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ABSTRACT

The prediction of operons in Mycobacterium tuber-
culosis (MTB) is a first step toward understanding
the regulatory network of this pathogen. Here we
apply a statistical model using logistic regression to
predict operons in MTB. As predictors, our model
incorporates intergenic distance and the correlation
of gene expression calculated for adjacent gene
pairs from over 474 microarray experiments with
MTB RNA. We validate our findings with known
examples from the literature and experimentation.
From this model, we rank each potential operon pair
by the strength of evidence for cotranscription,
choose a classification threshold with a true posi-
tive rate of over 90% at a false positive rate of 9.1%,
and use it to construct an operon map for the MTB
genome.

INTRODUCTION

One-third of humans worldwide are infected with the
latent form of tuberculosis (TB), and almost two million
people die each year from the deadly disease. To be
such a successful pathogen, Mycobacterium tuberculosis
(MTB) adapts to myriad stresses at each stage of
infection. Challenges to MTB’s survival include reactive
oxygen and nitrogen species of activated macrophages,
low pH, hypoxia, anti-microbial peptides and starvation
for essential nutrients. In addition, bacteria expelled
from the host are often challenged with exposure to
UV light, dehydration, starvation and low temperature.
Because MTB survives most or all of these chal-
lenges by transcriptional regulation (1), understanding
transcription extends our ability to disrupt MTB’s life
cycle.

Studies of MTB to date suggest that transcription is as
complex and varied as it is in other prokaryotes. For
example, the genome shows approximately 190 putative
transcriptional regulators. Even in the best studied
class, MTB’s 13 different sigma factors, complexity and
unanswered questions are common (2,3) to date only five
(SigA, SigC, SigE, SigF and SigH) have a defined putative
promoter consensus sequence (1). In addition, the genome
contains at least five anti-sigma factors, each of which
conduct post-translational regulation of one or more
sigma factors, and seven genes encoding anti-anti-sigma
factors. Furthermore, the examples of transcripts
studied to date demonstrate that even within a single
well-characterized operon, transcriptional regulation
can be complex in MTB: alternative internal promoters
and competing promoters on the opposite strand have
been identified (4); single genes may be regulated by
multiple promoters (5); and, as in other prokaryotes,
supercoiling plays a role in gene expression (6). Finally,
little is known about transcription termination in MTB; a
recent study found that transcriptional terminators could
be found with only 15% sensitivity between opposite-
strand genes, one of the worst rates for 96 species
examined (7).
Other than genes themselves, operons are the most

basic unit of organization in bacterial genomes, and
they provide the basis for understanding transcriptional
regulation and the entire regulatory network of an
organism. A search of the MTB literature, however,
reveals relatively few well-defined operons (Table 1).
The prediction of a complete operon map of the MTB
genome would be a major milestone in understanding this
important pathogen.
Continual development of computational methods

for operon prediction in bacteria has been underway in
recent years, primarily in Escherichia coli. For example,
Ermolaeva et al. (8) examined conserved gene group-
ings and proximity over a large set of complete
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Table 1. Known operons in MTB, along with the source of published evidence of laboratory confirmation. This table also includes gene pairs (which

may or may not represent complete operons) whose cotranscription was verified in our laboratory by RT-PCR (see Materials and Methods section).

Annotation for genes are derived from Tuberculist (http://genolist.pasteur.fr/TubercuList/). Adjacent genes descriptions are separated by a semicolon

Operon (or gene pair) name Gene pairs Annotation Source

Rv0167-Rv0174 7 CONSERVED HYPOTHETICAL INTEGRAL MEMBRANE PROTEIN YRBE1A;
CONSERVED HYPOTHETICAL INTEGRAL MEMBRANE PROTEIN YRBE1B;
MCE-FAMILY PROTEIN MCE1A; MCE-FAMILY PROTEIN MCE1B;
MCE-FAMILY PROTEIN MCE1C; MCE-FAMILY PROTEIN MCE1D;
POSSIBLE MCE-FAMILY LIPOPROTEIN LPRK

(14)

Rv490-Rv491 1 TWO COMPONENT REGULATORY SYSTEM SenX3;RegX3 (15)
Rv933-Rv0936 3 PHOSPHATE-TRANSPORT ATP-BINDING PROTEIN ABC TRANSPORTER

PSTB; PERIPLASMIC PHOSPHATE-BINDING LIPOPROTEIN PSTS1 (PBP-1)
(PSTS1); PHOSPHATE-TRANSPORT INTEGRAL MEMBRANE ABC
TRANSPORTER PSTC1; PHOSPHATE-TRANSPORT INTEGRAL MEMBRANE
ABC TRANSPORTER PSTA

(16)

Rv0986-Rv0988 2 PROBABLE ADHESION COMPONENT TRANSPORT ATP-BINDING
PROTEIN ABC TRANSPORTER; PROBABLE ADHESION COMPONENT
TRANSPORT ATP-BINDING PROTEIN ABC TRANSPORTER; POSSIBLE
CONSERVED EXPORTED PROTEIN

(17)

