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N,N-Dimethylformamide (DMF) is globally used as an organic solvent in the production of synthetic leather and resins because of 
its low volatility, making it an attractive industrial material. Despite its excellent property as a chemical solvent, utilization of DMF 
is somewhat controversial nowadays due to its hazardous effects on exposed workers in work places. Many toxification cases are 
being reported globally and the number of cases of liver damage is still increasing in developing countries. On account of this, a 
series of epidemiologic surveys are being conducted to understand the degrees of liver damage caused by DMF exposure. Fur-
thermore, many investigations have been performed to clarify the mechanism of DMF-induced liver toxicity using both human 
and experimental animal models. This review summarizes the current occupational cases reported on liver damage from workers 
exposed to DMF in industrial work places and the research results that account for DMF-induced liver failure and possible car-
cinogenesis. The findings reviewed here show the synergistic toxicity of DMF exposure with other toxicants, which might occur 
through complicated but distinct mechanisms, which may extend our knowledge for establishing risk assessments of DMF expo-
sure in industrial work places. 
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Introduction

N,N-Dimethylformamide [DMF, formula; (CH3)2NC(O)H] is 

a representative solvent used in factories handling polyurethane 

materials and acrylic fibers [1,2]. DMF is also utilized in the 

pharmaceutical industry in pesticide formulation and in the 

production of  synthetic leathers, surface coatings, films, and 

fibers [1,2]. This colorless solvent is miscible with most organic 

liquids as well as water. DMF also exerts low volatility, which 

makes it popular as a representative chemical solvent in various 

industries. The worldwide consumption of DMF in 2001 was 

~285,000 tons and most of it was used as an industrial solvent 

[3,4]. In Korea, the amount of DMF utilized in industries was 

73,385 tons in 2004; more than 3,600 workers handled DMF 

in their work places [5,6]. Among the work places, chemical 

manufacturing factories accounted for 46% of  total use, fol-

lowed by textile-producing industries, which reached 16%. In 

2007, the amount of  DMF consumed was further increased 

up to 100,501 metric tons, indicating that DMF is still used in 

numerous industries worldwide [6].

Toxic Effects of Occupational  
Exposure to DMF

As the amount of DMF utilization has increased, its potential 

toxic effects have also gained attention. During the last decades, 

several toxification cases have been reported in work places 
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that deal with DMF [7-11]. The most prevalent disorders found 

in the workers exposed to DMF were liver toxicities, including 

hepatitis, fibrosis, cirrhosis, and cancer [7-11]. Other symp-

toms, such as alcohol intolerance, possible embryotoxicity, and 

teratogenicity, were also found [12-15], raising the necessity of 

establishing strict instructions and regulations for the utiliza-

tion of DMF. Based on its versatile applications and severity of 

toxic effects, DMF has been classified as one of the four major 

compounds of precedence for human field studies by the Na-

tional Toxicology Program (NTP) of the US National Institute 

of Environmental Health Sciences (NIEHS) [16]. In the United 

States, the time weighted average threshold limit value (TWA-

TLV) for DMF in ambient air is 10 ppm in the work places 

[1]. The American Conference of  Governmental Industrial 

Hygienists (ACGIH) recommended 15 mg/L and 40 mg/L as 

the biological exposure indices (BEIs) for the concentrations of 

N-methylformamide (UNMF) and N-acetyl-S-(N-methylcar-

bamoyl)cysteine (U-AMCC) in urine, respectively, which are 

two major metabolites of DMF [1].

In Korea, since the first patient with acute hepatitis that 

was induced by DMF exposure was reported in 1993 [17-26], 

the extent of damage from DMF exposure has been on the rise 

in parallel with increases of  the amount of DMF utilization. 

Although some regulations and guidelines for workers dealing 

with DMF were established by the Occupational Safety and 

Health Act [6], there are still many accidental cases due to in-

sufficient education and negligence in management.

A Generalized Pathway of DMF 
Metabolism in the Liver

Since toxic effects from workers inflicted by occupational 

exposure to DMF had drawn attention worldwide, a num-

ber of  studies have been performed to clarify the molecular 

mechanism of DMF-induced toxicity. DMF can be absorbed 

easily through oral, dermal, or inhalation exposure [2,7,9,10]. 

