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Abstract: Metformin (MTF) occupies a major and fundamental position in the therapeutic manage-
ment of type 2 diabetes mellitus (T2DM). Gender differences in some effects and actions of MTF
have been reported. Women are usually prescribed lower MTF doses compared to men and report
more gastrointestinal side effects. The incidence of cardiovascular events in women on MTF has
been found to be lower to that of men on MTF. Despite some promising results with MTF regarding
pregnancy rates in women with PCOS, the management of gestational diabetes, cancer prevention
or adjunctive cancer treatment and COVID-19, most robust meta-analyses have yet to confirm such
beneficial effects.

Keywords: Metformin; gender; insulin resistance

1. Introduction: Metformin—Gender Medicine

Metformin (MTF) occupies a major and fundamental position in the therapeutic
management of type 2 diabetes mellitus (T2DM) [1–3]. Sex pertains to “the different
biological and physiological characteristics of males and females, such as reproductive
organs, chromosomes or hormones”, whereas gender pertains to “the socially constructed
characteristics of women and men—such as norms, roles and relationships of and between
groups of women and men", quoting the relevant definitions from the Council of Europe
(https://www.coe.int/en/web/gender-matters/sex-and-gender, accessed on 7 March
2022). Gender medicine is the medical discipline that integrates any effect of sex and/or
gender on the overall level of health (prevention, diagnosis and treatment/management of
diseases), taking into account biological as well as social sex differences [4]. Its aim is to
improve health for any gender. Gender medicine may be a neglected dimension of medicine.
Research results are accumulating, pointing to sex/gender-related differences in prescribing,
as well as in the pharmacokinetics, the pharmacodynamics, the efficacy and side effects
of various medications. In this concise review we will attempt to present the impact of
sex/gender on the therapeutics of MTF. For practical purposes, in the following text, we
will have to refer to human studies with the terms “sex” and “gender” interchangeably,
acknowledging that this may not be correct; we will refer to animal studies with “sex” only.

2. Pharmacokinetics, Pharmacodynamics and Metabolism of MTF

MTF is a weak base, and is very polar and extremely soluble in water [5]. It is absorbed
from the small intestine, leading to a peak in concentration in one to two hours after oral
intake. Its bioavailability is from 50% to 60% [6]. MTF is weakly bound to proteins. Its
plasma half-life is estimated to be 1.5 to 5.0 h and it is practically unmetabolized after
being distributed mainly in the liver, kidneys and intestine [7–9]. Excretion occurs via
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the kidneys, with a clearance of 933–1317 mL/min, involving glomerular filtration and
tubular secretion [9]. The mechanisms of cellular action of MTF are still poorly understood.
Various molecular responses are elicited by MTF and apparently some are influenced by
sex hormones (Figure 1) [10–13]. The normoglycemic effect of MTF results mainly from a
decrease in hepatic glucose production by inhibition of gluconeogenesis and by an action
on glucose-6-phosphatase [2]. In addition to this action on the liver, which results mainly
in a decrease in fasting blood sugar, MTF also potentiates the effect of insulin on muscle
glucose uptake.
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3. Gender-Specific Use of MTF
3.1. MTF in Women with Polycystic Ovary Syndrome

Polycystic ovary syndrome (PCOS) is a common endocrine disease (with variable
prevalence worldwide, ranging from 6% to 26%) [14], which is characterized by anovula-
tion, clinical or biochemical hyperandrogenemia and polycystic ovary morphology [15].
Hyperinsulinemia as a result of tissue insulin resistance, is central to PCOS [16]. Insulin
resistance is observed in 45–65% of patients with PCOS and is associated with excessive
phosphorylation of insulin receptors. Hyperinsulinemia, impaired glucose tolerance, dys-
lipidemia and hypertension affect 40–45% of patients with PCOS [17]. Hyperinsulinemia
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adversely affects the hypothalamic-pituitary-ovarian axis, resulting in altered endocrine
control, menstrual irregularity and infertility [15].