Rv1161-Rv1164 3 PROBABLE RESPIRATORY NITRATE REDUCTASE (ALPHA CHAIN) NARG;
PROBABLE RESPIRATORY NITRATE REDUCTASE (BETA CHAIN) NARH;
PROBABLE RESPIRATORY NITRATE REDUCTASE (DELTA CHAIN) NARJ;
PROBABLE RESPIRATORY NITRATE REDUCTASE (GAMMA CHAIN) NARI

(18)

Rv1411c-Rv1410c 1 PROBABLE CONSERVED LIPOPROTEIN LPRG; AMINOGLYCOSIDES/
TETRACYCLINE-TRANSPORT INTEGRAL MEMBRANE PROTEIN

(19)

Rv1477-Rv1478 1 HYPOTHETICAL INVASION PROTEIN; HYPOTHETICAL INVASION
PROTEIN

(20)

Rv1483-Rv1484 1 3-OXOACYL-[ACYL-CARRIER PROTEIN] REDUCTASE FABG1; NADH-
DEPENDENT ENOYL-[ACYL-CARRIER-PROTEIN] REDUCTASE INHA

(21)

Rv1964-Rv1966 2 CONSERVED HYPOTHETICAL INTEGRAL MEMBRANE PROTEIN YRBE3A;
CONSERVED HYPOTHETICAL INTEGRAL MEMBRANE PROTEIN YRBE3B;
MCE-FAMILY PROTEIN MCE3A

(22)

Rv1966-Rv1971 5 MCE-FAMILY PROTEIN MCE3; MCE-FAMILY PROTEIN MCE3B; MCE-
FAMILY PROTEIN MCE3C; MCE-FAMILY PROTEIN MCE3D; POSSIBLE
MCE-FAMILY LIPOPROTEIN LPRM; MCE-FAMILY PROTEIN MCE3F

(23)

Rv2358-Rv2359 1 PROBABLE TRANSCRIPTIONAL REGULATORY PROTEIN; PROBABLE
FERRIC UPTAKE REGULATION PROTEIN FURB

(24)

Rv2431c-Rv2430c 1 PE FAMILY PROTEIN; PPE FAMILY PROTEIN (25)
Rv2594c-Rv2592c 2 PROBABLE CROSSOVER JUNCTION ENDODEOXYRIBONUCLEASE RUVC;

PROBABLE HOLLIDAY JUNCTION DNA HELICASE RUVA; PROBABLE
HOLLIDAY JUNCTION DNA HELICASE RUVB

(26)

Rv2688c-Rv2686c 2 PROBABLE ANTIBIOTIC-TRANSPORT ATP-BINDING PROTEIN ABC
TRANSPORTER; PROBABLE ANTIBIOTIC-TRANSPORT INTEGRAL
MEMBRANE LEUCINE AND VALINE RICH PROTEIN ABC TRANSPORTER;
PROBABLE ANTIBIOTIC-TRANSPORT INTEGRAL MEMBRANE LEUCINE
AND ALANINE AND VALINE RICH PROTEIN ABC TRANSPORTER

(27)

Rv3083-Rv3089 6 PROBABLE MONOOXYGENASE; PROBABLE ACETYL-HYDROLASE/
ESTERASE LIP; PROBABLE SHORT-CHAIN TYPE DEHYDROGENASE/
REDUCTASE; PROBABLE ZINC-TYPE ALCOHOL DEHYDROGENASE
ADHD (ALDEHYDE REDUCTASE); CONSERVED HYPOTHETICAL
PROTEIN; CONSERVED HYPOTHETICAL PROTEIN; PROBABLE CHAIN -
FATTY-ACID-CoA LIGASE FADD13

(28)

Rv3134c-Rv3132c 2 CONSERVED HYPOTHETICAL PROTEIN; TWO COMPONENT
TRANSCRIPTIONAL REGULATORY PROTEIN DEVR; TWO COMPONENT
SENSOR HISTIDINE KINASE DEVS

(29)

Rv3874-Rv3875 1 KDA CULTURE FILTRATE ANTIGEN ESXB; 6 KDA EARLY SECRETORY
ANTIGENIC TARGET ESXA

(30)

Rv3793-Rv3795 2 INTEGRAL MEMBRANE INDOLYLACETYLINOSITOL
ARABINOSYLTRANSFERASE EMBC, INTEGRAL MEMBRANE
INDOLYLACETYLINOSITOL ARABINOSYLTRANSFERASE EMBA,
INTEGRAL MEMBRANE INDOLYLACETYLINOSITOL
ARABINOSYLTRANSFERASE EMBB

(31)

