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ABSTRACT Assigning taxonomy remains a challenging topic in microbiome studies, due
largely to ambiguity of reads which overlap multiple reference genomes. With the Web of
Life (WoL) reference database hosting 10,575 reference genomes and growing, the percent-
age of ambiguous reads will only increase. The resulting artifacts create both the illusion of
co-occurrence and a long tail end of extraneous reference hits that confound interpretation.
We introduce genome cover, the fraction of reference genome overlapped by reads, to dis-
tinguish these artifacts. We show how to dynamically predict genome cover by read count
and examine our model in Staphylococcus aureus monoculture. Our modeling cleanly sepa-
rates both S. aureus and true contaminants from the false artifacts of reference overlap. We
next introduce saturated genome cover, the true fraction of a reference genome over-
lapped by sample contents. Genome cover may not saturate for low abundance or low
prevalence bacteria. We assuage this worry with examination of a large human fecal data
set. By compositing the metric across like samples, genome cover saturates even for rare
species. We note that it is a threshold on saturated genome cover, not genome cover itself,
which indicates a spurious reference hit or distant relative. We present Zebra, a method to
compute and threshold the genome cover metric across like samples, a recurrence to esti-
mate genome cover and confirm saturation, and provide guidance for choosing cover
thresholds in real world scenarios. Standalone genome cover and integration into Woltka
are available: https://github.com/biocore/zebra_filter, https://github.com/qiyunzhu/woltka.

IMPORTANCE Taxonomic assignment, assigning sequences to specific taxonomic units, is
a crucial processing step in microbiome analyses. Issues in taxonomic assignment affect
interpretation of what microbes are present in each sample and may be associated with
specific environmental or clinical conditions. Assigning importance to a particular taxon
relies strongly on independence of assigned counts. The false inclusion of thousands of
correlated taxa makes interpretation ambiguous, leading to underconstrained results which
cannot be reproduced. The importance sometimes attached to implausible artifacts such as
anthrax or bubonic plague is especially problematic. We show that the Zebra filter retrieves
only the nearest relatives of sample contents enabling more reproducible and biologically
plausible interpretation of metagenomic data.

KEYWORDS metagenomics, microbiome, read filtering

The reference overlap problem in taxonomic assignment leads to ambiguously aligned
reads. These ambiguities result in either assignment to a higher taxonomic rank

leading to a loss in specificity, or equal distribution across all alignments resulting in

Editor Nicholas Chia, Mayo Clinic

Copyright © 2022 Hakim et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Rob Knight,
robknight@eng.ucsd.edu.

The authors declare no conflict of interest.

Received 11 August 2022
Accepted 15 August 2022
Published 8 September 2022

September/October 2022 Volume 7 Issue 5 10.1128/msystems.00758-22 1

OBSERVATION

https://github.com/biocore/zebra_filter
https://github.com/qiyunzhu/woltka
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/msystems.00758-22
https://crossmark.crossref.org/dialog/?doi=10.1128/msystems.00758-22&domain=pdf&date_stamp=2022-9-8


assignment to extraneous species and an illusion of co-occurrence between related
species (1).

KrakenUniq (2) introduces techniques to estimate and filter by unique k-mer count while
SLIMM (3) uses preprocessing to filter by read distribution across multiple bins. However,
neither tool makes use of information across samples to inform selection. Because ambiguous
reads are necessarily restricted to regions where references overlap, we may use the uniform-
ity of assigned reads to filter artifacts within and across samples overcoming the limitations of
these tools to retain rare microbes that may be of phenotypic importance. We report a metric
that can be composited across like samples to enable use for rare microbes and a correspond-
ing threshold that scales dynamically by read count and reference length.

We introduce the genome cover metric, the fraction of a reference genome covered by
one or more reads, as a measure of read uniformity. With sufficient reads, this metric satu-
rates as the fraction of reference genome overlapped by sample contents. The consequence
of the reference overlap problem is that an abundant species may assign read counts to
both near and distant relatives within the reference, but only those closest relatives will
show a high percentage of saturated genome cover. We propose a genome cover filter to
remove extraneous assignments in the Web of Life (WoL) (4) from human samples.