Many interventional studies have demonstrated the positive effect of MTF on both the
reproductive as well as metabolic aspects of the syndrome [15]. However, the mechanisms,
by which MTF exerts its effects in treating PCOS, are only partially understood. The ra-
tionale of MTF use in PCOS is based on the fact that hyperinsulinemia is the basis of the
syndrome and adversely affects ovarian function. Insulin boosts 17OH-progesterone activ-
ity causing ovarian stroma hypertrophy, follicular atresia and anovulation [15]. Therefore,
MTF directly or indirectly improves steroidogenesis (this has been noted by in vitro studies
of granuloma cell response to follicle stimulating hormone (FSH) and insulin growth factor
1 (IGF-1) [18]).

In older studies, MTF use was associated with normalization of all insulin resistance
parameters, in all PCOS patients grouped according to body mass index (BMI), and with
degree of insulin resistance [19,20]. It was also shown that MTF led to improvement
in BMI, diastolic blood pressure and high-density lipoprotein (HDL) cholesterol levels,
decreasing the prevalence of metabolic syndrome in women with PCOS by 34.3% to 21.4%,
in a dose-dependent fashion [21]. The usual MTF dosage described in the literature starts
from 500 mg/day and reaches up to 850 mg three times daily for a duration of at least
six weeks [22,23]. In 2013, the American Endocrine Society issued guidelines on the
management of PCOS which included MTF as a treatment [24]. Specifically, MTF was
recommended for women with PCOS and T2DM or insulin resistance, after failure of
lifestyle change, diet and exercise, as a daily routine. It was not advised as a first line
treatment of skin manifestations of PCOS (hair loss, acne), complications of the syndrome
in pregnancy or for obesity [15]. MTF can also be given to women with menstrual disorders
in which contraceptive treatment has failed or in women who wish to have children, as a
second choice of treatment. There is no straightforward answer to whether all women with
PCOS should undergo MTF treatment [25]. Proponents of MTF consider it a necessary drug
for women with PCOS not only to prevent its long-term complications (in the context of
insulin resistance) but also because MTF has been shown to improve all of the syndrome’s
parameters. The first line treatment that includes diet and physical exercise is a time-
consuming process that requires the compliance of women on a strict, long-term schedule,
and relapse is very common.

Another element that comes to add to the beneficial action of MTF is in the treatment
of adolescent girls with obesity and hyperandrogenemia. It seems that 50% of adolescent
women with hyperandrogenemia have already developed resistance to progesterone-
mediated gonadotropin-releasing hormone (GnRH) pulse suppression. The abnormal
regulation of GnRH and luteinizing hormone (LH) secretion by the persistence of increased
frequency of GnRH pulses is already present in adolescent girls with hyperandrogenemia
before menarche [26]. Thus, the correction of androgen overproduction in PCOS is deemed
to be necessary. The administration of MTF for at least three months improves glucose tol-
erance, lowers testosterone levels and plasma insulin and reduces adrenal overproduction
of androgens in obese adolescents [27]. On the other hand, there are many who dispute
the efficacy and benefits of MTF as a permanent treatment for women with PCOS. Insulin
resistance is common but is not the main feature of PCOS [28,29]. Insulin sensitivity varies
with the phenotype of the syndrome. MTF seems to improve the effects of hyperandro-
genemia, though to a lesser degree than that of antiandrogens or oral contraceptive pills
(OCP); therefore, MTF—according to some experts—cannot be used as a first-line treatment
for these cases. Some also argue that insulin resistance cannot be reliably diagnosed from
surrogate indicators. Insulin levels reflect its secretion as well as its clearance and do not
adequately predict its action [30].
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In the most recent and extensive relevant meta-analysis, treatment with MTF only
was found to improve rates of live births when it was compared to no treatment (odds
ratio [OR] = 1.59, 95% confidence interval [CI] = 1.00-2.51; 4 studies with total n = 435; the
authors of the meta-analysis, however, found the quality of the data to be of low quality) [31].
Twenty-two percent to 40% of women experienced gastrointestinal side effects. Rates of
ovulation and clinical pregnancy with MTF alone were higher compared to those with
placebo (with OR of 2.64 [95% CI = 1.85-3.75] and 1.98 [95% CI = 1.47-2.65], respectively) [31].
In the same meta-analysis, no firm conclusions were formulated regarding MTF versus
clomiphene citrate treatment, although the combination of both medications may increase
ovulation rates and rates of clinical pregnancy [31]. The reproductive effects of MTF may
be lower in obese compared to non-obese women. The same meta-analysis did not find
an effect of MTF, when used alone, on the BMI of women with PCOS when compared
to placebo; a probable reduction in BMI was noted for the combination of MTF with
clomiphene citrate [31]. Furthermore, no firm conclusions were reached regarding MTF
and testosterone, glucose or insulin levels in women with PCOS.

