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Abstract 
As clinical testing declines, wastewater monitoring can provide crucial surveillance on 
the emergence of SARS-CoV-2 variant of concerns (VoCs) in communities. In this paper 
we present QuaID, a novel bioinformatics tool for VoC detection based on quasi-unique 
mutations. The benefits of QuaID are three-fold: (i) provides up to 3-week earlier VoC 
detection, (ii) more sensitive VoC detection (tolerant of >50% mutation drop-out), and (iii) 
leverages all mutational signatures (including insertions & deletions). 
 

Main 
Wastewater monitoring is an invaluable tool for SARS-CoV-2 surveillance1–3. Despite 
multiple recent successes in VoC monitoring and detection from wastewater sequencing 
data4–6, there are multiple challenges associated with the nature of the environmental 
data. Since wastewater represents a pooled sample of multiple hosts, it harbors a 
diversity of SARS-CoV-2 variants that are currently circulating in the population1,2, 
including potentially previously unreported genotypes7. Furthermore, variant detection 
and phasing is further complicated by uneven genome coverage2 and environmental 
RNA degradation8 which render phased assembly extremely difficult9. Despite these 
challenges, detection of VoCs in wastewater samples is important for monitoring the 
emergence and spread of variants and informing public health response6,8. Current 
approaches for VoC detection in wastewater samples typically require sufficient depth 
and breadth of coverage of the variant genomes4,10, and as a consequence depend on a 
large fraction of the sample representing the variant genotype5, hampering early 
detection. Furthermore, most of current approaches discard insertion and deletion (indel) 
information and only rely on single nucleotide variants (SNVs) associated with the 
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VoC4,10. Finally, all approaches that rely on a database of previously collected SARS-CoV-
2 genomes are biased by the contents of the database11, which can lead to both false 
negative and false positive calls at the inference stage12. This issue can be further 
amplified when the underlying database is not scrutinized for potential metadata errors.  
 
To address these issues, we developed QuaID: a computational pipeline for analyzing 
SARS-CoV-2 wastewater sequencing data and inferring presence of VoCs. We use 
empirical results on real Houston wastewater data and simulated data to validate the 
efficacy of our software, and compare it to Freyja4, another state-of-the-art tool for VoC 
detection. Our key goal is achieving sensitivity to newly emerging variants in scenarios 
where coverage breadth and depth can be uneven, and the VoC-associated genomes 
are present at low abundances. We also leverage the indel data that can be inferred from 
the multiple sequence alignment files to further improve the robustness of our VoC 
detection approach. 
 
Between February 23, 2021 and May 5th, 2022, we collected, processed, and analyzed 
2,637 wastewater samples from the fifth-most populous metropolitan area in the US: 
Houston, Texas. Samples were collected weekly from 39 wastewater treatment plants 
(WWTPs, Supplementary Table 1, Supplementary Figure 1) distributed throughout the city 
of Houston and servicing more than 2 million Houston residents13. During the study 
period, the VoC detection signal clearly reflected the three major variants that affected 
Houston - Alpha, Delta, and Omicron (Figure 1B). QuaID was able to detect the Delta VoC 
two weeks prior to the first sequenced clinical sample in Texas (marked by star in Figure 
1C), and continued to provide detection signal for the four subsequent weeks after the 
first sequenced clinical sample (2021-04-05 to 2021-05-03). In contrast, Freyja reliably 
picked up the Delta signal only once the VoC became more prevalent. Similarly for the 
Omicron VoC, QuaID detected the presence of the variant in wastewater two weeks prior 
to the first clinical sample collection date, while Freyja required an additional week after 
the first clinical sample to detect Omicron presence.   
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Figure 1. Detection of Alpha, Delta, and Omicron VoCs in Houston, TX wastewater. A. QuaID VoC inference 
process overview. Parameters that affect described subroutines are provided in the rounded rectangles. B. 
Early detection of the emerging variants of concern in Houston wastewater provided by QuaID and Freya 
pipelines. For Omicron and Delta variants, QuaID provided earlier detection. Each week is presented as the 
aggregate signal from the 39 WWTPs with detections being reported if at least 2 WWTPs had any QuaID 
signal or had any non-zero abundance of the VoCs reported by Freyja. C. Variant prevalence in the clinical 
data over the study period obtained from GenBank and restricted to Texas. Stars indicate the first 
occurrences of a Delta variant genome (yellow) and an Omicron variant genome (red). D. Heatmaps of 
WWTPs with detected Omicron variant quasi-unique mutations the week of December 2nd, 2021 (top) and 
December 10th, 2021 (bottom) in Houston. Blanks indicate lack of sequencing data, blue color indicates no 
mutation detected, and the gradient shows the allele frequency for detected mutations. 
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We further investigated the early detection of the Omicron variant in Houston wastewater 
by visualizing a heatmap of variant calls (Figure 1D), and examining the multiple sequence 
alignment (MSA) of SARS-CoV-2 Omicron variant genomes available on GISAID14 in early 
December 2021. We observed 50% (5 out of 10) of the samples with Omicron presence 
for the week of December 2nd, 2021 contained the 9bp deletion (N:DEL31/33), which is a 
stable mutation (95.1% prevalence among all Omicron genomes15) for the Omicron variant 
(Figure 1D). Since the current version of Freyja relies on the UShER16 phylogenetic tree for 
its designation of mutational signatures, no deletions are used in the inference process, 
highlighting one of the reasons for the delayed detection of the Omicron variant. In the 
subsequent week, December 10th, 2021, when both Freyja and QuaID reported the 
presence of the Omicron variant in the wastewater, the N:DEL31/33 mutation was present 
in 16 of 23 sites with detections (Figure 1D), and for one of the samples with no deletion 
there was no coverage in the region flanking the deletion (Figure 1D, Sampling Site SB: 
Sims Bayou North). 
 

