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Tauroursodeoxycholic Acid Attenuates Renal Tubular
Injury in a Mouse Model of Type 2 Diabetes
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Abstract: Renal tubular injury is a critical factor in the pathogenesis of diabetic nephropathy (DN).
Endoplasmic reticulum (ER) stress is involved in diabetic nephropathy. Tauroursodeoxycholic acid
(TUDCA) is an effective inhibitor of ER stress. Here, we investigated the role of TUDCA in the
progression of tubular injury in DN. For eight weeks, being treated with TUDCA at 250 mg/kg
intraperitoneal injection (i.p.) twice a day, diabetic db/db mice had significantly reduced blood
glucose, albuminuria and attenuated renal histopathology. These changes were associated with a
significant decreased expression of ER stress markers. At the same time, diabetic db/db mice had
more TUNEL-positive nuclei in the renal tubule, which were attenuated by TUDCA treatment, along
with decreases in ER stress—associated apoptotic markers in the kidneys. In summary, the effect of
TUDCA on tubular injury, in part, is associated with inhibition of ER stress in the kidneys of diabetic
db/db mice. TUDCA shows potential as a therapeutic target for the prevention and treatment of DN.
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1. Introduction

Diabetic nephropathy (DN) remains the main cause of chronic kidney disease (CKD) and end-stage
renal disease (ESRD) [1], accounting for nearly 50% of all cases of patients requiring dialysis each
year in many industrialized countries [2]. Changes in the glomerulus play important roles in the
pathophysiology of the diabetic kidney [3]. However, a growing body of evidence has shown that
tubulointerstitial injury also might be an important hallmark of DN and a better predictor of renal
disease progression than glomerular injury [4]. In addition, tubular cells are demonstrated to be key
targets of hyperglycemia [5]. Several studies have validated that the apoptosis of tubular cells is
frequently detected in renal sections from humans, mice and rats with diabetic mellitus (DM) [6-8],
indicating that apoptosis plays an important role in the physiopathologic mechanism of tubular injury
in the development of DN.

Endoplasmic reticulum (ER) stress has been considered to be a mediator of apoptosis [9,10].
A variety of insults [11] such as hypoxia and oxidative stress may disturb ER homeostasis, which can
induce ER stress and the subsequent unfolded protein response (UPR). Glucose-regulated protein
of 78 kDa (GRP78) serves as a central regulator of three main UPR sensors, namely activating
transcription factor (ATF6), inositol-requiring enzyme (IRE)-1c, and protein kinase RNA-like ER kinase
(PERK), which initiate the UPR signaling pathway under ER stress [12]. If the stress is too prolonged
or severe and ER homeostasis cannot be restored, an apoptotic signaling pathway is triggered to
ensure the survival of the organism as a last line of defense. Previous studies have demonstrated
that ER stress has been well appreciated to contribute to the development and progression of chronic
kidney diseases [13,14]. Furthermore, ER stress-induced apoptosis is involved in DN [15,16]. However,

Nutrients 2016, 8, 589; d0i:10.3390/nu8100589 www.mdpi.com/journal /nutrients


http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
http://www.mdpi.com/journal/nutrients

Nutrients 2016, 8, 589 20of 11

the relationship between ER stress and tubular injury, especially in diabetic nephropathy, has a lack of
in-depth research.

Tauroursodeoxycholic acid (TUDCA) is an effective inhibitor of ER stress [17] which is shown to
modify metabolic disorders in obese mice [18]. It has reported that TUDCA could protect streptozotocin
(STZ)-induced diabetic retinopathy rats [19]. In addition, a recent study has suggested that some
chemical inhibitors of ER stress may be helpful in diabetic glomerulopathy [20].

This study aims to investigate the effect of ER stress on tubular cell apoptosis, evaluate the effects
of TUDCA treatment on ER stress and tubular injury in diabetic db/db mice and then search for a
potential therapy for the treatment of DN.

2. Materials and Methods

2.1. Animals and Grouping

Male db/db (C57BLKS/J-LepRdb/LepRdb) mice at six weeks of age and age-matched lean
non-diabetic littermates db/m (C57BLKS/]J-LepRdb/+) mice were purchased from the National Mode
Animal Centre of Nanjing University (Nanjing, China). After adaptive feeding for two weeks, db/db
mice were randomly divided into two groups: the diabetic nephropathy group (DN; n = 10) and
the TUDCA treatment group (DN+T; n = 10). Db/m mice were defined as the normal control group
(NC; n =10). TUDCA (Merck Millipore, Billerica, MA, USA) was administered by intraperitoneal
injection (i.p.) twice a day for eight weeks to the DN + T group at a dose of 250 mg/kg [17].
The NC and DN group were administered the equal amounts of normal saline.
All mice were housed in the specific pathogen—free (SPF) room and had free access to normal food
and water. All animal experimental protocols were approved by the Laboratory Animals Ethical
Committee of the Sixth People’s Hospital Affiliated to Shanghai Jiaotong University (ethical approval
code No. 2016-0205).