Rv0047c-Rv0046c 1 CONSERVED HYPOTHETICAL PROTEIN; MYO-INOSITOL-1-PHOSPHATE
SYNTHASE INO1

This study

Rv0287-Rv0288 1 ESAT-6 LIKE PROTEIN ESXG; LOW MOLECULAR WEIGHT PROTEIN
ANTIGEN 7 ESXH

This study

Rv1304-Rv1305 1 PROBABLE ATP SYNTHASE A CHAIN ATPB; PROBABLE ATP SYNTHASE C
CHAIN ATPE

This study

Rv1334-Rv1335 1 CONSERVED HYPOTHETICAL PROTEIN; 9.5 KDA CULTURE FILTRATE
ANTIGEN CFP10A

This study

(Continued)
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prokaryotic genomes. Although fruitful, such predictions
can only be made on the fraction of gene pairs that are
conserved across clusters. Other researchers focused on
knowledge of within-species gene organizations and
characteristics. One widely used approach relies on the
well-established notion that the likelihood that adjacent
genes are transcribed in the same operon increases as the
number of base pairs separating the two genes decreases.
For example, Salgado et al. (9) used log-likelihoods based
on distance to compare adjacent genes in an operon to
those not in an operon, later enhancing their predictions
with information about functional classes. Romero and
Karp (10) used the methods of Salgado et al. as a starting
point, improving their predictions by using information
contained in pathway-genome databases at BioCyc. These
authors attempt to enhance distance-based methods with
information about metabolic pathways, protein complexes
and transporters, an approach grounded in the observa-
tion that genes in the same operon often work together in
pathways, processes or multimeric protein(s).

Sabatti et al. (11) added information from potentially
large sets of microarray experiments to inter-gene spacing
and directionality. The incorporation of microarray
expression data in operon prediction, when available, is
natural, since we would expect genes in an operon to be
similarly expressed across a variety of conditions. In the
absence of measurement error, internal secondary
promoters, differential RNA stability or variation in
RNA polymerase processivity (that is to say, in an
imaginary, idealized biology), genes in an operon would
always be perfectly coexpressed. A second group,
Bockhorst et al. (12), also successfully used intergenic
distance and expression data to predict operons in E. coli;
they followed a Bayesian network approach. The syner-
gistic power of intergenic distance and microarray
coexpression to predict operons was further confirmed
when De Hoon et al. (13) used these predictors to
accurately build an operon map for Bacillus subtilis.

Two of the methods described above, after being
developed and evaluated in E. coli, have been used to
predict operons in MTB. Using cross-species conservation
of gene proximity, Ermolaeva et al. (8) offer predicted
operon pairs for MTB at The Institute for Genome
Research (TIGR) (http://www.tigr.org/tigr-scripts/
operons/pairs.cgi?taxon_id=89). As of this writing, this
site explicitly reports data for only a third of the available
genome (1389 of 3999 potential operon pairs). When we
use the 55 known, laboratory-verified operon pairs that
we have identified (see Table 1), we find that the TIGR
cross-species comparative method correctly predicts that
26 of the 55 pairs would be cotranscribed. Of these 26, 16
are explicitly listed as being cotranscribed, the remaining
can be found to be associated as subsets of larger
predicted operons. No information regarding cotranscrip-
tion is reported at TIGR for the remaining 29 of the
55 known operon pairs in MTB.
Romero and Karp (10) use data in their BioCyc

database related to each gene’s pathway, complexes and
functional class (along with intergenic distance) to predict
2509 transcriptional units in MTB (http://biocyc.org/
MTBRV/organism-summary?object=MTBRV). The
accuracy of Romero and Karp’s predictions in MTB
itself was not verified. As of this writing, we found that,
among the 55 operon pairs known to us, BioCyc correctly
predicts 84% (36 of 43) of published operon pairs, but
only 33% (4 of 12) of those not yet published (but which
were confirmed in our laboratory; Table 1). No assessment
of the false positive rate in the BioCyc MTB data set is
available. Reduced performance outside of well-annotated
areas of the genome was predicted by Romero and Karp
(10), and likely results from the reduced pathway, complex
and functional class data in these regions. Overall, the
method’s diminished performance outside E. coli encour-
aged Romero and Karp to advocate for building each
model with species-specific known transcriptional data.
They also point out that supplementing their model with

Table 1. Continued

Operon (or gene pair) name Gene pairs Annotation Source

Rv1465-Rv1466 1 POSSIBLE NITROGEN FIXATION RELATED PROTEIN; CONSERVED
HYPOTHETICAL PROTEIN

This study

Rv1826-Rv1827 1 PROBABLE GLYCINE CLEAVAGE SYSTEM H PROTEIN GCVH;
CONSERVED HYPOTHETICAL PROTEIN CFP17

This study

Rv2745c-Rv2744c 1 POSSIBLE TRANSCRIPTIONAL REGULATORY PROTEIN; CONSERVED 35
KDA ALANINE RICH PROTEIN

This study

Rv2934-Rv2937 3 PHENOLPTHIOCEROL SYNTHESIS TYPE-I POLYKETIDE SYNTHASE
PPSD; PHENOLPTHIOCEROL SYNTHESIS TYPE-I, PROBABLE
DAUNORUBICIN-DIM-TRANSPORT ATP-BINDING PROTEIN ABC
TRANSPORTER DRRAPOLYKETIDE SYNTHASE PPSE; PROBABLE
DAUNORUBICIN-DIM-TRANSPORT ATP-BINDING PROTEIN ABC
TRANSPORTER DRRA; PROBABLE DAUNORUBICIN-DIM-TRANSPORT
INTEGRAL MEMBRANE PROTEIN ABC TRANSPORTER DRRB