To further examine sensitivity of the QuaID and Freyja to degradation of the sequencing 
data, we constructed a simulated data experiment in which we varied the fraction of 
SNVs dropped out from the variant calling results. In the real wastewater sequencing 
data, 37.7% of all samples had less than 25% of the SNVs associated with the Omicron 
VoC via UShER barcodes covered by at least one read (Supplementary Figure 3B), and 
24.4% of samples had less than 10% of all Omicron-associated SNVs with at least one 
read. Thus, we constructed three simulation scenarios with each retaining 10%, 25%, or 
50% of all SNV calls at random. Our results show that due to the inclusion of deletion 
information in the inference process, QuaID remained sensitive even when only 10% of all 
SNV calls were retained, while Freyja required at least 50% of the calls to be included to 
reliably detect the VoC presence. In particular, when only 10% of all SNV calls were 
retained, QuaID still detected the presence of Delta and Omicron VoCs reliably, and 
Alpha and Gamma VoCs sparsely, while Freyja failed to estimate the abundance of any 
of the VoCs (Alpha, Delta, Gamma, and Omicron) present in the simulated samples 
(Figure 2A, Supplementary Figures 4A-7A). Furthermore, when 25% of all SNVs were 
retained, QuaID identified the present VoCs in the majority of the simulated samples, 
while Freyja provided sparse detection in the samples dominated by a single VoC (Figure 
2B). Finally, when 50% of all SNVs are retained, Freyja detected most of the VoCs 
present in the samples, and in several instances recovered the correct relative 
abundance. However, even in this scenario 8 Omicron dominated samples failed to be 
correctly identified by Freyja, while QuaID correctly inferred the presence of the VoC. 
Additionally, we observe that the stability of the coverage for the N:DEL31/33 is further 
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empirically supported by our data, which indicated that among all samples more than 61% 
have at least 10 reads that cover the bases immediately flanking the deletion 
(Supplementary Figure 3C). 

 
Figure 2. Detection of VoCs in simulated data at various levels of SNV dropout. A. Freyja relative 
abundance estimates and QuaID detection signal on simulated data from GenBank (USA/TX) with 10% of all 
SNVs retained at random. Freyja is unable to detect any of the four (Alpha, Delta, Gamma, Omicron) VoCs. 
B. Freyja relative abundance estimates and QuaID detection signal on simulated data from GenBank 
(USA/TX) with 25% of all SNVs retained at random. Freyja sparsely detects major VoCs (Delta, Omicron). 
QuaID detections are less sparse for all VoCs. C. Freyja relative abundance estimates and QuaID detection 
signal on simulated data from GenBank (USA/TX) with 50% of all SNVs retained at random. D. Metadata 
from GenBank (USA/TX) showing the fraction of genomes belonging to different VoCs for any given week. 
In this simulated experiment the fractions shown correspond to true relative abundances in the simulated 
mixture. 
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Wastewater monitoring of the SARS-CoV-2 variant emergence and spread offers unique 
benefits based on the early detection of the variant arrival prior to the clinical data3,17,18, 
and broad surveillance coverage of the population17. QuaID offers a highly sensitive 
pipeline for VoC detection using wastewater SARS-CoV-2 sequencing data. In 
comparison to one of the leading tools for analyzing SARS-CoV-2 wastewater 
sequencing data for VoC detection, QuaID demonstrated superior sensitivity. This is 
particularly important given that the underlying sample quality varies and the depth and 
breadth of coverage of amplicon sequencing data can vary widely across samples13. 
Furthermore, the ability to leverage indel information in the inference process makes 
QuaID overall more robust than approaches that rely solely on SNVs.  
 