2.2. Physical and Biochemical Analysis

Body weight and blood glucose were measured. The 24 h urine samples were collected in
metabolic cages at the end of the 16 weeks. The urinary albumin and urinary creatinine concentration
were assayed using mouse albumin ELISA Quantitation Set (Bethyl Laboratories, Montgomery,
TX, USA) and a commercial ELISA kit (Cayman Chemical, Ann Arbor, MI, USA) according to the
manufacturer’s instructions.

2.3. Histology Analysis

Formalin-fixed and paraffin-embedded renal tissues were sectioned (4 pm thickness) and
stained with Periodic Acid-Schiff (PAS) and Masson Trichrome. To assess the degree of fibrosis,
10 non-overlapping fields of each section and eight slides per group were randomly chosen.
Tubulointerstitial injury was graded as follows: grade 0, normal; grade 1, the area of interstitial
inflammation and fibrosis, tubular atrophy, and dilation with cast formation involving <25% of the
field; grade 2, lesion area between 25% and 50% of the field; and grade 3, lesion area >50% of the field.
The indices for tubulointerstitial injury were calculated by averaging the grades assigned to all fields
of tubules.

For immunohistochemistry, paraffin-embedded renal sections (4 um thickness) were dewaxed
and hydrated. Slides were boiled in 10 mM sodium citrate buffer (pH 6) for 10 min and cooled for 1 h
at room temperature. After 10 min incubation in 0.3% hydrogen peroxide, sections were blocked with
normal horse serum for 30 min at 37 °C, and then stained with primary antibodies (both from Cell
Signaling Technology, Danvers, MA, USA; 1:100 with GRP78 and 1:50 with CCAAT/enhancer-binding
protein homologous protein, CHOP) overnight at 4 °C. After washing with rinse buffer (DAKO,
Glostrup, Denmark), sections were incubated with biotinylated anti-rabbit and anti-mouse IgG (Vector
Laboratories, Burlingame, CA, USA), respectively, and visualized in brown using diaminobenzidine
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tetrahydrochloride solution as chromogen and hematoxylin as counterstain. All the measurements
were detected by ImageProPlus Systems.

2.4. Terminal Deoxynucleotidyl Transferase (TdT)-Mediated dUTP Nick-End-Labeling (TUNEL) Assay

TUNEL staining using the DeadEnd™ Colometric TUNEL System (Promega, Madison, WI,
USA) was carried out according to the manufacturer’s protocols. In brief, four-micrometer
paraffin-embedded tissue sections were dewaxed and hydrated. Then sections were incubated with
proteinase K (20 pg/mL) for 15 min at room temperature, blocked in 1.5% HyO, for 10 min at 37 °C
and treated with TUNEL reaction mixture. At least ten fields per slide and eight slides per group were
scored for apoptotic nuclei. TUNEL-positive cells were counted under the light microscope by two
independent pathologists in a blind fashion.

2.5. RNA Extraction and Real-Time PCR

Total RNA was extracted from renal cortex according to the manufacturer’s protocols for Trizol
reagent (Invitrogen, Carlsbad, CA, USA) and the purity and concentration of RNAs were detected with
spectrophotometer (Nanodrop2000). Total RNA (1000 ng) was reverse transcribed with SuperScript I1I
Reverse Transcriptase kit (Invitrogen, Carlsbad, CA, USA). The cDNA was performed for quantitative
real-time PCR analysis using a StepOnePlus System (Applied Biosystems, Foster City, CA, USA)
with a SYBR® Green PCR Kit (QIAGEN, GmbH, Hilden, Germany). The oligonucleotide primers for
target genes were used as follows: GRP78: forward 5'-AGGCTAAGAGAGCCTTGTCT-3' and reverse
5-TCCAACACTTTCTGGACAGG-3'; CHOP: forward 5-TTCACCTTGGAGACGGTG-3' and reverse
5-CGCAGGGTCAAGAGTAGTG-3'. All samples were analyzed in triplicate. The mRNA expression
levels were normalized to those of GAPDH of the same cDNA sample. Relative quantification of gene
expression was calculated using the 2722Ct method.

2.6. Western Blot Analysis

Renal cortex were lysed in RIPA buffer containing phosphatase inhibitor cocktail with a sonicator
and centrifuged at 14,000 rpm for 15 min at 4 °C. The protein concentration was determined
with a Bio-Rad protein assay kit (Bio-Rad, Hercules, CA, USA; bovine serum albumin was used
as a standard). Equal amounts (40 pg) of protein extracts were subjected to 10%-15% sodium
dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene
fluoride membranes (Millipore). After being blocked with 3% bovine serum albumin (BSA) for 1 h at
room temperature, the membranes were incubated with the following primary antibodies (all from
Cell Signaling Technology, Danvers, MA, USA): anti-GRP78 (1:1000), anti-CHOP (1:1000), anti-cleaved
caspasel2 (1:1000), anti-cleaved caspase3 (1:1000) and anti-GAPDH (1:1000) antibodies overnight
at 4 °C. Then the membranes were washed in Tris-buffered NaCl solution containing 0.1% Tween 20,
and then incubated with horseradish peroxidase-conjugated secondary antibodies for 1 h at room
temperature. Imaging was detected using the BIO-RAD Imaging System (Bio-Rad, Hercules, CA,
USA) with chemiluminescence detection reagents (Thermo Fisher Scientific, Waltham, MA, USA).
The densitometry of the bands was performed by image-scanning analysis software (UVP Inc. Upland,
CA, USA) and described as the fold change from the NC group.