Fig. 1. A schematic cascade of DMF 
metabolism in vivo. Asterisk represents a 
major urinary metabolite of DMF. DMF: 
Dimethylformamide, CYP2E1: Cytochrome 
P-450 2E1.
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Following absorption, DMF is evenly distributed, metabo-

lized mainly in the liver, and rapidly excreted in the form of 

metabolites through urine (Fig. 1) [7,10,27-31]. A series of 

studies have shown that DMF is N-methylated by microsomal 

enzymes in the liver, and that cytochrome P450s plays a role in 

the biotransformation of DMF [27,32-34]. Thus, the toxic ef-

fect elicited by DMF exposure is much more severe in the liver 

than in any other organ, presumably because its metabolism is 

mainly catalyzed by hepatic cytochrome P450s [27,32-34]. The 

hydroxylation of methyl moieties is the preceding step of DMF 

metabolism, resulting in the formation of N-(hydroxymethyl)-

N-methylformamide (HMMF), the major urinary metabolite in 

both humans and animals. Following hydroxylation, HMMF 

decomposes to N-methylformamide (NMF). Enzymatic oxida-

tion of the N-methyl moiety of NMF yields N-(hydroxymethyl)

formamide (HMF), which then degenerates into formamide. 

However, confusion arose because HMMF, which is stable in 

an aqueous phase, was decomposed to NMF upon exposure to 

high temperature in a gas chromatography column [29,33,35]. 

Oxidation of  the formyl group is another pathway for NMF 

metabolism to proceed, resulting in the production of N-acetyl-

S-(N-methylcarbamoyl)cysteine (AMCC), which has been 

demonstrated to be a urinary metabolite in humans and rodents 

[29,32-34]. Mráz et al. [34] compared three DMF metabolites 

(i.e., HMMF, NMF, and AMCC) in these species. AMCC is a 

primary DMF metabolite in humans, but it is only a minor me-

tabolite in rodents, with the mechanism of DMF metabolism 

remaining unclear. A reactive intermediate (presumably methyl 

isocyanate; a more reactive carbamoylating metabolite) is pro-

duced by the same pathway. Although indisputable supporting 

experimental data have not been reported yet, AMCC may be 

the putatively toxic metabolite [33,34]. 

Case Reports on the Outcomes of 
Occupational Exposure to DMF

Clinical reports on liver toxicity
The toxic effect of  DMF has been investigated in a number 

of species following several routes of administration. DMF is 

generally absorbed into the body through dermal contact or 

inhalation [2,7,9,10]. Hepatotoxicity caused by DMF exposure 

has been studied in humans and a variety of animals upon both 

acute and subchronic exposure. The acute toxicity of  DMF 

exposure through inhalation has also been considerably well 

studied [2,9,10]. 

Chronic liver disease was found in workers exposed to a 

DMF level of < 30 mg/m3, which is the threshold limit value 

(TLV) recommended by ACGIH. No significant liver dysfunc-

tion was observed in workers exposed to DMF levels of 0-47.7 

mg/m3 (0.3-15.5 ppm) in the air, according to the report by 

Lauwerys et al. [36]. Wang et al. found hepatic dysfunction in 

workers that were chronically exposed to air levels of  DMF 

of 77-186 mg/m3 or 25-60 ppm [37] and, in an epidemiologic 

study of chronically exposed workers with long-term follow-up, 

Redlich et al. studied both acute and chronic effects of expo-

sure to DMF, showing fat accumulation in the liver in workers 

exposed for several years [38]. According to the report by Wang 

et al., there was a considerable association between a higher 

occurrence of  liver abnormalities, as determined by elevated 

serum transaminase levels, and a higher degree of DMF expo-

sure in 183 workers that were examined [37]. Another study 

performed by volunteers in an exposure chamber showed that 

~40% of overall DMF exposure was due to dermal absorption 

[39]. Mráz and Nohová [40] studied the effect of skin penetra-

tion of DMF liquid or vapor in workers by using two methods: 

a “dipping experiment” (i.e., dipping one hand up to the wrist 

in DMF solution for 2 to 20 min and a “patch experiment” (i.e., 

applying 2 mM of DMF to the skin to be absorbed). The study 

showed that DMF exposure through skin contact contributes to 

a great degree with respect to DMF-induced total body burden, 

as shown by both plasma parameters of liver injury (i.e., ALT, 

AST, and γ-GT) and the content of DMF metabolites detected 

in urine. Therefore, protection of skin contact from exposure 

to DMF might be a critical issue in occupational health [36, 

39,40]. 

