
INTRODUCTION 

Stroke, a neurological disorder attributed to focal injury of vascular 
origin to the central nervous system, is the third-leading cause of 
death worldwide and an important cause of disability in older 
adults.1-3) Approximately one-third of patients die owing to stroke, 
one-third experience secondary recurrent strokes, and most of the 
remaining patients live with mobility limitations.4) More than 80% 
of stroke survivors have gait impairment and often cannot walk in-
dependently to perform daily activities.5) Stroke-related disabilities 
are largely responsible for low physical performance, especially 
among older adults, and can also lead to sarcopenia because physi-
cal performance is a key aspect in sarcopenia development.6-8) In-
deed, hemiparetic stroke can result in muscle abnormalities with 
denervation, disuse, inflammation, and remodeling of muscle tis-
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sues.9) This may be related to the disrupted synaptic transmission 
of motor neurons that innervate muscle fibers after stroke, which 
can lead to decreased number of motor units and changes in mus-
cle structure.10) Hence, appropriate interventions are needed to 
prevent these changes. Identifying effective treatment strategies to 
improve gait disorders and the consequent loss of muscle mass af-
ter stroke is warranted.11) New modalities such as functional elec-
trical stimulation (FES) are the most commonly used techniques 
to recover from foot drop.12)  

FES dates back to the 1700s when Luigi Galvani conducted ex-
periments on the leg muscles of frogs.13) In the 1800s, Guillau-
me-Benjamin Duchenne, who described the muscle disease 
“Duchenne muscular dystrophy,” developed a non-invasive tech-
nique to stimulate muscles using electric stimulus applied to the 
surface of the skin.13) Although FES has been utilized for several 
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decades, it was not until the 1960s that its therapeutic uses and ef-
fects on skeletal muscles were more commonly reported.14) In 
1961, Liberson et al.15) introduced a novel idea for the correction 
of gait disorder using electrical stimulation. Subsequent studies 
have reported that FES is an effective method to correct gait disor-
ders in individuals post-stroke.16,17) Two meta-analyses also as-
sessed the therapeutic effects of FES on muscle strength and phys-
ical performance in post-stroke patients; however, they did not 
consider muscle mass.18,19) Given recent findings on stroke-related 
sarcopenia, studies on the effect of FES on muscle mass, muscle 
strength, and physical performance should be systematically exam-
ined, especially in older adults. Therefore, this study reviewed the 
therapeutic effects of FES on physical performance and proposed 
hypotheses for its subsequent effects on muscle mass and muscle 
strength in post-stroke older adults. 

FUNCTIONAL ELECTRICAL STIMULATION 

Principles of FES 
FES is the clinical application of electric current to a decentralized 
muscle. Neuromuscular electrical stimulation involves placing 
electrodes on a motor point and sending an electric current to pro-
duce muscle contraction.1) The technique can generate functional 
movements in individuals with paralysis caused by damage to the 
central nervous system. It entails the use of a low-energy electrical 
pulse and generates muscle contractions in a sequence to promote 
tasks such as walking or grasping.20) Specifically, FES electrically 
stimulates the dorsiflexor muscles (i.e., the tibialis anterior [TA]) 
of the foot, which facilitates ankle dorsiflexion during the swing 
phase of gait and allows for a more natural gait pattern.14) 

FES has several advantages for gait training in patients with 
stroke. It can be used to enhance muscle strength and physical per-
formance by increasing the range of motion and decreasing muscle 
weakness and spasticity.1,2,14) FES can also be used to relearn re-
cruitment and timing of muscle activation in the paretic lower 
limb, which further helps in producing a normal gait. Individuals 
who experience stroke may have foot drop or weakness in the mus-
cles lifting the foot during walking, which can further lead to falls 
or secondary health problems.21,22) If muscle contraction is appro-
priately timed and coordinated, gait performance can be facilitated 
in individuals with paralyzed lower extremities, such as patients 
who experience stroke.23) Thus, FES activation of muscles in the 
paralyzed limb is important to improve gait performance. 

Types of Stimulation in FES 
Electrical stimulation can be classified into invasive and non-inva-
sive stimulation electrodes. Invasive stimulation electrodes are fur-

ther separated into implanted and percutaneous electrodes, which 
differ in their placement duration and depth. Implanted electrodes 
are more suitable for longer-term use than percutaneous electrodes 
and are placed near the target nerve. Percutaneous electrodes are 
more suitable for short-term use than implanted electrodes and 
typically penetrate the skin by partially stimulating the targeted 
motor neurons.24) The typical current amplitude for both implant-
ed and percutaneous electrodes is 25 mA. Invasive stimulation 
electrodes commonly require surgery; therefore, their placement 
and electrical intensity cannot be changed. In contrast, non-inva-
sive stimulation electrodes self-adhere to the body surface. Unlike 
the fixed current amplitude of invasive stimulation electrodes, the 
typical current amplitude for non-invasive stimulation varies from 
2 mA to 120 mA. Their placement on the skin also facilitates early 
intervention, which results in better recovery. Moreover, the elec-
tric intensity can be modified without surgery.25) However, target-
ing deep muscles is not feasible because stimulation of these mus-
cles often requires greater intensity, which may result in stimulating 
untargeted muscles.  