2.7. Statistical Analysis

Normally distributed data are presented as mean + SEM, and one-way ANOVA followed by the
Tukey’s Multiple Comparison Test was used to compare parametric data whereas categorical variables
were presented as frequencies and Kruskal-Wallis test followed by the Mann-Whitney U test was
used for nonparametric data comparison. p < 0.05 was considered as statistical significance. Statistical
analyses were performed by SPSS 19.0 (IBM, Armonk, NY, USA).
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3. Results

3.1. Effects of TUDCA on Biochemical Markers in the Different Groups

As shown in Figure 1, all db/db mice displayed uniformly increased body weight (Figure 1A)
levels compared with the corresponding db/m mice at eight weeks and 16 weeks of age. The diabetic
db/db mice showed severe proteinuria compared to the non-diabetic db/m mice (p < 0.05). Treatment
with TUDCA significantly reduced blood glucose (Figure 1B) and ameliorated proteinuria (Figure 1C,D)
in diabetic mice (p < 0.05). These data also indicated that TUDCA could distinctly prevent the
progression of DN.
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Figure 1. Physical and biochemical characteristics in various groups of mice. The DN + T group (db/db
mice treated with TUDCA, n = 10) were administrated with 250 mg/kg TUDCA twice a day by i.p.
injection for eight weeks. Mice in the NC group (normal control db/m mice, n = 10) or DN group
(diabetic db/db mice, n = 10) received the equal amount of normal saline. Body weight (A); blood
glucose (B); the ratio of urinary albumin and creatinine (C); and urine albumin excretion (D) of db/db
mice were decreased by TUDCA treatment. Results are shown as means =SEM. * p < 0.05 versus NC
group. # p < 0.05 versus DN group.

3.2. TUDCA Improves the Renal Morphologyin db/db Mice

PAS (Figure 2A) and Masson trichrome (Figure 2B) staining showed typical renal histopathological
changes in db/db mice at 16 weeks, including mesangial cell proliferation, focal mesangial matrix
expansion in glomeruli and collagen deposition in the tubulointerstitium compared to normal control
db/m mice. However, these changes were significantly ameliorated by TUDCA treatment when
compared with the untreated db/db mice. Furthermore, renal interstitial fibrosis (Figure 2C) was less
severe and the tubulointerstitial injury score (Figure 2D) was lower in TUDCA-treated mice than those
in untreated diabetic mice.
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Figure 2. Histological analysis of kidney. Representative sections from kidneys of mice from each
group at 16 weeks of age and stained with: (A) PAS (original magnification, 200x); and (B) Masson’s
trichrome. Scale bar = 50 um; Quantitive analysis of interstitial fibrosis area (C); and tubulointerstitial
injury (D). Normally distributed data were expressed as means - SEM whereas categorical variables
were described as frequencies for 10 non-overlapping fields of each section and eight mice per group
* p < 0.05 versus NC group. # p < 0.05 versus DN group.

3.3. TUDCA Inhibits ER Stress Induced by Diabetes in the Kidneys of db/db Mice

To examine whether ER stress is induced in the kidneys of db/db mice, we measured the
expression of ER stress markers in the kidneys of db/db mice. Immunohistochemistry analysis
showed that GRP78 was predominantly expressed in the renal tubules and few stainings were detected
in the glomeruli. Increased GRP78 staining was detected in the proximal renal tubules of diabetic
db/db mice compared with control db/m mice, which could be significantly ameliorated by TUDCA
treatment (Figure 3A—-C). We also examined ER stress—associated proteins (GRP78 and CHOP) in the
renal cortex of db/db mice using Western blot analysis (Figure 4A) and found the levels of these
proteins were markedly higher than in non-diabetic db/m mice, which were consistent with their
mRNA level as assessed by real-time PCR assay (Figure 4B). These results indicated that ER stress
is induced in the kidneys of db/db mice, and TUDCA effectively attenuates the level of ER stress
induced by diabetes.
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Figure 3. Effect of TUDCA on immune staining of GRP78 in the renal tissues of db/db

mice. TUDCA treatment for eight weeks could attenuate diabetes-induced GRP78 expression.
(A—C) Representative photographs of immune staining for GRP78 in the renal tissues of various
groups of mice. (A) Non-diabetic db/m mice, NC group; (B) diabetic db/db mice, DN group;
(C) diabetic db/db mice + TUDCA, DN + T group. Scale bar = 50 um; (D) Quantitative analysis
of GRP78 per field. Values are presented as means 4= SEM for 10 non-overlapping fields of each section

and eight mice per group. * p < 0.05 versus NC group. # p < 0.05 versus DN group.
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Figure 4. Effect of TUDCA on diabetes-induced ER stress in the renal cortex of db/db mice. TUDCA
administration for eight weeks could decrease diabetes-induced ER stress markers. (A) The kidney
tissue lysates were subjected to Western blot analysis with specific antibodies against ER stress markers
(GRP78 and CHOP). Each sample was normalized to GAPDH expression; (B) Relative transcript
levels of GRP78 and CHOP were detected by real-time PCR and normalized to expression of GAPDH.
Densitometric analysis of Western blots for GRP78; (C) and CHOP; (D) protein in extracts from renal
cortex. Values are presented as means = SEM (1 = 10). * p < 0.05 versus NC group. # p < 0.05 versus
DN group.
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3.4. TUDCA Inhibits ER Stress—Associated Apoptosis Pathways