Numerous research groups investigated the effects of 

other factors on liver damage induced by DMF exposure. Chiv-

ers reported that simultaneous exposure to DMF with alcohol 

consumption caused intolerance to alcohol, termed as ‘disulfi-

ram-like effect’, possibly resulting from the accumulation of ac-

etaldehyde following the blocking of aldehyde dehydrogenase 

activity [41]. This effect was observed in humans, although the 

extent of exposure to DMF was relatively small [42]. Another 

study conducted by Luo et al. [43] revealed that the hepatitis 

B virus infection and higher BMI score had a synergistic effect 

with DMF exposure in causing liver failure and that the viral 

hepatitis infection intensified the degree of  liver damage in 

workers exposed to DMF. 

Studies on DMF toxicity in animal models
Several research groups studied the functional and morphologi-

cal changes in the livers of animals administered with DMF by 

various routes. The doses of DMF reported in the literature to 

cause liver toxicity vary significantly depending on species and 

routes of administration [7]. In an acute exposure model, the 

livers of animals exposed to DMF exhibited fatty degeneration 
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and necrotic changes in rabbits and cats after administration of 

either lethal or sub-lethal doses of DMF orally [44]. Rats receiv-

ing single i.p. administration of DMF (0.9-1.2 ml/kg) exhibited 

inflammatory infiltration and centrilobular necrosis in the liver. 

At the same dose, necrotic cells around the centrilobular vein 

and a scattered distribution of inflammatory cells (granulomas) 

were observed 24 h after injection [7]. In a subchronic exposure 

model, Craig et al. [9] performed animal experiments using rats 

and mice, and after inhalation exposure to DMF at the concen-

trations of 300 and 600 ppm for 12 weeks, the liver toxicity was 

examined, the results showed a significant increase in serum 

transaminase activity, hepatomegaly, and tumor lesion forma-

tion in the liver [45]. 

Potential Mechanism of  
DMF-induced Liver Toxicity

To clarify the mechanism of  liver damage induced by DMF 

exposure, many investigations have been conducted by several 

research groups for decades. Since mechanistic investigation is 

essential for the understanding of toxicology, studies were also 

performed using animals in conjunction with clinical surveys 

from workers exposed to DMF. Although several hypotheses 

on the mechanism of  DMF-induced liver toxicity have been 

raised, no clear biological pathway has been demonstrated yet 

[7,27-29,43].

CYP2E1-mediated metabolism of DMF
The hypothesis that the liver toxicity of  DMF involves bio-

transformation by metabolic pathways was proposed by several 

groups. Kestell et al. [45] reported that biotransformation is a 

crucial determinant of formamide toxicity since a series of for-

mamides and acetamides that underwent metabolic oxidation 

in the formyl moiety were found to have hepatotoxic proper-

ties. Based on the findings that 1) DMF is isoelectronic with 

N,N-dimethylnitrosamine, a well-characterized carcinogenic 

substrate of CYP2E1 [46], and 2) the microsomal oxidation of 

NMF is catalyzed by CYP2E1 [47], Mráz et al. [40] proposed 

the possibility that DMF is a putative substrate of  CYP2E1. 

The metabolism of  DMF into HMMF was increased upon 

treatment of rats with acetone, a CYP2E1 inducer, which could 

be inhibited when DMF was co-incubated with a CYP2E1 in-

hibitor [34]. Since CYP2E1 plays a role in the promotion of ox-

idative stress as it metabolizes many hepatotoxicants with low 

molecular weights (for example, acetaminophen, alcohol, and 

carbon tetrachloride), it is highly likely that DMF metabolism 

in the liver and subsequent changes in cellular redox capacity 

account for DMF-induced toxicity. Apparently, NMF, one of 

the major metabolites of DMF, was more toxic than DMF in 

rodents because it depleted cellular their GSH content [33].