This study

Rv3152-Rv3153 1 PROBABLE NADH DEHYDROGENASE I (CHAIN H) NUOH; PROBABLE
NADH DEHYDROGENASE I (CHAIN I) NUOI

This study

Rv3516-Rv3517 1 POSSIBLE ENOYL-CoA HYDRATASE ECHA19; CONSERVED
HYPOTHETICAL PROTEIN

This study

Total 55
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expression data (like Sabatti et al.) might further enhance
operon prediction (10).
The predicted MTB operon maps on TIGR and BioCyc

each offer valuable predictions, yet both have limitations
in scope, power and performance. In this article, we
show that methods which use gene expression data from
microarray experiments substantially improve operon
predictions in MTB, just as they did in E. coli (11,12),
and B. subtilis (13). Unlike the BioCyc and TIGR operon
maps, our method uses data available for all areas of the
genome (distance and coexpression) and works equally
well in uncharacterized operons, where prediction is most
important. We describe our work to organize substantial
expression data (474 microarray experiments), confirm
new operon pairs in the laboratory, build a predictive
model for operon pairs based on intergenic distance and
coexpression data, and evaluate model performance.
Our best model achieves a true positive rate of over
90% at a false positive rate of 9.1%.

MATERIALS AND METHODS

Microarray expression data sets

All microarray experiments were performed using stan-
dard protocols as previously described (34). Previously
published details of sample preparation for those micro-
array experiments can be found in referenced studies listed
in Table 2. The expression values were downloaded from a
local version of Michael Eisen’s AMAD database (http://
www.microarrays.org/) (37). These experiments came in
nine general experimental categories (see Table 2), and
were performed using either amplicon or oligonucleotide
technology.

Organization and cleaning of expression data

In order to calculate the desired gene expression correla-
tions from our data set, we employed several data cleaning
techniques. After extracting the background-adjusted
intensities for each channel from the AMAD database
for the 474 currently held microarray experiments, we
used the R (http://www.R-project.org) package impute
(version 1.0-5) to fill in values for missing data (38).
For any missing values for a gene, the function impute.knn

finds the k-nearest neighbor genes, referencing only
experiments for which the original gene has data. Once
these k-nearest neighbors are found, the average expres-
sion of these neighbors for the experiment which the
original gene has a missing value is used to fill in a
reasonable approximation for that value. We settled on
a k-value of 30 (higher than the default k-value of 10),
since k-values below 30 produced too many missing values
and forced the imputed value to be based on the
experiment average (rather than the more desirable
average from the k-nearest neighbors).

Once all missing values were imputed, we recoded
negative intensities as zeros, since a negative intensity
essentially means that the gene is not being expressed.
We then normalized the expression data to account for
variation between microarrays. Since extreme values in
only one channel (Cy3/Cy5) can skew normalization, we
normalized by the sum of the middle 90% of the data
instead of the sum of all the data.

After normalization, the log ratio of two channels was
taken. Since some intensities were zero, some log
ratios were zero or infinity, which we considered to be
uninformative values. We removed experiments in which
10% or more of the channel ratios were uninformative,
and this left 463 microarray experiments from which to
calculate gene expression correlations.

The expression correlation between gene pairs was
based on the natural logarithm of the ratio of the
normalized two-channel intensities across a set of experi-
ments. Unique correlations for each gene pair were
calculated across all experiments and across each of
twelve subsets of experiments determined by experimental
condition and microarray technology (amplicon or
oligonucleotide; see Table 2).

Laboratory methods

RT-PCR was used to test whether adjacent genes that
represent potential operon pairs (POPs) in fact co-occur
on a single cellular RNA molecule. MTB RNA samples
were extracted, from logarithmic stage grown cells, and
purified by Trizol (Invitrogen) extraction, DNAase treat-
ment and further purified by using an RNA-Easy kit
(Qiagen) as described (34). To further purify the RNA and
reduce the risk of contaminating genomic DNA, RNA
samples were then purified with a second round of
DNAase (Qiagen #79254) treatment followed by two
consecutive RNA cleanup treatments using ‘RNeasy
MinElute’ silica-membrane columns (Qiagen #74204).
This RNA was then incubated with random primers
(Promega #C1181) and reverse transcriptase (Promega
#M5101) to create a cDNA pool. To control for the
possibility of accidental PCR amplification from genomic
DNA not eliminated by the multiple rounds of purifica-
tion, an RT-control was prepared in parallel, which
differed only by the absence of reverse transcriptase.
To maintain buffer continuity between RT-PCR reactions,
reverse-transcription 10� buffer (Promega #A3561) was
used in both reverse transcription and PCR reactions. For
each POP to be tested, MIT’s Primer3 software was used
to design primers anchored in the open reading frames of

Table 2. DNA microarray data sets used in this work

Experimental
treatment

Number of
microarrays

Microarray
technology

Methods
reference

Ethambutol 62 Amplicon (32)
Hydrogen peroxide 28 Amplicon (32)

55 Oligo (32)
Hypoxia 37 Amplicon (33)

32 Oligo (34)
Iron 19 Amplicon (35)
Potassium cyanide 15 Amplicon (32)
Nitric oxide 135 Amplicon (32)

9 Oligo (34)
Protonophores 18 Amplicon Unpublished
Sigma B deletion 48 Oligo Unpublished
Sigma E 14 Amplicon (36)
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adjacent genes. Typically such primers were separated by
200–400 bp, and had annealing temperatures of 55–588C.
(See Supplementary Data for primer details). For each
primer pair, the RT+ and RT� samples described above
were used as templates in PCR reactions via standard
methods. Primer pairs which produced a correctly sized
product from the RT+PCR reactions but not the RT�
control PCR reactions were interpreted as evidence that
an RNA bridging the gene pair was present in the MTB
mRNA pool. Such results were then confirmed from an
independently prepared sample of MTB RNA.