To further assess the nephroprotective effects of TUDCA on diabetic db/db mice, the
apoptosis-related protein expression levels were determined by Western blot. As shown in Figure 5A,
cleaved caspasel2 and cleaved caspase3 were markedly increased in db/db mice compared with the

db/m mice, and significantly attenuated by TUDCA treatment, indicating ER stress—induced apoptosis
was alleviated by TUDCA treatment.
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Figure 5. Effects of TUDCA on apoptosis in the kidney of diabetic mice. (A) Treating db/db mice with
TUDCA for eight weeks could attenuate cleaved caspasel2 and cleaved caspase3 protein expression as
examined by Western blot. Each sample was normalized to GAPDH expression; Densitometric analysis
of Western blots for cleaved caspasel2 (B); and cleaved caspase3 (C) protein in extracts from renal
cortex. Values are presented as means + SEM (n = 10). * p < 0.05 versus NC group. # p < 0.05 versus
DN group.

3.5. TUDCA Reduces the Apoptosis of Tubular Cell in db/db Mice

To assess tubular cell apoptosis in the diabetic kidney, the renal tissue sections were performed
with an in situ TUNEL assay. At 16 weeks, the diabetic db/db mice showed increased apoptotic
tubular cells when compared with the non-diabetic db/m mice (Figure 6); the db/db mice treated
with TUDCA displayed decreased apoptotic tubular cells compared with DN group. These data
demonstrated that TUDCA treatment could attenuate the ER stress—induced tubular cell apoptosis in
type 2 diabetic kidneys.

.o

PR BLR AT

Figure 6. Effect of TUDCA on apoptotic tubular cells in renal tissues of db/db mice treated with TUDCA
for eight consecutive weeks. Apoptosis of tubular cells in kidneys of each group: (A) non-diabetic
db/m mice, NC group; (B) diabetic db/db mice, DN group; (C) diabetic db/db mice + TUDCA, DN+T
group, were determined by TUNEL assay. Scale bar = 50 pm. TUNEL-positive cells in renal tubules
were presented by arrows; (D) Quantitative analysis of TUNEL-positive stained tubular cells. Values
are presented as means + SEM for 10 non-overlapping fields of each section and eight mice per group.
* p < 0.05 versus NC group. # p < 0.05 versus DN group.
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4. Discussion

In the present study, we demonstrated that the ER stress signaling pathway was activated in
the kidneys of db/db mice, which proved ER stress is involved in the pathogenesis of diabetic
nephropathy. Treating with TUDCA, a small molecular chemical chaperon, which effectively inhibited
ER stress, could lower the blood glucose level, alleviate tubulointerstitial fibrosis, improve diabetic
nephropathy-associated parameters, including the urine albumin and creatinine ratio and urine
albumin excretion, and reduce apoptotic tubular cells in diabetic db/db mice.

Diabetic nephropathy is characterized by glomerulosclerosis, tubular atrophy and
tubulointerstitial fibrosis (TIF). Although glomerular lesions are a focus of renal injury in
diabetes [21], growing evidence demonstrated the key role of tubule injury in the progression of the
disease [22]. The apoptosis of tubular cells has been taken into account as a primary cause of tubular
atrophy and tubulointerstitial fibrosis [23]. ER stress is recognized to be involved in the pathogenesis
of the apoptosis of tubule epithelial cells [24]. Thus, targeting the inhibition of ER stress—induced
tubular cell apoptosis may provide new therapeutic approaches for DN.

ER stress is considered as a mediator in the homeostasis of ER and a protective response
mechanism of cells. Normally, the adaptive response of ER can restore ER function and protect
cells through upregulating ER-resident chaperons, such as GRP78. GRP78 is a critical molecular
chaperon of ER, which binds to three key proteins (PERK, IRE1 and ATF6) located at the ER membrane
to form a complex. When unfolded or misfolded proteins accumulate in the ER, GRP78 is released
from the complex and is upregulated through the UPR to induce ER stress [25]. In the renal sections of
mice, immunohistochemical results showed that GRP78 staining was increased in the renal proximal
tubule of db/db mice, which was consistent with the results of the Western blot assay. These data
indicated ER stress is induced in renal tubules of diabetic mice.

