary Tables S1, S2, and S3.

Statistical analysis.  R version 4.0.231 was used to process the data and produce figures (package: ggplot2)32. 
Regression analysis was used to test how much of the variance in rate of change of SOC/clay could be explained 
by land use, average annual precipitation, major soil group, and mean pH between samplings. These varia-
bles were derived in the same way as Prout et al.20, except that average annual precipitation was averaged over 
1910–2003 (extended to include the second sampling period). Empirical cumulative distribution functions, with 
pointwise bootstrapped 95% confidence intervals, were used to assess the difference in rate of change of SOC or 
SOC/clay by index class and land use. A chi-squared goodness of fit test was used to determine the representa-
tiveness of the smaller subset (n = 1418) compared to that of the larger subset in a previous study (n = 3809)20; the 
results are in Supplementary Table S4. Genstat33 was used to compare counts of index classes between the two 
time points of the subset (n = 1418) using a chi-squared test.

Results
National soil inventory.  Distribution of SOC/clay.  In both NSI samplings, SOC/clay ratios increased in 
the order arable < ley grass < permanent grass ≈ woodland (Fig. 2). However, the values tended to be smaller in 
the second sampling for arable, ley grass and permanent grass, and larger for woodland. The medians at each 
sampling date remained in the same index class for each land use respectively: Moderate (SOC/clay ≥ 1/13–1/10) 
for arable, Good (SOC/clay ≥ 1/10–1/8) for ley grass, and Very Good (SOC/clay > 1/8) for both permanent grass 
and woodland. However, the 25th percentile for each land use decreased to the next index class down for each 
land use (except for the second sampling of woodland which was  also in the Very Good class). The specific 
changes in SOC/clay and index class are explored and analysed in the following sections.

Rates of change in SOC and SOC/clay.  The rates of change in SOC (Fig.  3a) and SOC/clay (Fig.  3b) were 
explored for each land use grouped by index class at the first sampling. The rates of change for both SOC and 
SOC/clay have the same cumulative frequencies of positive and negative rates for each index class (NB clay 
concentration did not change) and therefore the following applies to both. The Very Good class (SOC/clay > 1/8) 
had larger proportions of negative rates than the other index classes for all land uses except woodland where 
proportions were smaller. The other index classes had more similar curves to each other. In general, however, the 
proportion of negative rates followed the order of Very Good > Good > Moderate > Degraded. The proportions of 
the Very Good class with negative rates were similar for arable, ley grass and permanent grass (75, 73, and 73% 
respectively), however smaller proportions of negative rates were observed for all other index classes of ley and 
permanent grass compared with those of arable. Woodland soils mostly had positive rates of change, but nega-
tive rates were more frequent for Very Good soils.

The rates of change on the x-axis differ between Fig. 3a,b. The general trends between index classes for each 
land use were similar between the two, with the Very Good index class tending to have a greater range of nega-
tive rates than the other index classes. The difference between the two rates of change was most evident for the 
separation of the Very Good and Good curves, particularly those of ley grass. For the rate of change in SOC 
(Fig. 3a), the two means and respective confidence intervals overlapped, however for SOC/clay (Fig. 3b), the 
separation of the curves indicates a difference between classes. Considering the change in rate variable: the very 
high positive rate of change in SOC for the Degraded class of the ley grass data (8.0 g kg−1 year−1; Fig. 3a) was 
brought into line with the rest of the data when clay concentration was accounted for (Fig. 3b). The next highest 
rate of increase in SOC for Degraded ley grass soils was 2.7 g kg−1 year−1, in line with the highest rates for Very 
Good and Moderate ley grass soils.

Regression analysis was used to assess several factors other than land use, that might affect changes in SOC/
clay. However, this showed that less than 1% of the variation in rate of change of SOC/clay could be explained 
by average annual precipitation, mean pH, major soil group or carbonate score. Because such a small amount of 
the variation was explained by these factors, this result was not considered further.
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Changes in index class between samplings.  The proportions of each land use falling in each index class are in 
Table 2. Arable had fewer soils classed as Very Good than Degraded, whereas permanent grass and woodland 
had a majority of Very Good soils, and ley grass was intermediate. The proportions in the subset of the NSI used 
in this analysis (n = 1418) were similar to those in the larger subset used in our earlier study20 (n = 3809) (Sup-
plementary Table S4).