Operon training set

The development of a predictive model for operon pairs in
MTB requires the definition of a training set of known
operon (OP) and non-operon (NOP) gene pairs. Evidence
of 43 operon pairs has been confirmed in laboratories and
subsequently published (Table 1). To build this set further,
we have confirmed 12 new operon pairs (Table 1) using
RT-PCR.

The piloting work using microarrays for operon
prediction in E. coli (11) and B. subtilis (13) used
thousands of well-characterized, same-strand non-operon
pairs to build predictive models. Unfortunately, most or
all other organisms that could currently benefit from
operon prediction (including MTB) have much more
limited experimental verification; this is especially true for
non-operon pairs. To overcome this potential roadblock
to prediction, we use the 1340 pairs of consecutive genes
on opposite strands of DNA as our NOP set. This
substitution is supported by recent work (39,40), which
finds comparable microarray expression between two
types (same-strand versus opposite-strand) of non-
operon gene pairs. However, as described in Price et al.
(40), the distribution of intergenic distance in same-strand
and opposite-strand NOPs should differ; distances for
same-strand NOPs should be greater in general. One
consequence is that our predictive model using expression
and distance will be somewhat conservative and under-
powered—it is more difficult to distinguish OPs from
NOPs using opposite-strand NOPs since their distance
distribution is less distinguishable from the distance
distribution of OPs. Thus, if our predictive model
performs well using our definition of NOP to create a
training set, we have reason to believe the model will
perform even better when predicting operon status of
same-strand gene pairs. Any loss of power from using
opposite-strand gene pairs as NOPs in our training set
will be more than offset by the additional power from the
large number of available NOPs under this definition,
especially when compared to the small number of
laboratory-validated same-strand NOPs in MTB. In
addition, investigations of conserved ‘known’ NOPs in
E. coli (8) and B. subtilis (40) found evidence that many of
them are indeed cotranscribed.

Sequence information

All sequence information on the MTB genome
was obtained from the online database TubercuList,
(http://genolist.pasteur.fr/TubercuList/), based on the

H37Rv strain. Intergenic distance between two genes
was found from the database by subtracting the ending
location on the genome of the first gene from the initial
location on the genome of the second gene.

Statistical methods

We constructed a statistical model for predicting operon
status of each potential operon pair (POP) based on
intergenic distance and expression correlation. We based
our predictive models on logistic regression with the logit
link function. If we designate pi as the probability that
gene pair i is an operon, then the logit is given by

�i ¼ ln
pi

1� pi

� �

and the model equation is

�i ¼ �0 þ �1 � cori,1 þ � � � þ �p � cori,p þ �pþ1 � disti

where dist is intergenic distance and corrl is the correla-
tion of expression among experiments in subset l
(l= 1,2,. . ., p), where subsets of experiments are deter-
mined by treatment (e.g. cyanide, hypoxia and nitric
oxide) and microarray technology (oligo or amplicon).
Using the known OPs and the NOPs as our training set,
estimates of the coefficients of the model are found
through the iteratively reweighted least squares technique.
Using the estimates of the coefficients, we calculated the
estimated mean probability for gene pair i being an operon
pair to be

p̂i ¼

exp �̂0 þ
Pp
l¼1

�̂l � cori,l

� �
þ �̂pþ1 � disti

� �

1þ exp �̂0 þ
Pp
l¼1

�̂l � cori,l

� �
þ �̂pþ1 � disti

� �

where �̂0, �̂1, . . . , �̂pþ1 are the estimates of the model
coefficients.
To place these predictive probabilities on a more

intuitive scale, we use the p̂i values to assign a
‘cotranscription rank percentile (CRP)’ for each gene
pair by simply sorting all operon pairs from highest
predicted probability of being an operon pair
(CRP=100) to lowest (CRP=0) based on the model.
Then, we select an appropriate CRP threshold to achieve a
specified modeling goal (e.g. achieving a certain sensitiv-
ity, achieving a certain specificity, classifying a certain
percentage of gene pairs as operon pairs). Based on the
chosen CRP threshold, each POP in the entire genome can
be classified as being either an operon pair or a non-
operon pair.
Model performance is assessed and compared using