3.2. MTF in Women with Gestational Diabetes

When used in pregnancy, MTF does not show appreciable changes in its bioavailability,
because any changes in the latter are being offset by changes in MTF’s clearance [32].
Although the mainstay of drug therapy for gestational diabetes (GDM) is insulin, MTF is
used in pregnancy with increasing frequency, though it is still limited to a maximum of
5–6% of all medications for GDM, depending on the country in which it is assessed [33].
The use of MTF in pregnancy is considered to be safe overall, with favorable effects on
maternal weight gain, the incidence of preeclampsia, the dosage in concomitant insulin
administration, and the rate of fetal macrosomia and neonatal hypoglycemia; it may
increase the rate of small-for-gestational-age infants [34–40]. Apparently, MTF lowers
proinflammatory cytokines (tumor necrosis factor alpha (TNF-α), interleukin [IL]-1-alpha
and IL-1-beta and IL-6) in serum, placenta and omental tissues [41]. Interestingly, although
in a very critical assessment of metanalyses regarding MTF, most were deemed to be of
low quality, the exception being those in obstetric/gynecological settings [42]. There are
caveats in the use of MTF in pregnancy: it was found—in vitro, in human embryonic stem
cells—to decrease the differentiation of pancreatic beta cells [43], and in mice to decrease or
arrest early embryonic development [44].

4. Sex/Gender Differences Using MTF
4.1. Prescribing/Administering MTF for Diabetes

There may be a difference in T2DM prevalence by sex/gender [45]; this difference
depends on the definition of diabetes per se: men tend to have higher fasting plasma glucose
more often, whereas women tend to have abnormalities in the oral glucose tolerance test
(both modalities are used in the diagnosis of the disease) [46]. Although MTF is widely
prescribed worldwide as a first-choice medication for T2DM [47], few studies have seen the
light regarding use by gender. Although women are more concerned than men about their
body image [48], and MTF may show a modest effect on weight loss [49], women are usually
prescribed lower MTF doses compared to men (and they report more gastrointestinal side
effects) [50]. In a Dutch study, although women reported/experienced more gastrointestinal
drug reactions during the first months of MTF treatment, the rate of the latter dropped in a
way analogous to that in men [50]. Furthermore, after nine months of treatment, women
were given a significantly lower daily dose. The caveat is that the researchers did not correct
for body weight or body mass index (which is different between men and women) [51]. In
one study, women in Austria were more apt to be prescribed MTF compared to men [52],
whereas in another study, women in New Zealand were more apt to discontinue this
treatment due to mainly gastrointestinal side effects [53]. In a recent report, with data from
the Metformin and AcaRbose in Chinese as the initial Hypoglycemic treatment (MARCH)
study, fasting and 2-h postprandial glucose were lower in women on MTF compared to
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men on MTF after 24 and 48 weeks of treatment. In the same study, an increase in insulin
secretion was noted in women treated with MTF, whereas no appreciable change was noted
in men on MTF [54]. Interestingly, in a fairly recent study, which was hampered by the
small number of participating women in it (n = 13), the participants could not distinguish
between MTF and placebo and did not report more gastrointestinal side effects compared
to placebo [55]. While serum creatinine can be used as a criterion for use or non-use of
MTF, a few years ago the focus shifted towards the glomerular filtration rate [measured
(GFR) or calculated (eGFR)] as a criterion [56,57]. With such a criterion, more patients can
be given MTF compared to those that can be given it using serum creatinine as a criterion,
provided that eGFR is over 45 mL/min/1.73 m2. Additionally, patients already on MTF
with eGFR in the 30–44 mL/min/1.73 m2 range can continue treatment at a maximum dose
of 1 g/day. This change in criteria can have a profound effect on increasing the size of the
target group of patients to be administered MTF, since gender differences in GFR/eGFR
can lead to variance in prescription patterns [56]. Women have lower GFR compared to
men and show a higher decline in this parameter of kidney function with advancing age.
Thus, in this light, fewer women—particularly older ones—may be given MTF compared
to men [56,58].