The distribution of index classes by land use changed between the NSI samplings (Χ2(15) = 32.24, p < 0.001). 
From the first to the second sampling, the proportion of soils in the Very Good class decreased under arable and 
ley grass by close to 5%, and permanent grass by almost 10%. The increased proportion of the Moderate class 
under ley and permanent grass also contributed to the statistic. Arable soils in the Degraded class increased from 
43 to 47%. In contrast, woodlands showed an increase in the proportion of the Very Good class and a decrease 
in the other index classes. The proportion of the Very Good class that changed index class followed the trend: 
arable > ley grass > permanent grass > woodland; the inverse was evident for the Degraded class (Table 3).

Despite having similar numbers in the Very Good class, 18% fewer of the ley grass changed class compared 
to arable. The extent of decreases from Very Good, increases from Degraded, and changes in either direction for 
Good or Moderate classes could also be seen for each land use (Fig. 4). More arable soils became Degraded than 
grassland soils, irrespective of initial class. A higher number of Very Good class soils changed to a lower class 
under permanent grass, but the changes tended to be to Good or Moderate classes, and permanent grass had a 
higher proportion remain Very Good than arable or ley grass. A larger number from the Good class moved down 
index classes than moved up under arable or ley, though under permanent grass the split was even. A larger 
proportion of the Moderate class became Degraded under arable than grassland. The number of Degraded sites 
increasing to another index class showed a similar trend for each of these three land uses, with few Degraded 
soils achieving Good status, and very few becoming Very Good. Though arable soils had the largest number of 
sites improving from Degraded to Moderate it also had the largest number of Degraded sites and the largest pro-
portion remaining Degraded. Fewer woodland soils changed class and most of the changes were to a better class 
than when first sampled. As the woodland sites tended to be Very Good already, had a smaller sample size, and 
changes in index class tended to be upward, the smaller numbers changing class was to be expected.

Figure 2.   Boxplots of SOC/clay for each land use and sampling of the NSI. Notches extend to 1.58 × 
interquartile range/square-root(n) either side of the median and indicate 95% confidence around the median. 
Whiskers extend to the furthest point within 1.5 × interquartile range below the 25th-, or above the 75th 
percentiles. Observations outside of the whisker ranges are represented as points. The y-axis was truncated to 
0.41 meaning that 11 points (across the data) are not visible.
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Figure 3.   Empirical cumulative frequency distributions of change per year of (a) SOC, and (b) SOC/clay ratio 
in the two samplings of the National Soil Inventory, 1978–2003. Line colours of (a) and (b) indicate the SOC/
clay index class from the first NSI sampling. Shaded areas represent bootstrapped 95% confidence intervals. 
Index classes correspond to SOC/clay ratios: Very Good ≥ 1/8, Good = 1/10–< 1/8, Moderate = 1/13–< 1/10, and 
Degraded < 1/13. Sample counts for the index classes of each land use are displayed in the corresponding colours. 
The vertical line indicates rate of change equal to zero.
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Long‑term experiments.  Figure 5a,b show the changes in SOC concentration over time in the two long 
term experiments on soils with contrasting clay contents. Woburn had been in long-term arable management 
and Highfield in long-term grass before the experiments began. Considering the flattening out of the curves for 
the ley and arable treatments from approximately 1980 onwards, SOC concentrations in the Woburn experiment 
were approximately half of those for similar treatments in the Highfield experiment. After normalising for clay 
concentration, similarities between the two sites are apparent. The SOC/clay results for each site are discussed 
below.