several metrics. The Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC) both balance
goodness-of-fit of a model with model complexity,
where the BIC imposes a more severe penalty on extra
parameters than the AIC (41). Kendall’s tau-a assesses the
difference between concordant and discordant sets out of
all possible sets of gene pairs, where a concordant set of
gene pairs is one in which the pair that is an operon has
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a higher fitted probability of being an operon pair than the
pair that is not an operon (42). The c index provides the
area under the receiver operating characteristic (ROC)
curve, where the ROC curve provides a graphical
representation of the trade off between the false negative
and false positive rates for every possible cutoff in
predictive probabilities (43). In particular, the c index is
then the percentage of all possible pairs of cases in which
the model assigns a higher predictive probability to a
correct case than an incorrect case (43).
Finally, we compared models using cross-validated

measures of overall model accuracy—the proportion of
all gene pairs of known operon status which were correctly
classified. We chose our classification threshold to provide
a true positive rate in our final model of at least 90% while

minimizing the false positive rate. Estimates of overall
model accuracy were determined with 10-fold cross-
validation using the cv.glm function in R. This function
was also used to obtain cross-validated estimates of
specificity and sensitivity for our final model.

RESULTS AND DISCUSSION

Known operon pairs exhibit shorter intergenic distances and
higher expression correlations

Preliminary data exploration verified a pattern of small
intergenic distance and high expression correlation being
associated with operon pairs in our data. Figure 1A shows
that the distribution of intergenic distances for operon

A B

C

Figure 1. Density estimates of (A) intergenic distance and (B) gene expression correlation for known operon pairs (solid) and non-operon pairs
(dashed) using nonparametric kernel density estimates with Gaussian kernels. (C) A scatterplot showing the relationship of coexpression (vertical
axis) and intergenic distance (horizontal axis) for all known operons pairs (red dots) and potential operon pairs (blue dots).
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pairs (OPs) is centered tightly near zero, whereas the
distribution of intergenic distances for non-operon pairs
(NOPs) is spread out with a median at 83 bp. This
supports the hypothesis that intergenic distance can be
used to separate OPs from NOPs in MTB as it has been
used in other organisms.

Evidence that expression correlation distinguishes OPs
from NOPs was also found. Figure 1B presents densities
of gene expression correlations across all experiments. The
mean and median expression correlations for OPs are 0.60
and 0.66, respectively, and 0.16 and 0.14 for NOPs.

To examine the relationship between expression corre-
lation and intergenic distance, we generated a scatterplot
(Figure 1C) with different colors distinguishing known
operon pairs from potential operon pairs. We see that
operon pairs are generally characterized by short inter-
genic distance and high correlation of expression. In fact,
among POPs, most examples of strong coexpression have
relatively short intergenic distance.

Thus, our preliminary graphical analysis shows that our
data are generally consistent with the accepted wisdom:
known operon pairs have shorter intergenic distance and
are more coexpressed than non-operonic pairs, and that
using both coexpression and distance concurrently has
potential to produce even stronger predictions of OPs.

Building and assessing performance of a logistic regression
predictive model

The logistic regression predictive model for a particular
potential operon pair (POP) is based on available data for
that POP. For this work, we have chosen to use the most
recent annotation of MTB (44), but some microarray
experiments predate this reannotation. Because of this,
amplicon microarray experiment data is unavailable for
76 genes, and data from more recent oligo experiments
was missing for 37 of those 76 genes. This missing data
translated into a slightly larger number of missing gene
expression correlations since each individual gene is part
of two gene pairs. To use as much information as possible
for each gene pair, we constructed three different
predictive models based on available data—predictions
for 2572 POPs use intergenic distance and expression
correlations from both oligo and amplicon experiments,
42 use intergenic distance and expression correlations

from oligo experiments and the remaining 45 POPs use
intergenic distance only.
Since we had expression data from a variety of

experiments, both in terms of treatments (cyanide,
hypoxia, nitric oxide, etc.) and microarray technology
(oligo or amplicon), we explored the possibility that
separating the expression data by experiment type would
provide more predictive power of the true operons.
In addition to the varying experimental conditions, not
all the experiments were done at the same time or with the
same microarray platform and thus might vary in quality.
Instead of a single correlation of coexpression across
all experiments, we calculated separate coexpression
correlations within each of the 12 experimental types
(Table 2) and looked for evidence that model performance
was improved.
Thus, for the 2572 gene pairs for which distance,

oligo and amplicon data were available, final predictors in
our logistic regression model were chosen from among
intergenic distance and correlations of coexpression within
each of the twelve experimental types. Insignificant
predictors were removed through backward elimination
methods. Table 3 (Model A) shows the estimated
coefficients, SEs and significance tests for our final logistic
regression model for the POPs with complete data. Five
of the twelve experimental types proved significantly
helpful in distinguishing OPs from NOPs.
In Table 4, we compare the model in Table 3A

(Model A) with several other models, including a model
with gene expression correlation for all experiments as the
only correlation predictor (Model G); a model with two
correlation predictors, one for oligo microarrays and the
other for amplicon microarrays (Model F); and the full
model with gene expression correlations for all 12
experiment types (Model H). Several statistics summariz-
ing model performance are presented, including c index
(the area under the ROC curve), Kendall’s tau-a, AIC and
BIC. Note that lower values of the AIC and BIC indicate
superior model performance. For each measure except
BIC, Model A from Table 3 was preferable to every other
model except the full model. With BIC, Model A was the
best performing model of all, which reflects our model
building efforts to optimize model fit while minimizing
unnecessary complexity. A few results in Table 4 are