4.2. MTF and Vitamin B12/Homocysteine

The long-term administration of MTF significantly lowers vitamin B12 levels [59–61].
Vitamin B12 deficiency with MTF is rarely symptomatic; it is linked to a reduction in
the intestinal absorption of cobalamin and can be reversed by the discontinuation of
MTF or with oral B12 supplementation. Men have lower vitamin B12 levels compared
to women [62]. In a study of patients with T2DM (without a control group), higher
doses of MTF and male sex were factors associated with lower levels of vitamin B12 [63].
Nevertheless, the effect of MTF on B12 by sex/gender, to the best of our knowledge, has
not been assessed adequately; this is of interest given the sex/gender differences presented
above. Additionally, MTF may conditionally elevate or reduce homocysteine levels, which
is critical for people with obesity [64,65].

4.3. MTF and Cardiovascular Disease

MTF is considered to be associated with some degree of cardioprotection [66,67]; the
latter is apparently the net result of its beneficial actions on endothelial and smooth muscle
cells, blood lipids and systemic chronic inflammation [68,69]. In experimental models,
MTF was beneficial with regards to myocardial reperfusion, fibrosis and inflammation in
post-experimental myocardial ischemia [70,71]. In an older, small scale, study, MTF was
noted to have a favorable effect on cardiac metabolism in women (increasing myocardial
glucose uptake and lowering fat metabolism), in contrast to having an unfavorable one
(with opposite effects) in men [72]. In a study of 167,254 (46% women) patients with T2DM
who were already using MTF and started newer anti-diabetic medications, the incidence of
cardiovascular events, after a median observation time of 4.5 years, in women was lower
compared to that of men (14.7 versus 16.7 per 1000-person-year) [73]. Nevertheless, a
systematic review of MTF’s overall actions has not been conclusive regarding micro- and
macrovascular complications in patients with T2DM [74].

4.4. MTF and Andrology/Urology

In small (and—apparently—underpowered) studies, the effects of MTF solely on men
have been observed. This medication has been reported to be of benefit in non-diabetic
men with erectile dysfunction who had not responded to sildenafil [75]. The mechanisms
are obscure: they may be direct, via endothelium-dependent vasodilatation or attenuation
of sympathetic nerve activity, and indirect, via MTF’s effect on blood pressure [75]. Indirect
proof of the low power of studies is that erectile dysfunction, low sex drive and low
testosterone (total, free and bioavailable) have also been attributed to MTF use in men with
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T2DM [76]. Furthermore, the use of MTF for T2DM, in men with prostate cancer, has been
associated with lower prostate-specific antigen levels and improved survival [75,77–79].

4.5. Musculoskeletal Effects of MTF

From in vitro studies, a role for MTF has been proposed in the stimulation of osteo-
genesis; in vivo studies are less conclusive [80]. Furthermore, MTF activates adenosine
monophosphate-activated protein kinase (AMPK) signaling pathways. The activation of
AMPK has been implicated in muscle repair [80]. Thus, it is not surprising that patients
using MTF report less musculoskeletal pain vis-à-vis patients not on MTF [81]. The benefi-
cial musculoskeletal effects of MTF were recently found to be more pronounced in women
compared to men [81].

4.6. MTF and Experimentally-Induced Neurological Disease

An interesting dimorphism has been observed in mice regarding experimentally
induced neuropathic pain and spinal cord microglial activation. MTF was shown to
prevent and reverse neuropathic pain and spinal cord microglial activation only in male
mice [82]. The researchers presume that the known activation of AMPK may be implicated,
although no firm etiology for the sex difference in observations has been formulated. On
the other hand, in another experimental study of brain injury in mice, MTF was beneficial
for cognitive recovery in females but not males [83], pointing to a crucial relevant role for
estradiol/testosterone [83].