Woburn.  Despite a history of arable management on the Woburn experiment site, SOC/clay ratio decreased 
over 70 years in the arable treatments, mostly remaining < 1/13, i.e. Degraded. The treatment without fallows 
started each treatment cycle with 1-year hay crop, which was evidently sufficient to maintain a higher SOC/
clay ratio than the other arable treatment. After the hay rotation was stopped in 1975, SOC/clay decreased 
to approximately the level of the other arable treatment which decreased further from this point due to the 
introduction of fallow rotations. Apart from the 3-year grazed-ley (Grazed ley/LN3), which increased SOC/
clay from Degraded to high in the Moderate class, the other treatments were similar to the arable treatment with 
1-year hay for approximately the first 35 years (Fig. 5c). The two 8-year ley treatments were under an alternat-
ing rotation which included a grazed grass ley, but SOC/clay remained low, possibly due to the other treatments 
between grazed rotations. After the mid-1970s, however, the 3-year ley with clover (previously lucerne) and 
the 8-year leys showed similar, but more substantial increases. The peaks and troughs of the 8-year leys after 
1970 correspond with samplings in the 8th and 3rd year under ley respectively. The replacement of grazing with 
inorganic N fertilizer resulted in a decline in SOC/clay for the grazed-ley treatment but it remained higher than 
the other ley treatments for approximately 15 year until they caught up. There was little difference between the 
shorter and longer leys from the 1990s onwards, though the shorter leys had lower SOC/clay in the 2000s, and 
little difference between the N-fertilized and clover leys of the longer rotations, both on a trajectory towards 
SOC/clay = 1/10 after the second phase of 8-year under ley grass. It is notable that in each case the 8-year leys 
decreased to a similar SOC/clay as the 3-year ley.

Table 2.   Percentages of sites with a given index class under each land use in each sampling.

Land use n

Percentage of sites with indicated SOC/clay index class

First sampling Second sampling

Very Good Good Moderate Degraded Very Good Good Moderate Degraded

Arable 504 25.6 13.9 17.9 42.7 20.7 12.5 20.0 46.8

Ley grass 284 45.1 21.1 15.1 18.7 41.2 17.6 21.1 20.1

Permanent grass 532 70.5 15.6 8.3 5.6 60.9 18.8 15.2 5.1

Woodland 98 62.2 16.3 14.3 7.1 77.6 12.2 5.1 5.1

Table 3.   Changes in index class between the two NSI samplings by land use and first sampling index class. 
Note the Very Good class could only move to a lower class and the Degraded class to a higher one, but the Good 
and Moderate classes could move either up or down.

Land use

Index class at first sampling

Very Good Good Moderate Degraded

Arable

Number at first sampling 129 70 90 215

Number that changed class 61 50 57 55

% that changed class 47 71 63 26

Ley grass

Number at first sampling 128 60 43 53

Number that changed class 37 40 25 24

% that changed class 29 67 58 45

Permanent grass

Number at first sampling 375 83 44 30

Number that changed class 86 51 25 18

% that changed class 23 61 57 60

Woodland

Number at first sampling 61 16 14 7

Number that changed class 2 13 11 4

% that changed class 3 81 79 57
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Highfield.  Starting from long-term grass management and therefore a higher index class (SOC/clay > 1/10), 
SOC/clay ratios decreased under arable, ley grass, and bare fallow treatments, whereas they increased under 
grassland treatments (retained old grass or reseeded grass) (Fig. 5d). During the first 20 years, the index class 
in arable plots decreased from Good to the Moderate-Degraded threshold, then decreased further over the next 
15 years before steadying at SOC/clay ≈ 1/16. This was similar to the Woburn arable treatments (mean SOC/clay 
across both Woburn treatments from 1982 to 2007 was 1/16), despite the Highfield soils having 110–160 g kg−1 
higher clay concentrations. SOC/clay for the ley treatments decreased over the same periods as arable but 
remained in the Moderate class until around 1980. Between 1987 and 2008 there were no measurements in these 
treatments, but they still had SOC/clay close to the Moderate-Degraded threshold when next sampled, and the 
ley with clover showed further increases. The continuous bare fallow treatment started 10 years after the other 
treatments. However, within 4 years, SOC/clay decreased from Good to the level that arable and ley treatments 
took nearly 20 years to reach, and the soil was lower in the Degraded class than the arable soils within 10 years. 
The SOC/clay ratio continued to decline over the following 45 years. The bare fallow illustrates how far SOC can 
fall in this soil in the absence of crop inputs. The SOC concentration associated with the last samplings presented 
for bare fallow was approximately 10 g kg−1. This was comparable to, though slightly higher than, the arable treat-
ments of Woburn which showed signs of equilibrating at 8–9 g kg−1. Probably due to the initial ploughing and 
reseeding, the SOC/clay ratio of reseeded grass decreased across the Good-Moderate threshold in the first 3 years 
followed by a general increase, approaching the Very Good class over 60 years. The SOC/clay of the old grass 
treatment showed an increasing trend over the course of the experiment, from the Good index class up to Very 
Good over 60 years. Both treatments were grazed until 1962–1963, which might explain some of the increase up 
to this point and subsequent plateau.