Potential mechanisms of DMF-induced toxicity
In spite of the reports on the prooxidant effects of DMF me-

tabolites, the mechanism of  DMF-induced liver toxicity is 

yet unclear. Given the close link between CYP2E1-mediated 

oxidative stress and hepatotoxicity, our laboratory examined 

whether DMF in combination with other hepatotoxicant might 

enhance toxicity. To determine the possible synergism of DMF 

toxicity with other toxicants, several hepatotoxicants, including 

CCl4, lipopolysaccharide (LPS), acetaminophen (APAP), and 

galactosamine (GalN), at subtoxic doses were administered to 

rats [48]. Among them, simultaneous treatment of DMF and 

a low dose of CCl4 significantly enhanced liver toxicity com-

pared to each treatment alone, as shown by increases in plasma 

transaminase activities. We further assessed the dose-dependent 

effect of DMF treatment on the blood biochemistry in rats ad-

ministered with CCl4 to confirm the synergism of liver toxicity. 

As expected, plasma ALT and AST activities increased as the 

dose of  DMF escalated, but the DMF treatment alone (500 

mg/kg) weakly changed them. Synergistic hepatotoxicity due 

to the combined treatment of DMF and CCl4 was also verified 

by histopathological examinations, which showed swelling, 

fatty degeneration and death of hepatocytes, inflammatory cell 

infiltration of the liver lobule, and necrosis [48].

On the other hand, combinatorial treatment of DMF with 

other hepatotoxicants (for example, LPS, APAP, GalN) did not 

alter the blood biochemical parameters when compared with 

animal groups treated with a vehicle or DMF alone [48]. 1) 

Since LPS-induced toxicity notably targets the liver, it has been 

used in the studies for cytokine-induced liver toxicity. In our an-

imal experiments, administration of DMF did not enhance liv-

er toxicity in rats treated with LPS, suggesting that DMF might 

not cause liver injury by inducing inflammatory cytokines (e.g., 

TNF-α) [48]. APAP, one of the frequently prescribed analgesic 

and antipyretic agents, is used as a hepatotoxicant in in vivo 
models. APAP, when administered at high dose, causes hepatic 

GSH depletion, resulting in oxidative stress within hepatocytes. 

In this process, CYP2E1 plays a key role and may facilitate 

the production of reactive metabolites. The failure of DMF in 

increasing APAP-induced hepatotoxicity suggested that sulf-

hydryl pools in hepatocytes might not be notably altered by 

DMF treatment, at least at the doses examined [48]. Further-

more, Kelava et al. [49] reported that administration of DMF 

to mice 1 h prior to APAP treatment abolished APAP toxic-

ity, possibly through their competitive inhibition of CYP2E1, 

thereby preventing GSH depletion by APAP. GalN, which is 
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well characterized to potentiate LPS-induced toxicity, causes 

liver toxicity through inflammation and free radical formation 

in the liver. DMF did not result in enhanced liver toxicity in 

rats treated with GalN [48], indicating that the mechanism of 

DMF-induced toxicity might not involve the production of 

proinflammatory cytokines.

The endoplasmic reticulum (ER) plays a role in synthesis, 

folding, and maturation cascade of  both membrane and sol-

uble proteins. When several stressful conditions (for example, 

oxidative stress, inflammation, and viral infection) that raise 

the workload of  protein folding occur, cells trigger specified 

programs to cope with those stimuli, and the programs are 

called ER stress. In cases when the stress maintains beyond 

the cellular adaptive capacity, ER stress elicits apoptosis [50-

53]. Since hepatocyte death triggered by the ER stress may be 

a major mechanism of liver disease, we examined the effect(s) 

of DMF and/or CCl4 on the ER stress response by assessing 

ER-associated chaperones and other parameters. Our finding 

indicated that treatment with DMF and CCl4 up-regulated the 

expression of  ER stress markers (for example, Grp78/94, p-

PERK, and CHOP), suggesting that severe hepatotoxicity may 

be associated in part with ER stress caused by DMF and CCl4.

CYP2E1 metabolizes various endogenous and exogenous 

substrates to reactive metabolites, and thereby produces reac-

tive oxygen species (ROS). Furthermore, it is well characterized 

that sustained ROS challenge aggravated cell viability when the 

activity of CYP2E1 was increased by chemical inducers or en-

zyme overexpression [54]. In an effort to find the link of hepa-

tocyte death to CYP2E1-dependent metabolism, we measured 

CYP2E1 protein and mRNA levels after DMF and/or CCl4 

treatment; DMF treatment at the daily dose of 500 mg/kg for 

3 days increased the expression of the CYP2E1 level (~1.5-fold), 

which is consistent with the report that DMF induced CYP2E1 

expression [55,56]. CCl4 is known to reduce CYP2E1 levels by 

producing reactive metabolites and the consequent suicide sub-

strate inhibition [57]. As expected, CCl4 treatment decreased 

CYP2E1 expression. Interestingly, DMF at doses of 50 or 150 

mg/kg/day prevented reductions in the CYP2E1 level by CCl4, 

presumably because of its competitive inhibition of CYP2E1-

mediated biotransformation [57]. However, the combined 

treatment of 500 mg/kg DMF and CCl4 further repressed the 

CYP2E1 level (Fig. 2).