4.7. MTF and Aging/Life Span (Experimental)

Dimorphic sex responses to MTF regarding life span have been described: chronic
administration of MTF extended the lifespan of female mice and curtailed the lifespan of
male mice [84]. Yet, more recent studies show that the positive effect of MTF on longevity
is more prominent in male mice [85]. In the Mexican fruit fly the effect of MTF on longevity
is dose-dependent, and is beneficial in higher doses for females and in lower doses for
males [86].

4.8. MTF and Cancer

In older and newer studies, MTF in subjects with T2DM (in the older studies at low
doses of 500 mg/day or less) was shown to be more beneficial vis-à-vis the incidence
of colorectal cancer in women compared to men [87,88]. In men, MTF use may lower
the risk of prostate cancer, but the effect—if any—is apparently slight and statistically
non-significant [89]. In a Lithuanian cohort, the lowest risk for endometrial cancer was
observed in diabetic women who used only MTF (with a standardized incidence ratio [SIR]
of 1.69 and 95% confidence interval [CI] of 1.49 to 1.92) [90]. MTF was found to lower
the markers of proliferation in endometrial cancer cells [91,92]. Regarding the treatment
of endometrial hyperplasia (considered to be a precancerous entity) or of endometrial
cancer with MTF, either alone or in combination with megestgrol/medroxyprogesterone
acetate, there were some promising results stemming from small studies [93,94]. In an older
meta-analysis, a beneficial effect of MTF on overall mortality in women with endometrial
cancer was noted [95]. Nevertheless, in another meta-analysis, no beneficial effect of MTF
was found regarding the progression of endometrial hyperplasia to cancer, histology, or
rates of hysterectomy [96]. MTF is considered to lower the risk for breast cancer in subjects
with diabetes [97]. Results of trials aiming at the prevention of breast cancer with MTF
are pending [98]. A higher cumulative MTF dose decreases kidney cancer risk in T2DM
patients [99]. An analysis of MTF by cumulative dose showed significantly lower mortality
risk in the highest cumulative dose category (with hazard ratio [HR] of 0.76 and 95% CI of
0.58 to 0.99) [100].
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4.9. MTF and the Microbiome

Subtle differences have been reported in the gut microbiome between the male and fe-
male offspring of MTF-treated mice [101], as well as after MTF treatment in adult mice [102].
Before treatment with MTF and a high-fat diet (HFD), female mice had a preponderance
of Lactobacillus species, whereas male mice had a preponderance of Proteobacteria species.
After ten weeks of HFD and MTF, the bacterial species were different in males and females:
a more pronounced increase in Bacteroides was noted in female mice compared to male
ones [102]. In this respect, Lee et al. [103] suggested that gut microbiota could be affected
by hormone levels, subsequently influencing glucose and lipid metabolism [104]; one
study demonstrated that progesterone promotes the growth of oral Bacteroides species [105].
Although various studies have demonstrated a positive relationship between abundance
in Bacteroides species and the therapeutic effect of MTF, future studies should consider the
influence of sex on the effect of hormones on Bacteroides [106]. Unfortunately, in a very
recent human trial of MTF administration, which led to tangible changes in the participants’
gut microbiome, the authors give no details vis-à-vis sex/gender [107].

4.10. MTF and COVID-19

Currently, there is a global effort to fight and win against the new severe acute respira-
tory syndrome coronvirus-2 (SARS-CoV-2) pandemic and its related coronavirus disease
2019 (COVID-19); proper management of T2DM is of even greater importance, since the
presence of diabetes is associated with the most severe forms of COVID-19 and related
mortality [108,109], and glycemic control is crucial [110,111]. In addition, a significant
increase of cardiometabolic complications has been reported in many geographical areas,
highlighting the need of a comprehensive and multidisciplinary approach to this terri-
ble pandemic [112,113]. Insights and lessons from this experience can guide us to better
manage cardiometabolic risk and overcoming current challenges [114,115]. In this con-
text, the action and the effects of distinct antidiabetic drugs, including MTF, have been
extensively investigated over the last two years [116,117], as well as the impact of genetics,
comorbidities and inflammation on gender differences in COVID-19 outcomes [118].