QuaID also has some limitations in its design. Since QuaID is an early detection tool it 
does not perform full phylogenetic placement of reads, which in cases when data quality 
is high can provide a more robust representation of the sample’s lineage composition. 
Additionally, since our main goal was high sensitivity to emerging variants in scenarios 
where the underlying mutational signal is low, QuaID treats each observed mutation as 
an independent event, and hence is not in its current form suited to perform relative 
abundance estimates. 
 
We envision QuaID to be one of several tools routinely employed in wastewater 
monitoring efforts. For example, QuaID could be used in parallel with Freyja to achieve 
high sensitivity for detecting emerging variants, and relative abundance estimates of the 
dominant circulating variants. Furthermore, future work on extending the framework of 
QuaID and other tools to other pathogens that can be detected in the wastewater can 
enable sensitive and continuous environmental monitoring beyond the COVID-19 
pandemic. Finally, given the multitude of technical challenges posed by the inherent 
variability and quality of wastewater sequencing data, we believe that establishing 
extensive sets of simulated and synthetic datasets that emulate challenges in variant 
calling in wastewater samples are required to further expand our understanding of how 
RNA degradation, sample preparation and storage techniques, and sequencing protocols 
affect the downstream data and analyses.  
 
Methods 
 
Wastewater sample collection, RNA extraction, and sequencing 
Houston Water collected and provided weekly 24-hour time-weighted composite influent 
(raw wastewater) samples from 39 wastewater treatment plants (WWTPs) in Houston 
covering a service area of approximately 580 miles2 and serving over 2.3 million people. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2022. ; https://doi.org/10.1101/2021.09.08.21263279doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.08.21263279
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

In total, 2,637 samples were analyzed. SARS-CoV-2 was concentrated in wastewater 
samples using an electronegative filtration method as previously described19. We 
followed the same RNA extraction, library preparation, and sequencing protocols, as 
described in prior work13. Details on WWTP sample sites, and methods regarding sample 
collection procedures, and quantification of SARS-CoV-2 in wastewater samples can also 
be found in our previous publication13. Estimates of the viral load are provided by the 
Houston Health Department following the same methodology as outlined in the SARS-
CoV-2 Wastewater Monitoring Dashboard20. 
 
Amplicon sequencing data processing 
We processed the MiSeq paired-end data through a standard sequence of steps 
consisting of quality control report generation (FastQC21, default parameters), quality and 
adapter trimming (BBDuk22, quality trimming both ends of the read with threshold 15, and 
trimming standard PhiX adapter sequences), read mapping (BWA MEM23, default 
parameters), and primer site soft clipping (iVar24, ARTIC v325 primer scheme, minimum 
quality threshold 15). The summary overview of the whole processing pipeline is 
presented in the Supplementary Figure 2A. 
 
Variant calling 
We obtained two sets of variant calls for each sample: one with iVar24 (minimum quality 
20, minimum allele frequency 0) and the other with LoFreq26 (after adjusting quality 
scores for indel calling with the `lofreq indelqual --dindel` call, variant calling parameters 
are set to default). Both variant callers were configured to output all variant calls 
regardless of the allele frequency. We then used custom Python code to perform a 
variant call merge-and-filter operation which retained only those variant calls that were 
supported by both variant callers and had an allele frequency equal or above the user-
defined threshold (default: 0.02) according to at least one of the two variant callers (while 
allele frequency estimates are typically close between the two variant callers differences 
of <0.01 occur). 
 
Sequence database sanitation 
Prior to the subsequent analysis we used metadata obtained from GISAID website to 
filter out sequences that were marked as incomplete or that had an associated host other 
than Homo Sapiens. Additionally, VoCs with a large amount of clinical sequencing data 
available (Alpha, Delta, Omicron) are more prone to human error in the metadata entries. 
Thus, we implemented a filter that removed any genomes: annotated as Alpha with 
submission date prior to September 3rd, 2020, annotated as Delta with submission date 
prior to March 1st, 2021, and annotated as Omicron with submission date prior to 
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September 1st, 2021 (first detection dates based on cov-lineages.org VoC reports). 
Finally, we are excluded all recombinant PANGO lineages27 (X*) from the analysis. 
 