Real-time PCR analysis showed that the levels of  CY-

P2E1 mRNA were not notably affected by treatment of either 

DMF or CCl4 alone, which is in line with the previous reports 

that many exogenous low-molecular-weight substrates for CY-

P2E1 (for example, pyrazole, 4-methylpyrazole, and acetone) 

induce CYP2E1 mainly through posttranscriptional regulation, 

which is not accompanied by an increase in its mRNA level 

[58]. However, the combined treatment of  500 mg/kg DMF 

and CCl4 substantially decreased the mRNA level, which might 

result from transcriptional repression due to hepatocyte death 

(Fig. 2).

Conclusions and Implications

1) DMF, a representative industrial solvent that is still being 

used in a number of  developing countries, has been reported 

to cause severe liver toxicities from workers who are exposed 

to DMF at work places. Although several research institutes 

Fig. 2. CYP2E1 repression by DMF and/or CCl4 treatment. (A) Immunoblottings for CYP2E1. CYP2E1 was immunoblotted on the liver 
homogenates prepared from five randomly selected animals per treatment. (B) Real-time RT-PCR assays. PCR assays were performed to assess 
CYP2E1 mRNA levels (significantly different from vehicle treatment alone, *p < 0.01). DMF: Dimethylformamide, CYP2E1: Cytochrome P-450 
CYP2E1.
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provided regulations for using DMF in work places based on 

the accumulated accidental reports, more definite countermea-

sures are still required to reduce the risks resulting from DMF 

utilization. Since toxic chemicals have their distinct mecha-

nisms for inducing liver toxicity, it is essential to identify the 

molecular mechanism of  toxicity to minimize liver damage 

caused by DMF exposure [58]. Nevertheless, the knowledge 

for the mechanistic basis of DMF-induced liver toxicity is still 

somewhat limited; it would be insufficient to define the degree 

of  liver damage upon DMF exposure and adequate therapy 

without any profound biomarker, which should be identified 

by mechanistic studies.

2) In chronic animal models, DMF had a toxic effect on 

the liver [2,9,10,33]. In an acute animal model, exposing rats to 

DMF + CCl4 increased their ER stress response, as indicated 

by the increased expression of ER stress markers. So, DMF in-

duction of ER stress was promoted by a low dose of CCl4 treat-

ment, which might be associated with enhanced liver toxicity. 

The profile of dose-dependency and synergism in liver injury 

induced by DMF was similar to that of the ER stress responses 

(Fig. 3). Furthermore, ROS elicit cell death upon toxicant ex-

posure partly through ER stress, indicating the link between 

oxidative stress and ER stress [59]. Biotransformation of DMF 

to more reactive metabolites may cause CYP2E1 induction 

as an adaptive response [54]. In our study, CYP2E1 induction 

by DMF might enhance the metabolism of CCl4, resulting in 

increases of reactive metabolites from the toxicants. In parallel 

with this toxicity, we found a comparable change in ER stress 

markers, also supporting their synergism. The reactive metabo-

lites generated from DMF evoke oxidative stress, which may 

cause hepatocyte injury. Radical scavengers attenuated the oxi-

dation of DMF, supporting the hypothesis that oxidative stress 

contributes to the toxicity of DMF [60].

3) The in vivo results using two-chemical models allowed 

us to discover the possible mechanism of DMF-induced liver 

toxicity. The papers reviewed here demonstrate the toxicity 

of  DMF exposure with other toxicants, which might occur 

through complicated but distinct mechanisms. These findings 

may be of help in understanding the hazardous effect exhibited 

in workers exposed to DMF, especially the susceptibility of 

individuals who are simultaneously exposed to other toxicants. 

This information may enable us to build up proper guidelines 

with respect to handling DMF in order to decrease the risk of 

liver toxicity for workers exposed to DMF at work places.
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