Table 3. Logistic regression coefficients and associated Wald tests of significance for three models

Predictor Type Model A Model B Model C

Est. SE Z P-value Est. SE Z P-value Est. SE Z P-value

intercept �5.88 0.487 �12.1 50.001 �5.60 0.477 �11.7 50.001 �2.54 0.149 �17.0 50.001
Distance �0.012 0.003 �4.29 50.001 �0.012 0.002 �5.01 50.001 �0.010 0.002 �5.25 50.001
Ethambutol Amplicon 2.491 0.772 3.23 0.001
H2O2 Oligo 1.371 0.592 2.32 0.021 1.934 0.551 3.51 50.001
Hypoxia Oligo 2.217 0.588 3.77 50.001 2.729 0.589 4.63 50.001
Potassium cyanide Amplicon 1.507 0.520 2.90 0.004
Sigma B Oligo 2.284 0.623 3.67 50.001 3.027 0.600 5.04 50.001

Model A: To be used for gene pairs with distance, oligo and amplicon data.
Model B: To be used for gene pairs lacking amplicon data.
Model C: To be used for gene pairs with no expression data.
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especially pertinent. For instance, we have quantitative
evidence that (i) adding coexpression data to intergenic
distance clearly improves model performance (Model C
versus all other models); (ii) adding data from amplicon
microarray experiments improves upon models with
intergenic distance and data from oligo experiments
(Model A versus Model B; Model D versus Model F;
Model E versus Model H) and (iii) using separate
coexpression correlations from each experiment type
leads to improved predictive performance when compared
with models using a single term for coexpression across all
experiments (Model A versus Model F and Model G).
In order to accurately predict operons in gene pairs for

which amplicon data was not available (42 POPs with
distance and oligo data), a new logistic regression model
was developed (Model B). As in Model A, backward
elimination methods were used to choose a final set of
predictors from among intergenic distance and correla-
tions of coexpression within the four experimental
subgroups using oligo microarrays. The same training
set of operons used in Model A was used to build Model
B. Table 3B shows the estimated coefficients, SEs and
significance tests for our final logistic regression model
which should be used for prediction for the POPs with
distance and oligo data only. It is not surprising that those
oligo experiments which were found significant in the
primary model (Table 3A) were also found significant in
this model.
For the 45 POPs with no expression data at all, we

developed a logistic regression model on the same training
set of operons using only intergenic distance as a
predictor. This model (Model C) appears in Table 3C.
As expected, intergenic distance remains a significant
predictor of operon status.
To illustrate these model comparisons, we created ROC

curves, plotting false positive rates versus true positive
rates. The strongest predictive models maximize the true
positive rate while minimizing the false positive rate; in
other words, they have maximum proximity to the upper
left-hand corner of the graph. For instance, the ROC
curves in Figure 2 show that the distance only model
(Model C; dotted line) is inferior to the models
with distance and expression data (solid and dashed).

In addition, the model with expression data from both
amplicon and oligo experiments (Model A; solid line)
performed significantly better than the model with
expression data from only oligo experiments (Model B;
dashed line).

Using logistic regression modeling to predict an operon
map forMTB

Figure 2 demonstrates that expression data can be used as
a powerful tool for operon prediction in MTB; our current
model (Table 3, Models A–C) classifies 39.3% of POPs
as operon pairs, and achieves a true positive rate of 90.8%
at a false positive rate of 9.1%. These rates are
comparable with some of the best published to date,
even in E. coli. For example, Sabatti et al., who piloted the
use of expression data and distance to predict operons in
E. coli, report a true positive rate of 88% at a false positive
rate of 12% (43). Romero and Karp, whose method does
not use expression data for E. coli but leverages the
exhaustive knowledge of pathways and complexes in this
best characterized of prokaryotes, report a true positive
rate of 91% with a false positive rate of 13% (45). De
Hoon and colleagues, who (like us) extend Sabatti’s
methods to another genome, achieve a true positive rate of
88.8% with a false positive rate of 12.1% in B. subtilis
(13). Our model’s performance compares even more
favorably with the first generation of MTB operon
predictions available at TIGR (which finds 47% of
known operon gene pairs) and BioCyc (which finds 84%
of published pairs but only 33% of unpublished ones).
Unlike the BioCyc and TIGR operon maps, our method
uses data available for all areas of the genome (distance
and coexpression) and should work equally well in
uncharacterized operons, where prediction is most
important. In addition, since we used opposite-strand
non-operon pairs in our training data set, the model
performance we observed should improve as laboratory
validated, same-strand non-operon pairs (whose inter-
genic distance distributions are more distinguishable from
that of operon pairs) are used for training.