Carbon stocks.  Using the clay concentrations of the long-term experiments as examples, the carbon stocks 
at each SOC/clay threshold and the difference that would result from a change in SOC/clay class (threshold 
to threshold) were calculated (Table 4). SOC/clay = 1/16 was included as a possible starting point for an arable 
scenario. Changes in SOC/clay equivalent to SOC/clay = 1/10  to  1/13 (or vice versa) were observed in both 
experiments. The ley treatments at Woburn gave rates of increase of 0.34–0.40 Mg C ha−1 year−1 (correspond-
ing to 30–35  years). At Highfield, the loss of SOC from 1/10 to 1/13 in the bare fallow treatment was at a 
rate of 4.93 Mg C ha−1 year−1 compared with 0.985 Mg C ha−1 year−1 in the arable treatment. The increase in 
SOC/clay in the old grass treatment from 1/10 to 1/8 (from 1951 to 2008, 58  years) gave an overall rate of 
0.317 Mg C ha−1 year−1.

Figure 4.   Numbers of sites that changed SOC/clay index class between the NSI samplings. Numbers of sites in 
each land use: arable, 223; ley grass, 126; permanent grass, 180; woodland, 30. VG, G, M and D indicate Very 
Good (SOC/clay ≥ 1/8), Good (SOC/clay 1/10–< 1/8), Moderate (SOC/clay 1/13–< 1/10), and Degraded (SOC/
clay < 1/13) classes.
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Discussion
We have found that many of the arable, ley grass and permanent grass soils declined in SOC/clay between the 
NSI samplings, whereas many of the woodland soils improved. Except under woodland, many soils with initially 
Very Good and Good SOC/clay indices lost SOC between the samplings and moved to lower classes. Hence the 
proportions of Moderate and Degraded class soils increased, especially under arable and ley grass, and to a lesser 
extent under permanent grass. A previous study found that rates of SOC loss in the NSI at a given SOC stock 
decreased in the order arable > ley grass > permanent grass > other (mainly woodland)8. Those authors fitted a 
simple single-pool model with first order decomposition kinetics to the data. The model showed that, despite the 
diversity of soils in each land use, soils with small SOC stocks tended to gain C whereas those with larger values 
increasingly lost it, and there was a characteristic steady-state SOC stock for each land use under the prevailing 
management at which C was neither gained nor lost. The steady-state values increased in the order arable < ley 
grass ≈ permanent grass < other (mainly woodland), and the rate of gain or loss increased with the degree of 
departure from the steady-state SOC stock.

Since clay concentration is a major determinant of SOC protection and stability (Introduction), the SOC/clay 
ratio gives a more definitive separation between different managements, climates and other factors within a land 
use category than SOC alone. Hence there was a clearer separation between the index values for cumulative plots 
of the rate of change in SOC/clay compared with SOC alone (Fig. 3). The SOC/clay ratio at which mechanisms of 

Figure 5.   Mean SOC concentration and SOC/clay ratios over time in the long-term ley-arable rotation 
experiments at (a, c) Woburn (sandy loam) and (b, d) Highfield (silty clay loam). For standard deviations of 
each treatment at each timepoint see Supplementary Tables S1, S2, and S3. Horizontal lines represent SOC/clay 
index thresholds equal to 1/8 (solid), 1/10 (dashed), and 1/13 (dot-dash). The vertical line marks a change in 
treatments as indicated by the “/” in the legend entry. Alt. alternating treatment of 3-year arable, 3-year Lucerne, 
and 3-year grazed ley; LC3 3-year ley + clover; LN3 3-year ley + nitrogen; LC8 8-year ley + clover; LN8 8-year 
ley + nitrogen.
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SOC stabilization are saturated is approximately 1/1018. Above this threshold soils are less likely to retain carbon 
under given OC inputs and below it they are more likely to retain added OC.