There are many studies investigating MTF and COVID-19, and in particular mortal-
ity from this disease; the studies point to a beneficial (lowering) effect on mortality, but
most did not report results by sex/gender of MTF users [119–122]. A large-scale study
of mortality attributed to COVID-19 vis-à-vis MTF therapy [123] used anonymized data
of patients with T2DM and/or obesity from a healthcare provider in the USA. In this
study, the researchers compared a cohort of 3923 patients with COVID-19 not on MTF
(55% women) to 2333 patients with COVID-19 on MTF (48% women). From the subgroups
analyses it was found that women treated with MTF had a lower OR regarding mortality of
0.79 (95% CI: 0.64-0.98). The authors acknowledge that in their data no information about
adherence to treatment with MTF was available. Furthermore, they also acknowledge that
men are at higher risk of dying from COVID-19 and that men treated with MTF did not
show any advantage in survival. An analysis of 328 patients’ data from China showed that
MTF use was associated with a lower incidence of acute respiratory distress syndrome
(ARDS) in women, whereas such an association was not been observed in men [124]. The
authors speculated that the observed beneficial effect of MTF on women may have been the
combined result of female sex and that MTF provided protection against the production of
proinflammatory cytokines such as IL-6, IL-10 or TNF-α, which are known to be produced
in abundance in COVID-19 [124]. In a study of an ex vivo animal model, MTF was shown to
enhance the integrity of the pulmonary endothelial barrier [125]. The proposed mechanism
involves the activation of AMP-activated protein kinase α1 (AMPK-α1, which in turn
induces the activation of myosin light chain 2 (MLC2) and the deactivation of cofilin (a
binding protein that regulates actin filament dynamics and depolymerization), supporting
endothelial integrity [125]. A research group from the United States conducted a retro-
spective electronic health record data analysis of 25,326 subjects and reached contradictory
results [126]. They found that the OR of dying remained significantly lower in male subjects
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on MTF (OR 0.28; 95% CI 0.09–0.88; p = 0.029) [126]. Experts have put forth many theories
to explain why mortality rates in men were more than two-fold higher than in women.
These theoretical assumptions include the different plasma concentrations of sex steroids,
the differences in adipose tissue distribution between men and women, differences in the
levels of circulating pro-inflammatory cytokines, and the known differences in the innate
and adaptive immune responses to viral infections between sexes [126–128].

5. Conclusions

There are sex/gender differences with regards to glucose metabolism and the ap-
pearance of diabetes [129,130]. Pharmacogenetic studies have provided explanations—in
part—for the variability and effectiveness in lowering glycemia with MTF [131]. To the best
of our knowledge, sex/gender-wise, no such differences in the relevant genetic background
have been shown to date. This may be a domain for future studies. Sex/gender differences
in some effects and actions of MTF have been reported. Women may be prescribed lower
MTF doses compared to men and report more gastrointestinal side effects. The incidence
of cardiovascular events in women on MTF has been found to be lower to that of men on
MTF. Despite some promising results with MTF regarding pregnancy rates in women with
PCOS, for the management of gestational diabetes, cancer prevention or adjunctive cancer
treatment and COVID-19, data from the most robust meta-analyses of clinical studies have
yet to confirm such beneficial effects [35,38,132–146]. A caveat is that any extrapolation of
benefit to humans from animal or in vitro studies has to take into account the level of MTF
concentration attained; the latter may differ considerably and be lower in humans [147].
Vitamin B12 deficiency with long-term administration of MTF is tangible and needs to
be tackled. Inconsistencies in the studies have been noted and the field is open for new
research before implementation in clinical practice. Any beneficial effect of MTF—other
than on glycemia in patients with T2DM—should be scrutinized in the absence of T2DM.
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