We begin with an evaluation of monocultures where we expect taxonomic assignment to
corroborate a single organism. Reads are sourced from 192 Staphylococcus aureus monocul-
ture samples selected from lesion- and nonlesion tissues of the skin of human subjects suffer-
ing from atopic dermatitis. These data are available through the European Bioinformatics
Institute (EBI) (https://www.ebi.ac.uk/ena) under the study identifier PRJEB52498 (ERP137223)
and on Qiita (5): https://qiita.ucsd.edu/study/description/11919.

The Web of Life Toolkit App (Woltka [6]) accumulates read counts by splitting evenly across
up to 16 matched references. Processing S. aureus monoculture in Woltka results in sporadic
assignment to over 1,700 reference genomes. Table 1 displays the top 10 assignments ordered
by genome cover. As expected, S. aureus MS4 dominates these samples by cover and
assigned read count. Reference hits are generally filtered via relative abundance thresholds,
the fraction of per-sample reads, e.g., 0.01%, and/or prevalence thresholds, the fraction of
samples where the organism is detected, e.g., 10% as benchmarked for standard pipelines
(7–9). Table 1 and Fig. 1 show these thresholds are insufficient to filter relatives of S. aureus.

Nearly 7 million reads were assigned to Staphylococcus haemolyticus JCSC1435. These
S. haemolyticus matches were identified in.90% of samples and far exceed typical filtering
thresholds. These assignments are the direct result of the reference overlap problem gener-
ating the illusion of co-occurrence of multiple Staphylococcus spp. within these samples.
Whereas the ;300 million reads of S. aureus overlap 94% of its genome, those assigned to

TABLE 1 Ten highest genome cover reference genomes identified in S. aureusmonocultures

OGU
Covered
length

Genome
length

Genome
cover

Predicted
genome
cover Strain

Mean depth
(whole-
genome)

Mean depth
(covered
regions) Reads Prevalence

G001456215 2,538,281 2,709,797 93.7% 100% Staphylococcus aureusMS4 16,194.45 17,288.73 2.9E1 08 98%
G000072485 437,397 4,851,126 9.0% 10.9% Stenotrophomonas

maltophilia K279a
0.12 1.28 3.7E1 03 4%

G000020205 404,791 5,325,729 7.6% 9.5% Ralstonia pickettii 12J 0.10 1.33 3.6E1 03 92%
G000009865 117,070 2,697,861 4.3% 100% Staphylococcus

haemolyticus JCSC1435
373.00 8,595.77 6.7E1 06 93%

G000007645 86,798 2,564,615 3.4% 100% Staphylococcus epidermidis
ATCC 12228 ASM764v1

271.25 8,014.52 4.6E1 06 93%

G000972575 75,837 2,826,849 2.7% 100% Staphylococcus cohnii
subsp. cohnii 532

118.91 4,432.58 2.2E1 06 91%

G000332735 65,933 2,560,716 2.6% 100% Staphylococcus warneri SG1 353.99 13,748.45 6.0E1 06 94%
G001188915 60,333 2,582,931 2.3% 100% Staphylococcus schleiferi

2317-03
134.30 5,749.64 2.3E1 06 91%

G001471555 59,139 2,602,401 2.3% 100% Staphylococcus capitis
FDAARGOS_173

179.92 7,917.26 3.1E1 06 93%

G001068545 58,172 2,531,263 2.3% 100% Staphylococcus epidermidis
1056_SEPI

138.31 6,018.25 2.3E1 06 93%

Zebra: Static and Dynamic Genome Cover Thresholds mSystems

September/October 2022 Volume 7 Issue 5 10.1128/msystems.00758-22 2

https://www.ebi.ac.uk/ena
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB52498
https://www.ncbi.nlm.nih.gov/sra/ERP137223
https://qiita.ucsd.edu/study/description/11919
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00758-22


FIG 1 Modeling genome cover by read count differentiates low abundance contaminants from overlapping references in S. aureus
monocultures. Clusters (A) to (D) determined by thresholding of Staphylococcus warneri SG1. Red indicates the line of best fit. A
reported slope of 1 with no residual would indicate a perfect model fit. Mean predicted cover calculated using assigned read
count and genome length assuming fixed 150 bp read length. As the number of reads increases, measured cover asymptotically
approaches the overlap between true sample content and the assigned reference genome.
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S. haemolyticus resolve to only 4% of the S. haemolyticus genome with high (.8000) mean
depth. The high depth regions represent the overlap between the S. aureus and S. haemo-
lyticus genomes. Analogous arguments may be made for the other Staphylococcus spp. in
Table 1. The reference overlap problem generates artifacts restricted to overlapping regions.
We exploit this to formulate a novel filtering approach.