What were the causes of the declines in SOC/clay values between the NSI samplings and the differences 
between land uses? Past or continuing changes in land use and management were the major drivers and model-
ling results showed that the effects of the modest warming in the two countries between the samplings would 
not have been sufficient to explain much of the results 8,9. Likewise, atmospheric deposition of nitrogen or sul-
phur was not likely to have been a factor, at least in managed soils. There was roughly a 50% decrease in rainfall 
acidity between the NSI samplings as a result of decreased sulphur emissions from coal-fired power stations, 
leading to modest but widespread increases in soil pH across England and Wales34. However, there were no clear 
relationships between the SOC changes and either the baseline soil pH or measured changes in pH between 
the samplings7. Increased nitrogen deposition between the samplings may have increased SOC stocks on semi-
natural land as a result of greater net primary production14. More recently, atmospheric nitrogen deposition 
in the UK has decreased35. Low uptake of reduced tillage practices over the sampling periods36 could also be a 
contributing factor to the declines in SOC/clay in arable soils.

Changes in land use and management will tend to shift SOC stocks towards new steady states, characteristic 
of these changes. This may cause gains of carbon in soils with small SOC stocks, or losses in soils with large 
stocks. There have been large changes in land use and management across England and Wales since the Second 
World War37. The following changes in particular will have affected SOC stocks: conversion of grassland and 
natural vegetation to crops after the war38; widespread improvements in land drainage39; greater use of mineral 
fertilizers40; greater animal stocking rates41; and, in general, the adoption of more uniform management practices 
across both countries37. Similar changes in land use and management affecting SOC stocks have taken place in 
other countries around the world and continue to do so42,43. Ambitions to increase SOC stocks globally need to 
be seen in the light of this.

The results of the long-term experiments illustrate the value of normalising for soil clay concentration. Sandy 
soils, such as those at Woburn, should not be expected to reach the same SOC concentrations as those with 
higher clay concentration, such as at Highfield. By quantifying SOC/clay ratios, the value of the SOC for soil 
properties can be assessed across contrasting soil types. Despite the differences in clay concentration between 
Woburn and Highfield (approximately 125 g kg−1), the arable treatments levelled off at a similar SOC/clay ratio 
of approximately 1/16. By contrast, the bare fallow treatment at Highfield had a similar SOC concentration to 
the arable treatment at Woburn (approximately 10 g kg−1) but had a much smaller SOC/clay ratio. Therefore, 
the bare fallow had a greater deficit of carbon and was degraded structurally and perhaps in other functions. 
This would not be apparent by comparing SOC values alone. Ley treatments had a moderating effect on SOC 
loss on conversion from grassland at Highfield and improved the soil from the Degraded class to near the Good 
threshold at Woburn. Results of the Woburn organic manuring experiment20—on the same site as the experiment 
presented here but with different treatments—largely agreed with these differences in index classes with SOC/
clay for arable < 1/13 (~ 1/14), and ley > 1/13. Farmyard manure inputs gave greater increases in SOC/clay, but 
at unrealistically high rates. Combinations of these managements, such as through ley rotations with manure 
applications during arable rotations, might provide sustainable means to increase the rates and stability of SOC 
gains. Whilst the 8-year leys could achieve higher SOC/clay, they did not stabilise higher than the 3-year leys.

Key steps for soil management are soil testing to identify if a soil is Degraded (or better) followed by monitor-
ing how management decisions impact the soil. Soil clay concentration is not expected to change, except with 
extreme abuse, so requires less frequent monitoring. Once clay concentration has been mapped, SOC can be 
monitored periodically to assess changes in the index. It is important that clay concentration is mapped accurately 
at the scale of interest, as shown by the large variability in the standard deviations of SOC/clay in the Woburn 
data (Supplementary Table S1). We expect that with more precise clay concentration data, as for Highfield, the 
mean SOC/clay results would be similar but with variability better accounted for.

Table 4.   Carbon stock differences between SOC/clay thresholds for Woburn and Highfield soils. Carbon 
stock calculated to 25 cm depth. a Dashes indicate not applicable. b Typical of arable management in the two 
experiments.