If ER homeostasis cannot be restored, ER-associated apoptotic signaling pathways can be
initiated [25]. CHOP is considered a transcriptionally regulated gene which is involved in the ER
stress—induced apoptotic pathway and acts as a proapoptotic protein [26]. It was reported that the
expression of CHOP was increased during ER stress and might play an important role in mediating
the onset of ER stress—associated apoptosis [27]. CHOP knockout in diabetic mice protected the kidney
against injury induced by ER stress [28]. Caspasel2 is exclusively located at the cytoplasmic side of
ER in rodents [29,30], which is cleaved and activated during the ER stress-induced apoptosis cascade.
Then it can further trigger downstream caspase 3 in the cytosol [31]. Therefore, the levels of CHOP
and caspase-12 can reflect whether the ER stress—induced apoptosis pathway is activated. The TUNEL
assay demonstrated that the apoptotic tubular cells increased in diabetic db/db mice compared with
the control db/m mice, which indicated ER stress—induced apoptosis was triggered in the kidneys of
the diabetic db/db mice.

In the past few decades, chemical chaperones such as 4-Phenylbutyrate (4-PBA) and TUDCA
were demonstrated to repress ER stress by facilitating protein folding [32,33]. The 4-PBA attenuated
tunicamycin-induced acute kidney injury via repressing CHOP [34]. Like 4-PBA, TUDCA also is
an inhibitor of ER stress, which alleviated ischemia-/reperfusion-induced acute kidney injury by
inhibiting ER stress [35] and protected kidney epithelial cell injury against albuminuria in STZ-induced
diabetic mice [36]. Furthermore, TUDCA prevented cultured mouse podocytes from apoptosis induced
by advanced glycation end products via blocking an ER stress—-mediated apoptotic pathway [37].

In this study, diabetic nephropathy—associated parameters and renal histopathology were
improved, along with the downregulation of ER stress markers and inactivation of the ER
stress—associated apoptotic pathway in TUDCA-injected db/db mice. These results indicated that the
nephroprotective effects of TUDCA on db/db mice might be mediated, at least in part, via inhibiting ER
stress. However, TUDCA was reported to ameliorate insulin resistance and restore glucose tolerance
in mice with type 2 diabetes [17], and our data also showed that treating them with TUDCA could
reduce blood glucose in diabetic db/db mice. Thus, as an ER stress inhibitor, the nephroprotective
effects of TUDCA on db/db mice may be the indirect effects of its reduction of blood glucose. Whether
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the protective effect of TUDCA on the apoptosis of renal tubules is independent of blood glucose
reduction still needs to be further studied in the future.

5. Conclusions

In summary, we demonstrated in vivo that ER stress seemed to play a critical role in diabetic
db/db mice. The inhibition of ER stress via TUDCA not only could lower blood glucose and reduce
albuminuria, as well as improve renal histopathology, but it could also attenuate increased apoptosis
of tubules in diabetic db/db mice, which might be associated with reduced endoplasmic reticulum
stress. These data also provide further evidence for the application of TUDCA in the prevention of
diabetic nephrology.

Acknowledgments: This study was supported by the National Natural Science Foundation of China
(No. 81270824, 81400735).

Author Contributions: N.W. and Y.F. conceived and designed the experiments. J.Z., C.Z. and L.H. performed the
experiments. J.Z. and Y.F. analyzed the data. Manuscript was drafted and edited by J.Z. All authors approved the
final version to be published.

Conflicts of Interest: All authors declare that no conflicts of interest exist.

References

1. Collins, A.J.; Foley, RN.; Herzog, C.; Chavers, B.; Gilbertson, D.; Herzog, C.; Ishani, A.; Johansen, K;
Kasiske, B.; Kutner, N.; et al. Us renal data system 2012 annual data report. Am. J. Kidney Dis. 2013, 61,
e1-476. [CrossRef] [PubMed]

2. Atkins, R.C.; Zimmet, P. Diabetic kidney disease: Act now or pay later. Nephrol. Dial. Transplant. 2010, 25,
331-333. [CrossRef] [PubMed]

3. Kanwar, Y.S,; Sun, L,; Xie, P; Liu, EY.; Chen, S. A glimpse of various pathogenetic mechanisms of diabetic
nephropathy. Annu. Rev. Pathol. 2011, 6, 395-423. [CrossRef] [PubMed]

4.  Gilbert, R.E.; Cooper, M.E. The tubulointerstitium in progressive diabetic kidney disease: More than an
aftermath of glomerular injury? Kidney Int. 1999, 56, 1627-1637. [CrossRef] [PubMed]

5. Jenkin, K.A.; McAinch, A.J.; Zhang, Y.; Kelly, D.]J.; Hryciw, D.H. Elevated cannabinoid receptor 1 and G
protein-coupled receptor 55 expression in proximal tubule cells and whole kidney exposed to diabetic
conditions. Clin. Exp. Pharmacol. Physiol. 2015, 42, 256-262. [CrossRef] [PubMed]

6. Brezniceanu, M.L.; Lau, C.J.; Godin, N.; Chenier, I.; Duclos, A.; Ethier, J.; Filep, ].G.; Ingelfinger, J.R.;
Zhang, S.L.; Chan, J.S. Reactive oxygen species promote caspase-12 expression and tubular apoptosis in
diabetic nephropathy. J. Am. Soc. Nephrol. 2010, 21, 943-954. [CrossRef] [PubMed]