Fig. S1 models the genome cover metric for a given number of reads of a reference
species by assuming reads are uniformly distributed and discretized to nonoverlapping
buckets. Closed form mean and standard deviation for the number of covered buckets are
given in Equations 3 and 4 (10). In monoculture, this model allows us to filter references
whose measured cover lies outside the predicted cover range.

There is a striking difference between the model performance on S. aureus versus
other Staphylococcus species (Fig. 1). For more distant relatives, predicted genome
cover is 20 to 60� higher than is measured, strongly indicating that reads are not
uniformly distributed across these reference genomes. In contrast, comparing pre-
dicted genome cover against measured genome cover on a sample by sample basis
based on this metric shows that for S. aureus, Stenotrophomonas maltophilia, and
Ralstonia pickettii the predicted and measured cover are linearly related to within a
constant factor of ;1.2 (Fig. 1). This constant factor may result from PCR-derived
duplicate reads, deviation between the reference genome and the contents of the
sample, and/or nonuniformity of read sampling. Thus, Ralstonia pickettii, whose
cover is low but in agreement with the number of assigned reads, should be consid-
ered contamination rather than reference overlap.

Interpreting the x-intercepts as the saturating genome cover between S. aureus
strains and these references, we observed vertical clusters within the Staphylococcus
relatives (Fig. 1b) that indicates saturation with even a single high abundance sam-
ple. We use this fact to bound thresholds applicable to samples of unknown compo-
sition where, due to the possibility of co-occurrence, the assumptions of the dynamic
model may not hold.

Ninety percent of reference genomes in WoL are less than 6 million bp in length.
By our model, it would take roughly 12,000 reads of length 150 bp to achieve 25%
genome cover for a reference of this length. Compositing 100 like samples with
roughly 600,000 reads apiece, reaching this threshold requires mean relative abun-
dance 0.02%, in line with standard relative abundance thresholds. This shows that
25% cover is a reasonable threshold for the average microbe to pass in a shallow
sequenced 100-sample data set. Table S1 estimates the required number of reads
across composited samples to reach a target genome cover threshold within the
range of reference lengths in the WoL.

Fig. 2a shows that even the weakest cover thresholds filter 801% of extraneous ref-
erence hits in iMSMS. We do not recommend cover thresholds below 10% however,
due to the existence of reference species whose genomes highly overlap common
members of the gut microbiome. Fig. 2b and c shows that Yersinia pestis (bubonic
plague), a false hit that frequently bypasses abundance and prevalence filters (11, 12)
has saturated cover around 4.5% in the International Multiple Sclerosis Microbiome
Study (iMSMS [13, 14]). This 4.5% cover is due to overlap with Escherichia coli and
Klebsiella pneumoniae. Similarly iMSMS covers 9.5% of Bacillus anthracis (anthrax) as
the result of a few samples containing a close relative of Bacillus thuringiensis (Fig. 2d).
As these samples are outliers, it is unclear whether 9.5% is the saturated cover.

We further caution against cover thresholds above 90%, even with deep sequenc-
ing, due to the imperfect nature of a reference. Table 1 shows a 95% cover threshold
would remove even S. aureus from the analysis. Table S2 reports genome cover for the
WoL relatives of eight ground truth species. Salmonella enterica B4212 only appears to
overlap 83% of its nearest relative in WoL. If the reference does not contain close rela-
tives, weaker cover thresholds should be employed.

Zebra discards the artifacts of reference overlap, catches problematic species that bypass
standard abundance and prevalence filtering, and leads to improved interpretation.
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Supplemental material is available online only.
FIG S1, TIF file, 3.5 MB.
TABLE S1, DOCX file, 0.01 MB.
TABLE S2, DOCX file, 0.02 MB.
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