No studies have directly compared invasive and non-invasive 
electrical stimulation in post-stroke patients. However, previous 
studies have demonstrated the effectiveness of both methods in 
patients with spinal cord injury (SCI). Demchak et al.26) reported a 
greater cross-sectional area of the vastus lateralis muscle in the leg 
undergoing non-invasive electrical stimulation than that of the 
non-stimulated leg. Gad et al.27) also reported a higher increase in 
handgrip strength in the presence of non-invasive stimulation. The 
invasive approach also showed a restoring effect on walking and 
independent standing in individuals with SCI.28,29) Thus, both in-
vasive and non-invasive electrical stimulation can help increase 
muscle cross-sectional area and muscle strength in patients with 
SCI. Furthermore, selecting an appropriate electrical stimulation 
method according to the patient’s condition is recommended. 

Mechanisms of FES 
Although the clinical effects of FES on gait patterns have been re-
ported,2,17) the mechanism is not yet clearly understood. “Central” 
and “peripheral” mechanisms have been proposed to describe the 
therapeutic effects of FES. The peripheral mechanism of FES in-
volves improving the muscle strength, flexibility, range of motion, 
and muscle spasticity of the paralyzed limb. While these improve-
ments in muscle fitness may appear to have lasting effects, none of 
the peripheral mechanisms can explain these lasting effects.30,31) In-
stead, the central mechanism has attracted increasing attention to 
account for these effects. The central mechanism of FES is as fol-
lows (Fig. 1). First, FES can stimulate both afferent sensory and 
motor nerve fibers. A previous preclinical showed that a change in 
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afferent sensory signals was sufficient to reorganize the motor cor-
tex.32) Prolonged peripheral stimulation can induce excitability of 
the human motor cortex and reorganize the motor networks of the 
corresponding muscles.33,34) The results of studies suggest that 
FES-triggered afferent feedback may facilitate persistent brain plas-
ticity. Second, electrical stimulation can antidromically activate 
motor nerve fibers, which are then polarized when the antidromic 
impulses of the fibers reach the anterior horn cell. The combina-
tion of FES-induced antidromic impulse and voluntary movement 
promotes pre- and postsynaptic coupling and synaptic remodel-
ing, which are necessary for changes in neural plasticity.30) Thus, 
these two hypotheses have been proposed as plausible mecha-
nisms by which FES corrects and improves gait patterns. 

Therapeutic Effects of FES on Gait in Post-stroke Patients 
The benefits of FES on gait performance of patients with chronic 
stroke are summarized in Table 1. In their single-subject study, 
Daly et al.35) reported that gait training with functional neuromus-
cular stimulation improved the gait patterns in older adults with 
chronic stroke. Specifically, the use of a combined treatment result-
ed in significant improvements in volitional knee flexion function 
compared to conventional treatment alone. Israel et al.36) reported 
a case series of stroke patients, in which two participants showed 
improved functional ambulation and decreased ankle plantarflex-
ion, demonstrating that overground gait training with FES can im-
prove foot clearance during gait. In addition, a pilot study reported 
that patients who had experienced a stroke produced greater pro-
pulsive force via the combination of treadmill and overground 

walking at a maximal speed with FES, which was accompanied by 
improvements in functional balance and walking ability.37) As bal-
ance ability is an important goal of stroke rehabilitation, a recent 
study reported that the combination of balance training with FES 
was is acceptable and effective in improving static and dynamic 
balance.38) In a long-term follow-up randomized controlled trial 
over 12 months, FES showed similar effects to ankle-foot orthosis 
in all primary outcomes related to gait quality and function, sug-
gesting that FES may be an appropriate alternative to orthosis for 
individuals with chronic stroke.39) 

FES treatment of the dorsiflexors is effective in correcting foot 
drop to balance gait patterns after stroke but not in correcting 
asymmetric weight-shifting during gait.36) One reason for the 
asymmetric gait pattern is the lack of activation of the hip abduc-
tors, which work as pelvic stabilizers.40) A previous study reported 
that FES-triggered gait training of the gluteus medius (GM) and 
TA improved gait velocity, dynamic balance, and gait symmetry 
during walking, among patients aged < 60 years.41) In that study, 
FES applied to the GM stabilized the pelvic muscles in the stance 
phase, while FES applied to the TA strengthened the ankle dorsi-
flexors in the swing phase, which improved functional gait perfor-
mance in individuals with chronic hemiparetic stroke. These find-
ings were consistent with those reported by Kim et al.,42) who 
demonstrated that FES applied to the GM in the stance phase and 
TA in the swing phase of gait improved gait performance in pa-
tients who had experienced a stroke. Specifically, the combined ef-
fect of GM activation with TA generates a more normal gait pat-
tern than that generated by TA activation alone.42) Consequently, 
FES treatment of the hip abductors and dorsiflexors has the poten-
tial to improve gait symmetry and gait speed during walking. The 
recovery of stroke-induced gait disorders through FES treatment 
in middle-aged patients aged < 60 years may have a positive effect 
on sarcopenia prevention in those aged > 60 years. 