7. Brezniceanu, M.L.; Liu, F; Wei, C.C.; Chenier, I.; Godin, N.; Zhang, S.L.; Filep, ].G.; Ingelfinger, J.R.; Chan, J.S.
Attenuation of interstitial fibrosis and tubular apoptosis in db/db transgenic mice overexpressing catalase in
renal proximal tubular cells. Diabetes 2008, 57, 451-459. [CrossRef] [PubMed]

8. Kumar, D.; Robertson, S.; Burns, K.D. Evidence of apoptosis in human diabetic kidney. Mol. Cell. Biochem.
2004, 259, 67-70. [CrossRef] [PubMed]

9.  Pallepati, P.; Averill-Bates, D.A. Activation of ER stress and apoptosis by hydrogen peroxide in hela cells:
Protective role of mild heat preconditioning at 40 degrees C. Biochim. Biophys. Acta 2011, 1813, 1987-1999.
[CrossRef] [PubMed]

10. Wang, X,; Olberding, K.E.; White, C.; Li, C. Bcl-2 proteins regulate er membrane permeability to luminal
proteins during ER stress-induced apoptosis. Cell Death Differ. 2011, 18, 38-47. [CrossRef] [PubMed]

11. Yoshida, H. ER stress and diseases. FEBS J. 2007, 274, 630-658. [CrossRef] [PubMed]

12.  Cybulsky, A.V. The intersecting roles of endoplasmic reticulum stress, ubiquitin- proteasome system, and
autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int. 2013, 84, 25-33. [CrossRef]
[PubMed]

13. Taniguchi, M.; Yoshida, H. Endoplasmic reticulum stress in kidney function and disease. Curr. Opin.
Nephrol. Hypertens. 2015, 24, 345-350. [CrossRef] [PubMed]


http://dx.doi.org/10.1053/j.ajkd.2012.11.031
http://www.ncbi.nlm.nih.gov/pubmed/23253259
http://dx.doi.org/10.1093/ndt/gfp757
http://www.ncbi.nlm.nih.gov/pubmed/20093271
http://dx.doi.org/10.1146/annurev.pathol.4.110807.092150
http://www.ncbi.nlm.nih.gov/pubmed/21261520
http://dx.doi.org/10.1046/j.1523-1755.1999.00721.x
http://www.ncbi.nlm.nih.gov/pubmed/10571771
http://dx.doi.org/10.1111/1440-1681.12355
http://www.ncbi.nlm.nih.gov/pubmed/25545857
http://dx.doi.org/10.1681/ASN.2009030242
http://www.ncbi.nlm.nih.gov/pubmed/20299359
http://dx.doi.org/10.2337/db07-0013
http://www.ncbi.nlm.nih.gov/pubmed/17977949
http://dx.doi.org/10.1023/B:MCBI.0000021346.03260.7e
http://www.ncbi.nlm.nih.gov/pubmed/15124909
http://dx.doi.org/10.1016/j.bbamcr.2011.07.021
http://www.ncbi.nlm.nih.gov/pubmed/21875624
http://dx.doi.org/10.1038/cdd.2010.68
http://www.ncbi.nlm.nih.gov/pubmed/20539308
http://dx.doi.org/10.1111/j.1742-4658.2007.05639.x
http://www.ncbi.nlm.nih.gov/pubmed/17288551
http://dx.doi.org/10.1038/ki.2012.390
http://www.ncbi.nlm.nih.gov/pubmed/23254900
http://dx.doi.org/10.1097/MNH.0000000000000141
http://www.ncbi.nlm.nih.gov/pubmed/26050121

Nutrients 2016, 8, 589 10 of 11

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Fan, Y,; Xiao, W,; Li, Z; Li, X.; Chuang, P.Y.; Jim, B.; Zhang, W.; Wei, C.; Wang, N.; Jia, W.; et al. RTN1
mediates progression of kidney disease by inducing ER stress. Nat. Commun. 2015, 6, 7841. [CrossRef]
[PubMed]

Baban, B.; Liu, ].Y.; Mozaffari, M.S. Endoplasmic reticulum stress response and inflammatory cytokines in
type 2 diabetic nephropathy: Role of indoleamine 2,3-dioxygenase and programmed death-1. Exp. Mol.
Pathol. 2013, 94, 343-351. [CrossRef] [PubMed]

Inagi, R. Endoplasmic reticulum stress as a progression factor for kidney injury. Curr. Opin. Pharmacol. 2010,
10, 156-165. [CrossRef] [PubMed]

Ozcan, U,; Yilmaz, E.; Ozcan, L.; Furuhashi, M.; Vaillancourt, E.; Smith, R.O.; Gorgun, C.Z.; Hotamisligil, G.S.
Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes.
Science 2006, 313, 1137-1140. [CrossRef] [PubMed]

Chen, Y;; Wu, Z.; Zhao, S; Xiang, R. Chemical chaperones reduce ER stress and adipose tissue inflammation
in high fat diet-induced mouse model of obesity. Sci. Rep. 2016, 6, 27486. [CrossRef] [PubMed]