Finally, our ongoing work to validate model predic-
tions and expand our training data with additional

Table 4. Measures of performance for operon prediction from logistic regression models with different sets of explanatory variables

Model label and description c Index Kendall’s tau-a BIC AIC Overall accuracy

(A) Dist+Oligo(3)+Amplicon(2) 0.954 0.072 284.9 248.5 0.908
(B) Dist+Oligo(3) 0.946 0.071 300.1 274.1 0.884
(C) Distance 0.777 0.044 432.5 422.1 0.716
(D) Dist+Oligo(1) 0.929 0.068 293.4 277.8 0.876
(E) Dist+Oligo(4) 0.947 0.071 304.3 273.2 0.889
(F) Dist+Oligo(1)+Amplicon(1) 0.935 0.069 292.1 271.3 0.887
(G) Dist+Coexpression(1) 0.921 0.067 303.4 287.8 0.876
(H) Dist+Oligo(4)+Amplicon(8) 0.960 0.073 316.1 243.3 0.905

In the model descriptions, Oligo(1) means that a single correlation of expression is used for all oligo experiments, Oligo(4) means that separate gene
expression correlations are used for each experiment type involving oligo technology, and Oligo(3) means the correlation from one experiment type
involving oligo technology was removed via backward elimination. Similarly, Amplicon(1) means that a single correlation of expression is used for all
amplicon experiments, Amplicon(8) means that separate gene expression correlations are used for each experiment type involving amplicon
technology and Amplicon(2) means the correlations from six experiment types involving amplicon technology were removed via backward
elimination. Finally, Coexpression(1) means that a single correlation of expression was used for all experiment types.
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laboratory-identified pairs, though preliminary, also sup-
ports the value of our model (Figure 3).

CONCLUSION

We have predicted the operon structure of MTB using
intergenic distance, microarray expression data and
information about the conditions of the microarray
experiments. A predictive logistic regression model based
on these inputs outperformed alternative models without
expression data or even with all expression data condensed
into a single correlation term.

Our predictive model produced a predictive probability
that each potential operon pair in the MTB genome is
truly an operon pair, and we transformed those predictive
probabilities into cotranscription rank percentiles (CRPs).
In order to simplify presentation and interpretation, we
converted these continuous outputs into a discrete set of
classifications by selecting a threshold for determining
whether or not a potential operon pair should be classified
as an operon. Although this binary classification know-
ingly oversimplifies the underlying biology (e.g. ignoring
growing evidence of internal promoters, alternative
transcriptional start sites and internal readthrough termi-
nators), it is useful because it makes assembly of a
genome-wide map of operon structure straightforward. In
our case, we defined a CRP threshold to produce a true
positive rate of at least 90% while minimizing the false
positive rate. Our model performance—cross-validated
sensitivity of 90.8% with specificity of 90.9%—compares
favorably with models developed in the much better
characterized ‘model organisms’ in E. coli (45) and B.
subtilis (13). By applying this 90% true positive threshold

to the data, it is straightforward to generate a complete list
of predicted operons (see Supplementary Data).
We have also made our full data set available to

researchers who may want to further explore model
building and performance (see Supplementary Data).
The data contains all model inputs and outputs which
we considered—intergenic distance, coexpression correla-
tions by experiment type, predictive probabilities and
cotranscription rank percentiles—for all 3999 gene pairs in
MTB. While we believe the models and predicted
cotranscription map for the entire MTB genome presented
in this article represent a rich and complete view of the
currently existing data, we also believe that understanding
of MTB can be further enhanced using this data as a base.
For example, researchers might wish to examine the
impact of different thresholds for classification as an
operon pair. In addition, researchers can update this data
as new operons or non-operons are confirmed, or they can
add additional potential predictors as more is learned
about the biology of MTB. The accelerating pace of
molecular research in this important pathogen is certain
to provide additional data with which to refine the
predictions described in this work, forming a solid
empirical foundation for our future understanding of
MTB transcription.

Figure 3. To further test the predictions of the model described in this
work, two operons were subjected to additional laboratory testing.
Starting from a foundation of gene pairs we have successfully amplified
in the past in our laboratory (shown with asterisk) we selected adjacent
newly predicted operon pairs and tested them by RT-PCR. In the
summary table of results (A), gene pairs without an asterisk are
therefore new results. For each gene pair, the intergenic distance,
coexpression rank percentile and model prediction are shown. The final
column indicates whether we have successfully verified that the gene
pair coexists on a single RNA molecule by RT-PCR as described in the
Materials and Methods section. Panel B shows some of the associated
gel image data. Specifically, of the six newly predicted operon pairs
tested, we were able to confirm all but one by generating a PCR
fragment. The lone exception (Rv1462-Rv1463) may indicate (i) they
are not cotranscribed as predicted, (ii) we have not currently (but may
eventually) amplify a fragment which bridges this pair by RT-PCR or
(iii) other factors are at work which could confound RT-PCR. As a
result, we have labeled Rv1462-Rv1463 ‘unconfirmed’ in the table.

Figure 2. ROC curves comparing three predictive models. The best
model shown (Model A; solid line) uses intergenic distance and
coexpression data from oligo and amplicon microarrays, while the next
best model (Model B; dashed line) uses intergenic distance and
coexpression data from only oligo microarrays and the poorest
performing model (Model C; dotted line) uses only intergenic distance.
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