As in chronic stroke, FES also affects physical performance in 
patients with subacute stroke, as summarized in Table 2.43) Several 
studies have reported that FES can increase dorsiflexor strength in 
the swing phase of gait to prevent foot drop after stroke, which can 
further improve gait performance.21) Tong et al.44) reported that the 
therapeutic combined effect of FES and gait training was superior 
to gait training alone in individuals after acute stroke. They report-
ed significant improvements in Barthel Index, Berg Balance Scale, 
Functional Ambulation Categories scale, 5-m timed walking test, 
and Motricity Index in the combination group compared to those 
in the training alone group after 4 weeks of treatment. Moreover, 
these improvements persisted even after 6 months. In one pilot 
study, the “gait training with FES” group had a larger effect size of 
gait speed than the “gait training only” group, indicating a superior 

(4) Reorganize the 
motor network and 
brain plasticity

(1) FES for
stimulation

FES

(3) Excitability of 
motor cortex

Sensory pathway

Motor pathway

(2) Stimulate
both sensory
and motor
nerve fiber

Fig. 1. The central mechanism of functional electrical stimulation 
(FES).
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treatment effect; however, no significant differences were ob-
served.45) Another pilot study showed that active cycling training 
with FES may be effective in improving gait velocity in the sub-
acute recovery period after stroke, although no group effect was 
found.46) The results of these pilot studies may have been more ro-
bust if the sample sizes were larger. A study comparing the effect of 
active interventions involving leg cycling with and without FES 
performed three times weekly for 20 minutes each session for 4 
weeks showed improved walking and balance abilities in the FES 
group.47) Thus, the application of FES in the subacute phase of 
stroke may have a positive effect on physical performance. Several 
studies have demonstrated that FES helps patients with subacute 
and chronic stroke recover from low physical performance. 

Therapeutic Effects of FES on Muscle Mass and Strength in 
Post-stroke Patients 
However, few studies have demonstrated the effectiveness of FES 
in increasing muscle mass and strength in patients after stroke, es-
pecially in older adults. Several studies showed that FES signifi-
cantly improved muscle strength in middle-aged patients with sub-
acute and chronic stroke.48-50) Dorsiflexor muscle strength signifi-
cantly increased by 56.6% in the “combination of FES and conven-
tional rehabilitation” group and by 27.7% in the “conventional re-
habilitation alone” group.49) These findings can be explained by the 
fact that FES reduces muscle spasticity through motor recovery, 
which further improves muscle strength. In addition, 18 patients 
with subacute and chronic stroke who participated in a 12-week 
conventional rehabilitation program combined with FES showed 
significantly improved dorsiflexor strength, measured by surface 
EMG signal.48) The combined effects of FES and rehabilitation 
also increased the maximal voluntary contractions of the dorsiflex-
ors in middle-aged patients with stroke.50) The previous studies 
showing that FES increased muscle strength in middle-aged pa-
tients with stroke suggest the positive effects of FES on muscle 
mass, which is positively correlated with muscle strength. Muscle 
mass and strength may also be correlated in stroke survivors.51) 
Most studies were conducted among participants with a median 
age of 50 years, an age range that also encompasses older 
adults.48-50) Therefore, the same results may be observed in older 
adults, although studies with larger samples of older adults are re-
quired. Moreover, FES significantly restored muscle mass in de-
nervated muscles of patients after SCI, although the patient age 
was relatively low.52) As stroke and SCI share common features, 
FES may also restore muscle mass in post-stroke patients. 

In addition, FES may improve muscle mass by altering mus-
cle-specific transcriptional mechanisms.53) During muscle contrac-
tion, muscle fibers produce and release myokines, which have local 

and systemic effects on the body.54) FES in older adults changes 
this myokine secretion, especially that of insulin-like growth fac-
tor-1 (IGF-1).55) A previous study showed that neuromuscular 
electrical stimulation induced increased expression of IGF-1 and 
its downstream pathways, a well-known major anabolic signal for 
skeletal muscle development, and decreased expression of MuRF-
1 and Atrogin-1, which are muscle atrophy-related ubiquitin ligase 
genes.56) Considering these changes at the molecular level, FES 
may also be effective in counteracting muscle atrophy in older 
adults. 

CONCLUSION 

The findings of the current review suggest some benefits of FES in 
improving physical performance and muscle strength and increase 
the possibility of its subsequent positive effects on muscle mass in 
older adults with stroke. FES can also facilitate static and dynamic 
balance activities by strengthening weakened dorsiflexors in the 
swing phase and hip abductors in the stance phase to support 
weight-bearing and upright posture. Thus, FES, especially when 
combined with rehabilitation, can be used to optimize physical 
performance, including gait performance, and ameliorate the con-
sequent loss of muscle mass and strength in older adults after 
stroke. 
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