Wang, C.F; Yuan, ].R; Qin, D.; Gu, ].E; Zhao, B.J.; Zhang, L.; Zhao, D.; Chen, J.; Hou, X.F,; Yang, N.; et al.
Protection of tauroursodeoxycholic acid on high glucose-induced human retinal microvascular endothelial
cells dysfunction and streptozotocin-induced diabetic retinopathy rats. J. Ethnopharmacol. 2016, 185, 162-170.
[CrossRef] [PubMed]

Cao, A.L.; Wang, L.; Chen, X.; Wang, YM.; Guo, H.J.; Chu, S; Liu, C.; Zhang, X.M.; Peng, W. Ursodeoxycholic
acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic
nephropathy. Lab. Investig. 2016, 96, 610-622. [CrossRef] [PubMed]

Drummond, K.; Mauer, M.; International Diabetic Nephropathy Study Group. The early natural history
of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes 2002, 51,
1580-1587. [CrossRef] [PubMed]

Sun, H.L.; Sun, L.; Li, Y.Y.; Shao, M.M.; Cheng, X.Y.; Ge, N.; Lu, ].D.; Li, S.M. Ace-inhibitor suppresses the
apoptosis induced by endoplasmic reticulum stress in renal tubular in experimental diabetic rats. Exp. Clin.
Endocrinol. Diabetes 2009, 117, 336-344. [CrossRef] [PubMed]

Docherty, N.G.; O’Sullivan, O.E.; Healy, D.A.; Fitzpatrick, ].M.; Watson, R.W. Evidence that inhibition
of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric
obstruction. Am. J. Phys. Ren. Physiol. 2006, 290, F4-F13. [CrossRef] [PubMed]

Asmellash, S.; Stevens, J.L.; Ichimura, T. Modulating the endoplasmic reticulum stress response with
trans-4,5-dihydroxy-1,2-dithiane prevents chemically induced renal injuryin vivo. Toxicol. Sci. 2005, 88,
576-584. [CrossRef] [PubMed]

Schroder, M.; Kaufman, R.J. ER stress and the unfolded protein response. Mutat. Res. 2005, 569, 29-63.
[CrossRef] [PubMed]

Marciniak, S.J.; Yun, C.Y.; Oyadomari, S.; Novoa, I.; Zhang, Y.; Jungreis, R.; Nagata, K.; Harding, H.P.; Ron, D.
Chop induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum.
Genes Dev. 2004, 18, 3066—-3077. [CrossRef] [PubMed]

Jing, G.; Wang, J.J.; Zhang, S.X. ER stress and apoptosis: A new mechanism for retinal cell death.
Exp. Diabetes Res. 2012, 2012, 589589. [CrossRef] [PubMed]

Wu, J.; Zhang, R.; Torreggiani, M.; Ting, A.; Xiong, H.; Striker, G.E.; Vlassara, H.; Zheng, F. Induction of
diabetes in aged C57B6 mice results in severe nephropathy: An association with oxidative stress, endoplasmic
reticulum stress, and inflammation. Am. J. Pathol. 2010, 176, 2163-2176. [CrossRef] [PubMed]

Nakagawa, T.; Yuan, J. Cross-talk between two cysteine protease families activation of caspase-12 by calpain
in apoptosis. J. Cell Biol. 2000, 150, 887-894. [CrossRef] [PubMed]

Nakagawa, T.; Zhu, H.; Morishima, N.; Li, E; Xu, J.; Yankner, B.A.; Yuan, ]J. Caspase-12 mediates
endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000, 403, 98-103.
[CrossRef] [PubMed]

Hitomi, J.; Katayama, T.; Taniguchi, M.; Honda, A.; Imaizumi, K.; Tohyama, M. Apoptosis induced by
endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neurosci. Lett. 2004, 357,
127-130. [CrossRef] [PubMed]

Burrows, J.A.; Willis, L.K.; Perlmutter, D.H. Chemical chaperones mediate increased secretion of mutant
alpha 1-antitrypsin (alpha 1-AT) Z: A potential pharmacological strategy for prevention of liver injury and
emphysema in alpha 1-AT deficiency. Proc. Natl. Acad. Sci. USA 2000, 97, 1796-1801. [CrossRef] [PubMed]