Mutation database construction 
We used the pre-generated MSA file from GISAID to extract all mutations using vdb28 in 
nucleotide mode with ambiguous bases included. We then trimmed the resulting list of 
mutations using the vdb trim command. Finally, we linked the resulting mutation list with 
the metadata based on the genome accession IDs, and the resulting data were 
aggregated by week and lineage through custom Python code. Additionally, any SNVs 
that resulted in an ambiguous base call (e.g. N, W, S, etc.) were removed from the 
database (summary view provided in Supplementary FIgure 2B). The resulting data were 
used as the mutation tables to calculate prevalence of mutations in PANGO lineages27 
over a user-defined time window (default: 4 weeks).  
 
Quasi-unique mutations 
For each lineage and mutation combination, the prevalence of the mutation occurring in 
the corresponding lineage’s genomes was calculated and then converted to a fraction of 
all genomes assigned to the lineage. Mutations that appeared in more than 50% of all 
genomes for a single lineage (i.e., not appearing in any other lineage at 50% or more) 
were considered quasi-unique for that lineage. The above choice of inclusion (what 
fraction of genomes in the lineage must have the mutations) and exclusion (what fraction 
of genomes in any other lineage precludes the mutation from being selected) 
corresponds to the definition of a consensus genome, but can be modified to arbitrary 
values by the end user. In particular setting stricter thresholds (requiring more of the 
target lineage genomes to have a mutation) will lead to smaller sets of quasi-unique 
mutations of high confidence, trading of sensitivity for specificity. Furthermore, since 
often we want to report detections at a higher level (e.g., any Omicron sub-lineage as 
opposed to a specific leaf node like BA.2.1) when determining which genomes are used 
for the exclusion rule, all the genomes that come from the same sub-clade at a fixed level 
(default: 4) in PANGO hierarchy are omitted from the exclusion check. Thus, mutations 
common to BA.1 and BA.2 can still be considered as quasi-unique for the Omicron VoC. 
Note that since vdb reports out deletions and we only filter out ambiguous SNVs, a quasi-
unique mutation can be a deletion. Additionally, in order to reduce potential noise from 
extremely rare lineages, we omit any lineages which have less than a user-defined count 
of genomes (default: 2) within the designated time window. An overview of these 
processes is presented in Supplementary Figure 2C. Finally, for each quasi-unique 
mutation QuaID estimated its predictive power as the posterior probability of observing a 
particular lineage given the observed mutation. Formally, for a lineage of interest 𝑙 and 
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the quasi-unique mutation 𝑚 we computed 𝑃(𝑙|𝑚)using Bayes’ theorem 𝑃(𝑙|𝑚) =
!(#|%)!(%)
!(#)

. We let 𝑃(𝑚) to be the ratio of the number of genomes with the mutation 𝑚 

observed to the total number of genomes in the database. Next, we let 𝑃(𝑙) to be the 
ratio of the number genomes belonging to the lineage 𝑙 and the total number of 
genomes. Finally, we let 𝑃(𝑚|𝑙) to be the fraction of genomes in the lineage 𝑙 containing 
the mutation 𝑚. While we did not provide any filtering based on the estimated predictive 
power of the quasi-unique mutations, these probabilities can be used in the downstream 
analyses to improve the interpretations of the detection signal provided by QuaID. 
 
Mutational signature aggregation 
Since the PANGO lineage hierarchy continuously expands potentially introducing new 
sub-levels for any lineage, it is useful to aggregate quasi-unique mutations into sets that 
correspond to a node at a fixed level of the hierarchy. For example, Omicron variant is 
defined as any descendant of B.1.1.529 PANGO lineage, and thus Omicron corresponds 
to level 4 in the hierarchy. When aggregating quasi-unique mutational signatures up to a 
given level, we took the union of all descendant lineage quasi-unique mutation sets. 
Note that the aggregation step always uses the same level of the hierarchy as the 
exclusion step of the quasi-unique mutation set construction.  
 
Variant of concern detection 
Given a wastewater-based sequencing sample collected on a given date D, we 
constructed the corresponding sets of quasi-unique mutations in the time-window prior 
to and including weeks up to date D (in case when there is no database information for 
the week(s) immediately preceding the target date D, the last available time-window was 
used). Then we merged the filtered set of variant calls for the sample with the quasi-
unique set of mutations with the key set to the nucleotide change. We also filtered out 
any SNVs from the sample that result in synonymous mutations. Once the combined data 
is obtained, we reported for each sample the total combined allele frequency and total 
count of observed quasi-unique mutations, as well as the total possible number of quasi-
unique mutations for the variants of interest at the desired level. Additionally, we 
reported what percentage of the quasi-unique mutation sites had coverage (with 
deletions being evaluated based on the genomic positions flanking the deletion) in order 
to distinguish between the “no detection” and “no coverage” scenarios.  
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