Site SOC/clay Carbon stock at SOC/clay (t C ha−1)

Difference in carbon 
stocks between 
SOC/clay ratios 
(Mg C ha−1)

SOC/claya

1/8 1/10 1/13

Woburn

1/8 65.0 – – –

1/10 52.0 13.0 – –

1/13 40.0 25.0 12.0 –

1/16b 32.5 32.5 19.5 7.5

Highfield

1/8 92.0 – – –

1/10 73.6 18.4 – –

1/13 56.6 35.4 17.0 –

1/16b 46.0 46.0 27.6 10.6
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Irrespective of how far soil carbon stocks might be increased globally to sequester atmospheric CO2, in many 
parts of the world soils needs to be restored to levels needed for resilience to the effects of climate change and 
continued provision of functions. Management practices for increasing SOC concentrations are well known 
and include management of manures and crop residues, use of cover crops and leys, and the various methods 
known as “Regenerative Agriculture”44. The long-term experiments reported here show that normalising for clay 
concentration allows more meaningful comparisons of management effects on SOC, and that our index SOC/
clay ranges are of an appropriate magnitude for assessing changes over time. Very high SOC/clay ratios > 1/8 
are unrealistic for all land uses, as shown in the various treatments in the long-term experiments and in the NSI 
results for the different land uses (Fig. 2). Arable soils had smaller SOC/clay ratios than permanent grassland 
and woodland soils.

Based on our results, we suggest suitable SOC/clay targets of > 1/13, > 1/10, and > 1/8 for arable, ley grass, 
and permanent grass and woodland soils, respectively. The net changes in SOC/clay between the NSI samplings 
for land uses other than woodland suggest that further decreases may have taken place, but the median SOC/
clay in each sampling for each land use was still above these thresholds (Fig. 2). Timescales for achieving targets 
will depend on land use history, the availability of organic matter amendments, the length of ley rotations if 
employed, and practices such as the use of cover crops and reduced tillage.

In general, soils across England and Wales—and by extension managed soils in other temperate regions—have 
SOC concentrations below optimal levels due to sub-optimal management. The arable soils in the long-term 
experiments maintained a SOC/clay ratio ≈ 1/16, but could likely achieve SOC/clay ≥ 1/13 with improved man-
agement. On these soils, increasing SOC/clay to 1/13 could result in an increase of 6–9 Mg C ha−1 in the carbon 
stock. If this were to increase to SOC/clay = 1/10 that becomes 18–26 Mg C ha−1, which we have shown could be 
achievable with frequent or well managed ley rotations in approximately 40 years (Fig. 5).

A SOC/clay of 1/10 is proposed as an approximate limit for SOC protection by clay18, and we have shown 
that soils with SOC/clay > 1/8 are more likely to lose SOC, depending on land use. The results support the use 
of the SOC/clay ratio to normalise between different soils and inform management decisions to maintain SOC 
where possible, and increase it where needed.

Conclusions
The SOC/clay ratio index provides a simple method to normalise SOC values across soils and to assess changes 
in SOC status over time. The NSI results showed that SOC/clay ratios declined between the NSI samplings under 
arable, ley grass and permanent grass, especially in soils that initially had large SOC/clay ratios. In arable land the 
proportion of Degraded soils increased between the samplings, even though a large proportion were already in 
that class. The results of the long-term experiments showed the value of normalising for soil clay when assessing 
SOC management practices. Similar management practices resulted in similar SOC/clay ratios on the two soils 
with contrasting clay concentration, despite SOC concentrations that differed by a factor of two. Realistic long-
term targets for SOC/clay ratios differ between land uses: they are > 1/13, > 1/10, and > 1/8 for arable, ley grass, 
and permanent grass and woodland soils, respectively. Our conclusions are based on results for a wide range of 
soils across Northern Europe. While soils with different mineralogies may behave differently, for example, highly 
weathered soils of the humid tropics or volcanic ash soils, the basic SOC/clay index tested here should be useful 
in similar temperate regions globally.

Data availability
The NSI dataset is held by Cranfield University and accessed via LandIS (www.​landis.​org.​uk). Data for the 
Rothamsted ley-arable (Highfield) and Woburn ley-arable experiments can be obtained via the Electronic 
Rothamsted Archive (era.rothamsted.ac.uk).
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