http://dx.doi.org/10.1038/ncomms8841
http://www.ncbi.nlm.nih.gov/pubmed/26227493
http://dx.doi.org/10.1016/j.yexmp.2012.11.004
http://www.ncbi.nlm.nih.gov/pubmed/23219834
http://dx.doi.org/10.1016/j.coph.2009.11.006
http://www.ncbi.nlm.nih.gov/pubmed/20045381
http://dx.doi.org/10.1126/science.1128294
http://www.ncbi.nlm.nih.gov/pubmed/16931765
http://dx.doi.org/10.1038/srep27486
http://www.ncbi.nlm.nih.gov/pubmed/27271106
http://dx.doi.org/10.1016/j.jep.2016.03.026
http://www.ncbi.nlm.nih.gov/pubmed/26988565
http://dx.doi.org/10.1038/labinvest.2016.44
http://www.ncbi.nlm.nih.gov/pubmed/26999661
http://dx.doi.org/10.2337/diabetes.51.5.1580
http://www.ncbi.nlm.nih.gov/pubmed/11978659
http://dx.doi.org/10.1055/s-0028-1112148
http://www.ncbi.nlm.nih.gov/pubmed/19301230
http://dx.doi.org/10.1152/ajprenal.00045.2005
http://www.ncbi.nlm.nih.gov/pubmed/16339963
http://dx.doi.org/10.1093/toxsci/kfi303
http://www.ncbi.nlm.nih.gov/pubmed/16150886
http://dx.doi.org/10.1016/j.mrfmmm.2004.06.056
http://www.ncbi.nlm.nih.gov/pubmed/15603751
http://dx.doi.org/10.1101/gad.1250704
http://www.ncbi.nlm.nih.gov/pubmed/15601821
http://dx.doi.org/10.1155/2012/589589
http://www.ncbi.nlm.nih.gov/pubmed/22216020
http://dx.doi.org/10.2353/ajpath.2010.090386
http://www.ncbi.nlm.nih.gov/pubmed/20363923
http://dx.doi.org/10.1083/jcb.150.4.887
http://www.ncbi.nlm.nih.gov/pubmed/10953012
http://dx.doi.org/10.1038/47513
http://www.ncbi.nlm.nih.gov/pubmed/10638761
http://dx.doi.org/10.1016/j.neulet.2003.12.080
http://www.ncbi.nlm.nih.gov/pubmed/15036591
http://dx.doi.org/10.1073/pnas.97.4.1796
http://www.ncbi.nlm.nih.gov/pubmed/10677536

Nutrients 2016, 8, 589 11 of 11

33.

34.

35.

36.

37.

Ozcan, L.; Ergin, A.S.; Lu, A.; Chung, J.; Sarkar, S.; Nie, D.; Myers, M.G,, Jr.; Ozcan, U. Endoplasmic reticulum
stress plays a central role in development of leptin resistance. Cell Metab. 2009, 9, 35-51. [CrossRef] [PubMed]
Carlisle, R.E.; Brimble, E.; Werner, K.E.; Cruz, G.L.; Ask, K.; Ingram, A.].; Dickhout, ].G. 4-phenylbutyrate
inhibits tunicamycin-induced acute kidney injury via chop/gadd153 repression. PLoS ONE 2014, 9, e84663.
[CrossRef] [PubMed]

Gao, X.; Fu, L,; Xiao, M.; Xu, C; Sun, L.; Zhang, T.; Zheng, F; Mei, C. The nephroprotective effect of
tauroursodeoxycholic acid on ischaemia/reperfusion-induced acute kidney injury by inhibiting endoplasmic
reticulum stress. Basic Clin. Pharmacol. Toxicol. 2012, 111, 14-23. [CrossRef] [PubMed]

Fang, L.; Xie, D.; Wu, X,; Cao, H.; Su, W,; Yang, ]. Involvement of endoplasmic reticulum stress in albuminuria
induced inflammasome activation in renal proximal tubular cells. PLoS ONE 2013, 8, e72344. [CrossRef]
[PubMed]

Chen, Y,; Liu, C.P; Xu, K.F; Mao, X.D.; Lu, Y.B.; Fang, L.; Yang, ].W,; Liu, C. Effect of taurine-conjugated
ursodeoxycholic acid on endoplasmic reticulum stress and apoptosis induced by advanced glycation end
products in cultured mouse podocytes. Am. J. Nephrol. 2008, 28, 1014-1022. [CrossRef] [PubMed]

@ © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.cmet.2008.12.004
http://www.ncbi.nlm.nih.gov/pubmed/19117545
http://dx.doi.org/10.1371/journal.pone.0084663
http://www.ncbi.nlm.nih.gov/pubmed/24416259
http://dx.doi.org/10.1111/j.1742-7843.2011.00854.x
http://www.ncbi.nlm.nih.gov/pubmed/22212133
http://dx.doi.org/10.1371/journal.pone.0072344
http://www.ncbi.nlm.nih.gov/pubmed/23977286
http://dx.doi.org/10.1159/000148209
http://www.ncbi.nlm.nih.gov/pubmed/18648192
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Animals and Grouping 
	Physical and Biochemical Analysis 
	Histology Analysis 
	Terminal Deoxynucleotidyl Transferase (TdT)-Mediated dUTP Nick-End-Labeling (TUNEL) Assay 
	RNA Extraction and Real-Time PCR 
	Western Blot Analysis 
	Statistical Analysis 

	Results 
	Effects of TUDCA on Biochemical Markers in the Different Groups 
	TUDCA Improves the Renal Morphologyin db/db Mice 
	TUDCA Inhibits ER Stress Induced by Diabetes in the Kidneys of db/db Mice 
	TUDCA Inhibits ER Stress–Associated Apoptosis Pathways 
	TUDCA Reduces the Apoptosis of Tubular Cell in db/db Mice 

	Discussion 
	Conclusions 

